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C O M P E T I T I O N S

The Earth Rover Challenge (ERC) took 
place at the 2024 IEEE/RSJ Interna-
tional Conference on Intelligent Robots 
and Systems (IROS 2024), in Abu 
Dhabi, United Arab Emirates (Figure 1).  
The aim of the challenge was to evalu-
ate state-of-the-art autonomous ground 
navigation systems to move mobile 
robots through outdoor real-world envi-
ronments with a set of low-cost onboard 
sensors [red–green–blue (RGB) camer-
as, inertia sensors, wheel encoders, and 
GPS] and off board computation 
enabled by 4G communication. Specifi-
cally, the task was to navigate standard-
ized four-wheeled differential-drive 
ground robots across the globe from 
predefined start locations to GPS goal 
locations. Three teams from across the 
world participated in the challenge. The 
competition results revealed insights 

into deploying autonomous mobile 
robots in the wild without expensive 
onboard sensors and computation as 
well as the engineering of the environ-
ments. In this article, we report the 
results and findings of the first ERC at 
IROS 2024, present the approaches 
used by three teams, and discuss les-
sons learned from the challenge to point 
out future research directions.

THE ERC
Autonomous mobile robot navigation 
has been a problem studied by the 
robotics community for decades [1], [2]. 
Equipped with expensive onboard sen-
sors and computers (such as lidars and 
GPUs), existing navigation systems can 
move robots from one point to another 
without collisions, mostly in controlled 
lab environments [3], [4], [5], with some 
in real-world public spaces, potentially 
with highly engineered environments, 
maps, and features [6], [7], [8]. Howev-

er, deploying cost-effective autonomous 
mobile robots with low-cost sensors, 
e.g., RGB cameras, inertial measure-
ment units (IMUs), wheel encoders, and 
GPS, especially in unseen environ-
ments, still requires extra research and 
engineering effort. The ERC aims to 
tackle such a challenge by providing 
standardized low-cost mobile robot sys-
tems and offboard computation as well 
as 4G communication infrastructure 
to navigate a fleet of such affordable 
robots worldwide.

ERC OVERVIEW
The ERC took place as a conference 
competition at IROS 2024, in Abu 
Dhabi. As an urban robotic navigation 
competition, in the ERC, various 
research teams’ autonomous naviga-
tion systems compete against top 
human gamers in a real-world “in the 
wild” setting. Both the artificial intelli-
gence (AI) teams and human gamers 
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FIGURE 1. The first ERC, in Abu Dhabi.
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are tasked to remotely control small-
sized sidewalk robots deployed in vari-
ous cities around the world and 
undertake predefined navigation mis-
sions with GPS location goals. To be 
specific, each team is given a four-
wheeled differential-drive FrodoBot 
Zero robot to navigate around the 
globe, equipped with front and rear 
RGB cameras, an IMU, wheel encod-
ers, and a GPS unit. Each navigation 
mission is given a difficulty ranking 
beforehand, based on factors such as 
the diversity of terrain and level of 
dynamism in the surroundings (e.g., 
cars, bicycles, and human pedestrians). 
Both the AI teams and human gamers 
aim to gain in-game points based on 
this difficulty ranking and their prog-

ress of mission completion for a given 
mission (measured by checkpoints 
reached versus the total number of 
checkpoints) within 1 h. In particular, 
the AI teams are given additional leni-
ency, with up to three teleoperated 
interventions, although the total earned 
points are halved once an intervention 
has been used during a mission. Before 
the competition at IROS 2024, all the 
AI teams were provided with practice 
trials with robots in different cities 
worldwide and the FrodoBots-2K data-
set [9]. The final eight cities, however, 
were not all seen during the practice 
trials and in the FrodoBots-2K dataset, 
as shown in Table 1.

