
Differentiable Algorithm Networks for
Composable Robot Learning

Peter Karkus1,2, Xiao Ma1, David Hsu1, Leslie Pack Kaelbling2, Wee Sun Lee1 and Tomás Lozano-Pérez2
1National University of Singapore, 2Massachusetts Institute of Technology

karkus@comp.nus.edu.sg

Abstract—This paper introduces the Differentiable Algorithm
Network (DAN), a composable architecture for robot learning
systems. A DAN is composed of neural network modules, each
encoding a differentiable robot algorithm and an associated
model; and it is trained end-to-end from data. DAN combines the
strengths of model-driven modular system design and data-driven
end-to-end learning. The algorithms and models act as structural
assumptions to reduce the data requirements for learning; end-
to-end learning allows the modules to adapt to one another and
compensate for imperfect models and algorithms, in order to
achieve the best overall system performance. We illustrate the
DAN methodology through a case study on a simulated robot
system, which learns to navigate in complex 3-D environments
with only local visual observations and an image of a partially
correct 2-D floor map.

I. INTRODUCTION

There is an essential tension between the model-based and
the model-free approaches to robot system design. Robotics
research has provided a wealth of powerful models for
capabilities including perception, state estimation, planning, and
control. Put together, they form the basis of many successful
robot systems, from Shakey [36] to Stanley [47]. At the same
time, the data-driven, model-free approach, particularly, deep
learning, has recently produced exciting results in areas such as
vision and object manipulation (see, e.g., [6, 30, 34]), tasks in
which the model-based approach faces much difficulty despite
decades of research. Can we reconcile the seemingly conflicting
assumptions of model-based and model-free approaches and
integrate the two into a single unified framework?

While the two approaches appear antithetical, they in fact
focus on different aspects of robot system design. The model-
based approach focuses on the structured, modular represen-
tation. We decompose a robotic task into well-understood,
interpretable sub-tasks. For each sub-task, we construct a model
manually from prior knowledge or learn it from data. We
then develop algorithms to infer solutions given the model.
Finally, we compose the components into an overall system.
The performance of the system may be suboptimal because of
imperfect models, approximate algorithms, or a poorly chosen
decomposition. In contrast, the model-free approach relies
on end-to-end training with powerful function approximators.
We approximate the robot policy or controller with a rich
parameterized function; we learn all parameters jointly from
data, and optimize for the overall objective. A key issue here is
to choose the approximating function class. We need the right
prior, or bias, to moderate the data requirements for learning.

We want to combine the strengths of the model-based and
model-free approaches by performing end-to-end learning over
a structured, modular system representation. Our objectives
are (i) to compensate for imperfections in models, algorithms,
and decomposition and (ii) achieve strong performance with
limited training data.

To this end, we introduce the Differentiable Algorithm
Network (DAN), a composable architecture for robot learning
systems. A DAN is composed of neural network modules
encoding differentiable robot algorithms and associated models;
and it is trained end-to-end from data. The network architecture
is constrained by the algorithms, which act as a structured prior.
The network parameters encode the model parameters and
tunable algorithm parameters. In contrast with the conventional
model-based approach, which learns a model to match the
underlying system dynamics, DAN trains the network end-
to-end to optimize the overall task objective by allowing
network modules, including both models and algorithms, to
adapt and compensate for each others’ imperfections. The idea
of embedding algorithms in neural networks has appeared many
times before (e.g., [4, 3, 15, 18, 19, 20, 25, 26, 27, 28, 29, 39,
40, 43, 37, 38, 45]). Recent studies suggest that even biological
nervous systems encode model and algorithm structures, e.g.,
the Bloom filter [9] in the fruit fly [12]. However, earlier
work all focuses on individual algorithm modules rather than
composing them for an overall system.