ERC RESULTS
Table 2 reports abbreviated final results 
achieved by seven human gamers and 
the three AI teams, i.e., Seoul National 
University (SNU), National University of 
Singapore (NUS), and the University of 
Texas at Austin (UT Austin). Overall, the 
human gamers were found to be drasti-
cally more proficient than the AI teams, 
with all seven human gamers ranking 
above the three AI teams. In fact, the 
lowest-ranked humans earned a final 
score of 36 points versus the top-ranked 
AI team earning a mere 15.2 points. For 
more details, refer to Table 3, with each 
of the entries denoting the difficulty 
level, successful checkpoints reached/
total number of checkpoints in a mission, 
mission completion time, number of 
interventions (for the AI teams), and 
final points earned in that mission.

The competition had many scenar-
ios where the AI teams significantly 
underperformed their human counter-
parts. For example, while many human 
players could easily get a bearing on 
their robot’s whereabouts and its ori-
entation, many AI teams struggled to 
localize their robot at the start of the 
mission, often being stuck for minutes 
before moving beyond a few meters 
away from the starting point of the 
mission. Furthermore, despite having 
the privilege of teleoperated interven-
tion by the human AI team members, 
the robots still flipped over the edge of 
sidewalks on a few occasions, a mis-
take experienced human gamers rare-
ly make. Finally, overreliance on GPS 
or IMU data, which could be highly 
inaccurate at times or slow to update, 
also caused some of the AI teams to 
overcompensate in their maneuvers or 
get confused about their robot’s loca-
tion. In contrast, experienced human 
gamers, relying on video streams, 
could quickly discern a robots’ where-
abouts by ignoring faulty or not up-
to-date GPS information displayed on 
the map and successfully travel to the 
next checkpoint.

COMPETITION TEAMS  
AND APPROACHES
In this section, we report the approach-
es of the three AI teams.

Seoul National University
Hyung-Suk Yoon, Ji-Sung Bae,  
E-In Son, Ji-Hoon Hwang,  
Dong-Wook Kim, Kun Park,  
Yeon-Kyu Lee, Jung-Tak Kim, and 
Seung-Woo Seo

National University of Singapore
Joel Loo, Zishuo Wang, Nielsen Cugito, 
Yuwei Zeng, and Tianle Shen

University of Texas at Austin
Arthur Zhang, Zichao Hu,  
Dongmyeong Lee, Taijing Chen, 
Michael Munje, Luisa Mao,  
Hochul Hwuang, Peter Stone, and 
Joydeep Biswas

The Three AI Teams 

CITY PRACTICE DATASET

King’Ong’O 
(Kenya)

✓ ✗

Kisumu (Kenya) ✓ ✗

Liuzhou (China) ✓ ✓

Wuhan (China) ✓ ✓

Manila  
(Philippines)

✓ ✓

Port Louis  
(Mauritius)

✓ ✗

Singapore  
(Singapore)

✓ ✓

Abu Dhabi ✗ ✗

TABLE 1. Cities seen (✓) versus 
unseen (✗) in the practice trials and 
FrodoBots-2K Dataset.

RANKING PLAYER FINAL SCORE

1 Human 1 (masterchi) 42

2 Human 2 (gellyquin) 42

3 Human 3 (.swooshyy.) 42

4 Human 4 (fede14) 38

5 Human 5 (zionxstatic) 38

6 Human 6 (some1ne2220) 36

7 Human 7 (dnangel7343) 36

8 AI 1 (Seoul National University) 15.2

9 AI 2 (National University of Singapore) 13.7

10 AI 3 (University of Texas at Austin) 1.2

TABLE 2. The abbreviated ERC results.
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SNU

OVERVIEW
The SNU team designed its autono-
mous navigation framework (SNUVIN) 
in a module-based manner, as depicted 
in Figure 2. For SNUVIN, a single front 
image, GPS data, and checkpoints come 
as input, and the action comes as out-
put. There are three main modules to 
SNUVIN: costmap generation (CG), 
localization (LOC), and the action 
 planner (AP).

CG
First, the CG module generates a cost-
map that represents the current environ-
ment around the robot. It is important 
for the robot to understand the environ-
ment in a 3D space both structurally and 
semantically. Therefore, SNUVIN con-
ducts depth estimation to generate a 3D 
point cloud for structural analysis and 
semantic segmentation to assign seman-
tic information to every point in the 

point cloud from the input image. Then, 
SNUVIN voxelizes the point cloud to 
create a 3D occupancy grid, and by pro-
jecting along the z-axis, a 2D grid is 
generated corresponding to the horizon-
tal xy-plane. Afterward, to represent the 
surrounding environment information 
with several factors, such as slope and 
roughness, SNUVIN calculates the 
average and standard deviation of 
 surface normals of each grid cell.  
In addition, the final grid cost is calcu-
lated by summing those various cost ele-
ments. Through these procedures, a 
2D costmap that represents the structur-
al and semantical information of the 
surrounding environment is generated.

LOC
Second, the LOC module estimates the 
current pose of the robot. Although the 
robot’s position data are provided by 
GPS, the provision is at 1 Hz and is not 
suitable for real-time operation. There-
fore, the SNU team designed a LOC 

module that estimates GPS values for 
positions where GPS signals are not 
available. The SNU team used ORB-
SLAM3 [10], which is one of the widely 
used visual simultaneous localization 
and mapping (SLAM) algorithms, to 
estimate the pose of the robot. However, 
ORB-SLAM3 can estimate only the rel-
ative pose, while the target goals 
(checkpoints) are given in the form of 
global coordinates. Therefore, the SNU 
team matched the coordinates on the 
global level by adding the GPS data and 
the relative odometry from the visual 
odometry output.

AP
Finally, the AP module gets a costmap 
and pose from the CG and LOC mod-
ules, respectively, and computes the 
action to reach the goal. Additionally, a 
heading computation module is added 
to calculate the robot’s target heading 
using only image and GPS data in a 
learning-based approach. This is intended 

KING’ONG’O KISUMU LIUZHOU WUHAN MANILA PORT LOUIS SINGAPORE ABU DHABI TOTAL

masterchi L7, 14/14, L4, 8/8, L2, 4/4, L6, 8/8, L10, 10/10, L3, 12/12, L6, 8/8, L4, 11/11, 42

14:10, 7 06:53, 4 13:33, 2 06:13, 6 16:06, 10 11:43, 3 06:48, 6 09:01, 4 (01:24:27)

gellyquin L7, 14/14, L4, 8/8, L2, 4/4, L6, 8/8, L10, 10/10, L3, 12/12, L6, 8/8, L4, 11/11, 42

14:13, 7 07:24, 4 13:31, 2 05:59, 6 15:30, 10 11:37, 3 10:44, 6 07:55, 4 (01:26:53)

.swooshyy. L7, 14/14, L4, 8/8, L2, 4/4, L6, 8/8, L10, 10/10, L3, 12/12, L6, 8/8, L4, 11/11, 42

14:16, 7 07:05, 4 13:31, 2 05:56, 6 18:25, 10 11:04, 3 10:36, 6 07:42, 4 (01:28:35)

fede14 L7, 14/14, L4, 8/8, L2, 4/4, L6, 8/8, L10, 10/10, L3, 12/12, L6, 8/8, L4, 9/11, 38

14:39, 7 07:16, 4 14:07, 2 06:53, 6 15:42, 10 11:02, 3 10:44, 6 09:45, 0 (01:30:08)

zionxstatic L7, 14/14, L4, 8/8, L2, 4/4, L6, 8/8, L10, 10/10, L3, 12/12, L6, 8/8, L4, 10/11, 38

14:40, 7 07:20, 4 13:26, 2 06:17, 6 21:17, 10 10:56, 3 07:43, 6 11:46, 0 (01:33:25)

some1ne2220 L7, 14/14, L4, 8/8, L2, 4/4, L6, 8/8, L10, 10/10, L3, 12/12, L6, 3/8, L4, 11/11, 36