DAN provides a general methodology for composing flexible,
robust robot learning systems. We illustrate this methodology
through a case study of building a simulated robot system
that navigates in complex 3-D environments with only local
visual observations and an image of a partially correct 2-D floor
map. The architecture of this system includes DAN modules for
visual perception, state filtering, planning, and local control. We
experiment with several learning strategies and use the results
to highlight three main advantages of the DAN methodology.

1) Robustness against imperfect models and algorithms.
Strong priors, in this case, model-based algorithms, speed
up learning. However, poorly chosen priors may ultimately
limit the performance of the learned system. DAN learning
systems are robust. Even when the underlying algorithm
of a DAN makes simplifying assumptions that are not
fully satisfied, such as the Markov property or perfect
observations, the overall system can learn a model that
compensates for the mismatch between the algorithm’s
assumptions and the physical reality.

DH
APPEARED IN

DH
Proc. Robotics: Science & Systems, 2019

Model

Algorithm
filter

Data

Algorithm
planner

𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐨𝐧

𝐥𝐞𝐚𝐫𝐧

Algorithm
control

Model Model

Data

𝐥𝐞𝐚𝐫𝐧

Data

𝐥𝐞𝐚𝐫𝐧

STRUCTURED representation DECOUPLED learning

(a) Model-based

Model

Algorithm
filter

Algorithm
planner

𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐨𝐧

Algorithm
control

Model Model

Data

𝐥𝐞𝐚𝐫𝐧

STRUCTURED representation END-TO-END learning

(b) DAN

𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐨𝐧

Data

𝐥𝐞𝐚𝐫𝐧

Neural Network

UNSTRUCTURED representation END-TO-END learning

(c) Model-free

Fig. 1. Three general architectures of robot learning systems. (a) Model-based: structured representation, decoupled learning. (b) DAN: structured representation
and end-to-end training. (c) Model-free: unstructured representation, end-to-end learning.

2) Robustness against imperfect system decomposition.
The venerable modularity principle of system design
requires us to specify well-defined interfaces to decom-
pose a system into self-contained components. Imperfect
independence assumptions may result in suboptimal
interface choices. By relaxing the interfaces between
modules through learning, DAN improves overall system
performance, sometimes significantly.

3) Flexible module representation. Neural networks,
treated as computational graphs, provide a rich, flexible
representation. While some system modules are naturally
represented as an algorithm together with a model, others
are more easily represented as a linear feedback controller,
finite-state machine, or a recurrent neural network. DAN
provides a uniform representation for them all and a
standard interface for composing them.

II. RELATED WORK

The DAN compensates for imperfect model assumptions
in a robotic system through end-to-end training. Imperfect
models are common in robotic systems. They have been studied
widely in various contexts, e.g., to account for uncertainty
in the planning model [13, 16, 23, 49, 44] or to directly
learn strategies that are robust against imperfections in en-
vironment models [11, 2], policies [24, 42], or approximate
algorithms [40]. Unlike the earlier work, the DAN commits to
the algorithm choices, but adapts the models to compensate
for imperfections through end-to-end training from data.

Learning models adapted to a task or an algorithm has been
also explored in the past. In the context of MDPs, Farahmand
[17] learns transition models adapted to value iteration to
compensate for a mis-specified model class. In the context of
manipulation, Agrawal et al. [1] learns inaccurate, “intuitive”
models that still allow good task performance. In the context
of control, Bansal et al. [7] applies Bayesian optimization to
learn a transition model directly for the policy. DAN builds on
a differentiable representation of algorithms, which scales to
learning complex models in large, modular systems jointly.

The idea of encoding algorithms in neural networks has
been proposed in various contexts, including state estima-
tion [20, 25, 26, 28], planning [18, 19, 27, 37, 45] and
control [4, 15, 38, 39]. DAN generalizes these ideas: it encodes
the entire solution structure of a system including multiple
model and algorithm components. In this paper we investigate

the opportunities the DAN approach opens up in robot system
design, where incorrect modelling assumptions are compensated
for by using end-to-end learning from data. While prior work
shows potential in this direction [27], general DANs with
multiple components have not yet been explored.