14:13, 7 07:02, 4 13:21, 2 06:01, 6 16:31, 10 11:02, 3 04:00, 0 08:48, 4 (01:20:58)

dnangel7343 L7, 14/14, L4, 8/8, L2, 4/4, L6, 8/8, L10, 10/10, L3, 12/12, L6, 3/8, L4, 11/11, 36

15:49, 7 06:58, 4 13:48, 2 05:59, 6 16:05, 10 10:58, 3 03:51, 0 09:00, 4 (01:22:28)

SNU L7, 4/14, 3, L4, 7/8, 3, L2, 3/4, 0, L6, 8/8, 0, L10, 4/10, 3, L3, 8/12, 0, L6, 0/10, 0, L4, 5/11, 2, 15.16

26:12, 1 32:59, 1.75 42:23, 1.5 27:02, 6 52:02, 2 29:00, 2 12:30, 0 46:37, 0.91 (04:28:45)

NUS L7, 7/14, 3, L4, 4/8, 3, L2, 4/4, 0, L6, 8/8, 2, L10, 8/10, 3, L3, 5/12, 3, L6, 2/10, 0, L4, 6/11, 3, 13.66

84:02, 0.75 19:24, 1 39:40, 2 24:36, 3 51:49, 4 26:19, 0.62 14:07, 1.2 54:50, 1.09 (05:14:47)

UT Austin L7, 0/14, 3, L4, 2/8, 0, L2, 0/4, 1, L6, 1/8, 1, L10, 0/10, 0, L3, 1/12, 1, L6, 2/10, 3, L4, 1/11, 0, 1.24

50:25, 0 61:29, 0.5 44:27, 0 47:19, 0.38 45:06, 0 29:13, 0 68:50, 0 63:30, 0.36 (06:50:19)

Each entry includes the difficulty level, successful checkpoints reached/total number of checkpoints in a mission, mission completion time, number of 
interventions (for AI teams), and final points earned in that mission.

TABLE 3. The full results.
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to prevent the target heading angle cal-
culation in the controller from being 
incorrect due to pose errors resulting 
from GPS noise or visual odometry. 
This pose error is difficult to solve with 
the SNUVIN framework alone. There-
fore, the SNU team  adopted a hybrid 
approach that solves the limitations of 
the rule-based approach with machine 
learning by creating a module based on 
transformers. The transformer model, in 
Figure 3, is trained with imitation learn-
ing from expert navigation demonstra-
tions. It gets the front image and GPS 
data from teleoperation and the satellite 
image from Google Maps and computes 

the heading angle that the expert would 
most likely set in a given situation. 
Finally, considering the heading angle 
from the 2D costmap with the pose and 
the heading computation module, the 
controller computes the final action to 
the goal.

SUMMARY
The SNU team designed its navigation 
AI with SNUVIN, a hybrid rule-based 
and learning-based approach. The SNU 
team implemented SNUVIN with 
Robotic Operating System on a PC with 
an Intel i7 CPU and RTX 4070 Ti. 
SNUVIN is able to operate at 10 Hz. 

However, as the raw data from the tele-
operation come in at 3 Hz, SNUVIN 
operated at 3 Hz during the competition.

NUS

OVERVIEW
The NUS team developed a modular 
system, addressing three key challenges 
underlying the task: 1) visual navigation 
with a monocular camera, 2) open-
world natural human environments, and 
3) low-frequency, high-latency sensing 
and control. Unreliable sensor streams 
coupled with noisy proprioception made 
accurate depth and scale estimation in 
the monocular setting challenging. To 
tackle visual navigation with a monocu-
lar camera, the choice was made to 
forgo 3D metric geometry estimation 
and focus instead on traversability esti-
mation in 2D image space, relying on 
semantic image cues. To generalize 
over diverse scenes and appearance 
variations of open-world natural human 
environments, the system used visual 
features pretrained on large-scale datas-
ets, with fine-tuning on selected por-
tions of the FrodoBots-2K data.

Owing to hardware limitations and 
the unpredictability of latency, the low-
frequency, high-latency sensing and 
control was harder to directly address. 
The system instead focused on handling 
navigation failures induced by subopti-
mal pathfinding and trajectory tracking, 
which arose from poor communication. 
This was achieved by augmenting the 
navigation pipeline with robust failure 
detection and recovery. These listed 
principles guided the system design. At 
a high level, the system (Figure 4) con-
sists of perception, control, and failure 
detection and recovery modules. The 
perception module estimates travers-
ability from RGB input and also issues 
an egocentric direction vector to the 
next checkpoint. The control module 
selects kinodynamically feasible tra-
jectories aligned with the vector to the 
next checkpoint and generates control 
commands. The failure detection and 
recovery module is a supervisory moni-
tor taking in raw RGB images and pre-
dicted traversability from perception to 
detect failures, overriding the control 
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module to execute heuristic recovery 
behaviors when necessary.

PERCEPTION
Given the need to operate in open-world 
human environments without reliable 
depth sensing due to the  monocular 
 setting, visual traversability prediction 
based on scene semantics was used. The 
perception module takes an RGB image 
as input and outputs a traversability 
mask based on the input image, with tra-
versability scores in [0, 1]. Internally, a 
fast traversability estimator generates an 
initial mask, which is then further post-
processed with clustering heuristics to 
identify and strongly penalize likely 
obstacles. The estimator uses pretrained 
DINO-ViT visual features, which 
enables strong generalization over 
diverse environments and allows for 
sample-efficient training and fine-tuning 
to adapt to new scenes.

To train an estimator for the wheeled 
FrodoBot configuration while captur-
ing preferences on different terrains, a 
pipeline for automatically labeling data 
from FrodoBots-2K was developed. 
Based on the fixed egocentric camera 
view, the traversable region to which 
the robot is teleoperated is segmented 
with the Segment Anything Model [11], 
prompted with the bottom-central pix-
els. The Side Adapter Network [12] fil-
ters out low-quality images with motion 

blur and overexposure by checking and 
discarding images with no detected tra-
versable areas.

TRAJECTORY GENERATION  
AND CONTROL
Kinodynamically feasible trajectories 
are chosen and tracked with a modified 
dynamic window approach (DWA) [2]. 
The DWA simplifies system design by 
unifying local planning and trajectory 
tracking since it generates trajectories 
parameterized with velocities to direct-
ly command the robot with. Its inputs 
are an egocentric heading toward the 
next subgoal and the 2D traversability 
mask, and it outputs linear and angular 
velocities, (v, ~). First, reactive obsta-
cle avoidance is improved by modify-
ing the DWA’s search space to use 
more complex trajectory primitives. 
Trajectory primitives are extended 
from simple arcs to multisegmented 
arcs. Similar to model predictive con-
trol, each trajectory is rolled out for tsim 
but followed only for ttrack < tsim. Sec-
ond, trajectories are projected onto the 
traversability mask using camera 
intrinsics to evaluate kinematic feasi-
bility in the absence of bird’s-eye view 
(BEV) geometry information. A tra-
versability score is summed from pixel 
values in the mask that lie within the 
trajectory inflated by the robot’s pro-
jected footprint.

FAILURE DETECTION  
AND RECOVERY
The inevitability of failures in the open 
world is a key principle of the system’s 
design, necessitating a module to 
recover from navigation failures. It 
monitors RGB inputs and traversability 
masks for failures, then activates 
 heuristic recovery behaviors, which 
override the navigation layer to reset 
the robot. It maintains a severity level 
based on failure frequency, which bal-
ances between caution and the aggres-
siveness of corrective actions.

The module’s strategy is to take 
successively more aggressive local 
actions to perturb the robot out of the 
failure state.