We study DAN in a visual localization and navigation
domain, a challenging robotic task of real importance [14, 5].
While our primary objective is to illustrate the DAN approach,
our work can also be seen as a contribution to the state of
the art in constructing robust visual navigation systems. Our
problem setting features important challenges that are generally
not present in related work, e.g., [35, 51]. Specifically, the goal
is specified on a map, which requires localizing and planning
with respect to the map. The combination of uncertain location,
partial map, and visual input makes this a difficult partially
observable decision-making problem, which is challenging for
both model-based and model-free approaches.

III. DIFFERENTIABLE ALGORITHM NETWORKS

A. General Architectures for Robot Learning Systems

There is a broad spectrum of different architectures for robot
learning systems, with the purely model-based approach and
the purely model-free approach sitting at the extremes (Fig. 1).
DAN aims to combine the strengths of both.

The model-based modular system design decomposes a
system into well-understood components, such as filters,
planners, and controllers, with well-defined interfaces between
them (Fig. 1a). There is a clear separation between models and
algorithms. Each model is designed or trained independently
to match the underlying physical reality. For example, we
may learn a probabilistic state-transition model p(s′|s, a) for
state s, action a, and next state s′, given supervised training
data (si, ai, si+1), i = 0, 1, 2, . . . , or learn an observation
model p(o|s) for state s and observation o, given the data
(si, oi), i = 0, 1, 2, We learn these models by maximizing
the model likelihood of the training data. The model-based
approach relies on well-understood, generally correct “inde-
pendence” assumptions to decompose a system into modules
and interfaces. It has produced many successful robot systems.

However, some robot tasks are poorly understood. Identifying
the right assumptions for modeling or decomposition is difficult.
Consider, for example, folding clothes. We may not know a
good representation of latent states. Standard modeling assump-
tions, such as Markovian state transitions or Gaussian noise,

may break down. Large observation spaces, such as camera
images, make learning a complete probabilistic distributional
model infeasible. In reaction to these difficulties, the model-
free, end-to-end approach abandons models completely; instead,
it exploits the strong approximation capabilities of a general
function approximator, such as a deep neural network, and
uses large amounts of data to train end-to-end on the task of
interest (Fig. 1c). For example, it may train a neural network
policy that directly maps camera images to robot actions for
manipulating clothes. The lack of assumptions, however, often
comes at the cost of large amounts of training data, reflecting
the fundamental trade-off between model assumptions and data.

DAN fuses the model-based and model-free approaches
(Fig. 1b). Like the model-based approach, it exploits domain
knowledge to design the overall system structure: it embeds
model-based algorithms for filtering, planning, and control in
a neural network and also maintains the separation between
models and algorithms. These structural assumptions provide a
strong and useful bias, which reduces the required amount of
training data. At the same time, like the model-free approach,
DAN trains the entire system end-to-end, thus allowing modules
to modify themselves cooperatively to optimize overall task
performance and to compensate for any incorrect model
assumptions. Further, the uniform neural network representation
makes it easy to mix model-based and model-free elements
within a single system. For example, we can replace a model-
predictive control module with an LSTM [21] or vice versa.

B. Differentiable Algorithms

DAN is based on the idea of differentiable algorithms. We
view a robot system as a policy π that maps observation
histories to robot actions. Ultimately we desire a system
that performs well according to a suitable metric J (π), e.g.,
expected total reward. We may obtain π by applying an
algorithm A to a model M , so that π = A(M). The model
M often takes on a parametric form M(θ) and is learned
from data. To construct a DAN, we start with the same
conceptual structure, but design a representation of M(θ) and
a neural network function F , so that F (θ) ≈ A

(
M(θ)

)
. Most

importantly, F (θ) is differentiable with respect to θ.
What is the benefit of a differentiable representation of

F (θ)? The conventional model learning objective is a form
of predictive likelihood `

(
M(θ)

)
, which is independent of the

algorithm A. It is only indirectly connected to the end objective
J (π) through π = A

(
M(θ)

)
. In contrast, DAN learns

by directly optimizing J (π) = J
(
F (θ)

)
. This end-to-end

optimization is generally difficult, because it involves A. The
differentiable representation of F (θ) allows for efficient first-
order methods, e.g., gradient descent, which back-propagate
gradients through the steps of A encoded in F (θ).