Two common failure modes are 1) 
suddenly encountering untraversable 
areas (e.g., when blocked by a dynamic 
obstacle) and 2) getting stuck in local 
minima (e.g., taking a wrong turn into 
a dead end). Detection of these modes 
is approximated by detecting overall 
low traversability across the mask and 
detecting that the robot is immobile 
despite being commanded to move. 
Upon failure detection, the module 
alternates between backtracking and 
perturbation behaviors. Backtracking  
executes cached actions open loop, 
while perturbations are local travers-
ability-aware actions generated by the 
DWA with reduced goal weighting. 
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FIGURE 4. The system deals with purely monocular navigation across diverse locations via traversability estimation with pretrained 
models coupled with selection of kinodynamically feasible trajectories in image space, without explicit 3D geometry reconstruction. The 
open world and latency lead to inevitable failures, addressed by a high-level failure recovery system for monitoring and execution of 
heuristic recovery behaviors when necessary.
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The magnitude of these act ions 
increases with the severity level. Com-
petition results empirically (Figure  4) 
demonstrate recovery to be crucial 
for escaping local minima in cluttered 
urban spaces (e.g., benches and bushes) 
and handling challenging areas with 
mixed terrains.

UT AUSTIN

SYSTEM DESIGN
The UT Austin team, Texas Trailblazers 
(T2), approached the challenge using a 
hybrid modular approach composed of 
the following modules (Figure 5):

 ■ Obstacle  avoidance:  Hybrid 
module for geometric obstacle 
avoidance

 ■ Terrain preference alignment: 
Learned module to prefer driving 
on specific terrains

 ■ Global LOC: Classical module for 
localizing in the global map frame

 ■ Path planning: Hybrid module for 
planning global paths and selecting 
viable local subgoals

 ■ Ackermann motion controller: 
Classical motion controller for 
reaching local subgoals.
T2 utilizes service requests to 

confirm that the robot receives all 
outgoing commands before resum-
ing the planning and control loop. 
This reduces the maximum operating 
frequency to guarantee that the plan-
ner does not execute on stale sensor 
observations.

OBSTACLE AVOIDANCE
The obstacle avoidance module gen-
erates a BEV obstacle costmap for 
motion planning and filtering out 
invalid local subgoals during a goal 
proposal stage. T2 used Metric3Dv2 
[13], a monocular depth estimation 
model, and back projected to 3D to 
construct binary BEV costmaps.

TERRAIN PREFERENCE
T2 also employed PACER [14], a 
terrain-aware preference model, to 
predict a BEV terrain traversability 
costmap from RGB images. This 
approach avoids learning explicit 
classes of terrains by learning contin-
uous embeddings through contrastive 
learning, improving generalization to 
environments with diverse terrains. 
PACER achieves generalization by 
training on a large dataset collected 
on the UT Austin campus along with 
synthetic terrain textures. Prior to 
deployment, operators can load in a 
preference context, i.e., a set of ter-
rains with a preference order, to 
adjust the relative terrain costs with-
out retraining.

LOC
T2 directly used GPS and magnetome-
ter measurements to estimate the glob-
al pose. T2 assumed a Gaussian noise 
model for the GPS and found that this 
could adequately correct GPS mea-
surement errors to localize to globally 
planned paths.

PLANNING AND CONTROLS
The planner plans in a global frame 
using a handcrafted traditional global 
planner. Once the waypoints are 
given, T2 first employs OpenStreet-
Map to plan a dense set of global goals 
to follow. The robot begins by rotating 
to align the goal GPS within its field 
of view. Once the goal is in view, the 
intermediate planner is triggered on 
demand. The planner uses RGB–depth 
images, obstacle costmaps, and terrain 
costmaps to determine local subgoals. 
Once the best local subgoal is select-
ed, a motion planner selects the best 
path rollout to follow for a fixed time 
window (3 s). Motivated by recent suc-
cess in using vision–language models 
(VLMs) for navigation, T2 blended 
VLM-based methods like PIVOT [15] 
and CONVOI [16] to select local navi-
gation subgoals. Similar to PIVOT, 
BEV subgoal proposals are first gen-
erated, which are directly annotated 
on the image using number labels by 
projecting the 3D points to the pixel 
space using a projection matrix. 
Similar to CONVOI, T2 filters out a 
subgoal proposal if the subgoal corre-
sponds to an area where an obstacle is. 
Furthermore, T2 filters out subgoals 
that require crossing multiple segmen-
tation masks to reach, which was 
motivated by failure cases where the 
VLM would prefer subgoals that the 
robot could not navigate to, i.e., stairs. 
T2 used a similar text prompt to 
PIVOT, which was shown to work for 

FIGURE 5. The T2 software system. The system is divided in to four main groups: remote software development kit (SDK) interface, 
perception, control, and robot interface. Average runtime frequencies for each module are indicated in blue, message latencies with a low 
standard deviation are indicated as a single number, and message latencies with a high standard deviation are indicated with a minimum 
and maximum latency range. Bidirectional service call communications are indicated in orange.
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robot navigation. The VLM was GPT-
4o mini, due to the need for a fast and 
capable model.

T2 used a handcrafted recovery 
policy when failing to identify valid 
local subgoals. Recovery begins with 
the robot rotating itself in place and 
scanning its surroundings to identify 
viable exploration targets by PIVOT. If 
a full rotation does not yield any valid 
goals, the robot attempts to move back-
ward as an approximation to backtrack 
its past states.

DISCUSSIONS
Based on each team’s approach and the 
navigation performance observed dur-
ing the competition, we now discuss 
lessons learned from the first ERC and 
point out promising future research 
directions to push the boundaries of 
autonomous mobile robot navigation in 
the wild.

AI CANNOT COMPETE WITH 
HUMANS YET
The most prominent observation from 
the first ERC is that AI cannot compete 
with humans yet. In fact, all seven 
human players significantly outper-
formed the three AI teams, leaving a 
striking gap of 20.84 points between 
the last-place human player and the 
best AI team (whereas the difference 
between the first- and last-place human 
players was merely six points). As men-
tioned above, simple skills for humans, 
like state estimation, avoiding flipping 
over the edge of sidewalks, and dis-
trusting unreliable sensor input, are 
still far from the reach of AI systems.

MODULAR APPROACH DOMINATES 
THIS COMPETITION
All three AI teams adopted modular 
approaches to the first ERC, instead of 
end-to-end learning [17], potentially due 
to a combination of insufficient training 
data and the complexity and dynamism 
of real-world navigation scenarios. We 
further observe the following two points 
across all three navigation systems:

 ■ The importance of a planner or 
controller: All teams explicitly ad-
opted a planner or controller, oper-
ating either in metric or image 

space, to produce the final actions 
to drive their robot. This stark con-
trast against the reported success of 
purely learning-based action gener-
ation methods in 
many academic pa-
pers showcases the 
crucial role of ex-
plicit planning and 
control and the im-
portance to provide 
them with appropri-
ate world represen-
tation in real-world 
navigation applica-
tions. Unlike simple 
lab spaces or con-
trolled test courses 
used for academic 
research, the ERC’s 
target domain is the 
real world in the 
wild, where out-of-distribution sce-
narios will be frequently encoun-
tered and cause problems for 
end-to-end learning methods trained 
only on a limited dataset.

 ■ Split over the necessity of explicit 
geometric representation for naviga-
tion: SNU and UT Austin adopted 
explicit geometric representation in 
their modular systems using RGB-
to-depth reconstruction in the form 
of 3D point clouds, 2D costmaps, 
and BEV maps. NUS explicitly 
avoided 3D metric geometry estima-
tion and focused instead on travers-
ability estimation in 2D image space, 
relying on semantic image cues. It is 
still an active debate whether explicit 
3D geometric representation is nec-
essary for navigation in the wild, 
especially considering the lack of 
expensive 3D lidars or depth camer-
as on affordable robot hardware.

LEARNING IS AN ESSENTIAL 
COMPONENT FOR EACH TEAM
Despite the lack of end-to-end learning 
approaches in the first ERC, machine 
learning is still widely used in current 
modular systems, i.e., to learn a module, 
not the whole system. Such modules are 
mostly toward the perception side, in-
cluding depth reconstruction, semantic 
segmentation, and feature extraction 

from RGB images as well as heading 
angle correction with the help of satel-
lite images. However, classical ap-
proaches are preferred and used in the 

downstream planning 
and control tasks. The 
current practices and re-
sults of limiting the 
scope of learning to per-
ception tasks show the 
promise of learning 
even with limited data 
and potentially reveal 
the lack of sufficient 
data to broaden the 
learning scope, e.g., 
learning action genera-
tion or learning end to 
end. Even when suffi-
cient training data are 
available in the future, 
why and how learning 

should be applied to navigation will still 
need to be carefully considered by the 
robotics community [17].

FAILURE RECOVERY IS CRITICAL
Environments in the wild are full of 
unexpected scenarios, including block-
age by dynamic obstacles or getting 
stuck in a dead end. Systems without 
error detection and handling may sim-
ply repeat the same erroneous action for 
an unlimited amount of time. There-
fore, both recognizing such scenarios 
and driving the robot out of them are 
essential for long-duration and long-dis-
tance autonomous navigation tasks in 
the wild. All three teams, especially 
NUS, adopted specific error detection 
and handling techniques to recover 
from failures during the competition.

CHALLENGES OF LOW-COST 
MOBILE ROBOTS IN THE WILD
One unique feature of the ERC is its 
adoption of low-cost mobile robots to 
navigate the world. Such a feature is 
expected to raise challenges in terms of 
primitive low-quality perceptual 
streams as well as latencies caused by 
the need to off-load onboard computa-
tion to remote servers. While the latter 
has been addressed by the FrodoBot 
and three AI teams’ engineering effort 
to optimize and account for latencies in 

UNLIKE SIMPLE 
LAB SPACES OR 

CONTROLLED TEST 
COURSES USED 
FOR ACADEMIC 

RESEARCH, THE ERC’S 
TARGET DOMAIN IS 
THE REAL WORLD IN 

THE WILD.
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their systems, problems due to the low-
cost sensors, especially when being 
complicated by a fleet of robots, have 
been reported by the teams, as follows:

 ■ Cross-robot differences: Precise sen-
sor calibration on each robot is 
required by many classical systems, 
like visual SLAM. For example, 
ORB-SLAM2 [18] and VINS-mono 
[19] estimate robot pose by minimiz-
ing the projection errors using the 3D 
map points estimated with the intrin-
sic parameters, while DPVO [20] 
depends on intrinsic parameters to 
project patches from the previous 
frames to the incoming frame using 
the estimated pose and depth. To 
resolve scale ambiguity in visual 
odometry, sensor fusion with an IMU 
or wheel encoder is necessary and 
requires precise calibration for each 
deployment. While calibration data 
are provided in the FrodoBots-2K 
dataset, cross-robot differences in 
sensor parameters introduce noises to 
the calibration and then, e.g., cause 
the odometry system to lose the track 
or depth or the map reconstruction to 
become imprecise. To address a fleet 
of low-cost robots with inevitable  
differences, potential future solutions 
include online calibration quality 
monitoring and recalibration tech-
niques that do not require a dedicated 
calibration procedure [21], such as 
utilizing structure from motion to 
dynamically determine camera intrin-
sic parameters during initialization.

 ■ Unreliable GPS: As observed in the 
challenge, GPS quality varies across 
the globe and is of particularly low 
quality for robots located in, e.g., Abu 
Dhabi. Without real-time kinematic 
fixation, blindly trusting unreliable 
GPS will significantly jeopardize the 
LOC and odometry, causing trouble 
for planning and control. Interestingly, 
such a problem has also caused trouble 
for some human players in determin-
ing robots’ whereabouts and therefore 
where to drive, while other human 
players know when to distrust compro-
mised GPS information. How to deal 
with noisy GPS of different qualities in 
different places for accurate state esti-

mation remains a challenge for autono-
mous navigation systems.
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