The premise of the DAN methodology is that many key robot
algorithms admit differentiable representations. Prior work has
addressed this important question for filtering, planning, and
control (see Section II).

A differentiable representation is straightforward if the
algorithm contains only differentiable operations. For example,

H

CA B

E FD

G I

(a) Puddle-MDP

A B

C D

(b) Puddle-POMDP

Fig. 2. Simple illustrative problems.

the histogram filter only uses matrix multiplications and
summations, which are clearly differentiable. Other algorithms
involve non-differentiable operations, such as discrete maxi-
mization, sampling, and indexing. One strategy is to replace
non-differentiable operations by a differentiable approximation,
e.g., replace max by soft-max, sampling by soft-sampling [28],
indexing by soft-indexing [27]. A drawback of these new
operations is a possible reduction of algorithmic efficiency.
Another strategy is to keep non-differentiable nodes in the
computation graph, and approximate the gradients, e.g. through
sampling methods. An example is the implementation of Monte-
Carlo tree search in [19]. Schulman et al. [41] provides a
generic framework for optimizing computation graphs with
non-differentiable nodes, although gradient estimates can
have high variance. Generic variance-reduction techniques
are actively being investigated [50]. Finally, a fundamentally
different strategy is to derive analytic gradients around a fixed
point output of the algorithm. The idea has been explored
in the context of control algorithms [4] and for generic
optimization [3, 10]. When applicable, the analytic approach
is appealing for its computational efficiency.

C. Compensating for Approximations: Illustrative Examples

We begin with two simple examples that illustrate DAN’s
ability to compensate for imperfect models and algorithms.

Puddle-MDP Consider a tiny grid navigation problem,
Puddle-MDP, in Fig. 2a. Actions are to move right, left, up,
or down. Reaching the apple (G) or a puddle (D and E)
yields positive and negative rewards, respectively. Starting in
state A, the best strategy is to move along path ABCFIHG,
reaching the apple while avoiding puddles. In a model-based
approach we may learn transition and reward models, and
plan with the value iteration algorithm. If the planning horizon
is 6 or greater, we get the optimal policy. However, what if
the planning horizon is 4? Value iteration with the perfectly
accurate transition and reward models cannot find a way around
the puddles. We train a DAN, encoding the horizon-4 value
iteration algorithm, and get a surprising result: the learned
transition model encodes actions as if they were “macro-
actions,” predicting that moving right from state A will land in
state C, etc.. While this model is predictively incorrect, it allows
value iteration to find the optimal path around the puddles
even with a horizon of 4. Similar algorithm approximations are
common. As illustrated by this example, DAN may compensate
for an approximate algorithm by training models end-to-end.

Puddle-POMDP We also consider a related problem, shown
in Fig. 2b. The robot starts in state A, but it does not observe
the state afterwards; and actions may fail (pfail = 0.4), in

which case the robot remains in place. The optimal solution
is non-trivial. If the robot moves right and down, it will
often end up in the puddle due to the transition noise. The
optimal policy is to take the right action multiple times, until
the state uncertainty is sufficiently reduced, and only then
move down. Again, when we learn the “correct” transition and
observation models, and use a POMDP-solution method, the
optimal strategy is found. POMDP solvers are computationally
expensive. Robot systems often decouple state-estimation, and
plan with the most likely state. In this problem, having the
“correct” models, the decoupled strategy performs poorly: after
moving one step to the right, the most likely state is B, in which
the robot should move down—but there is a substantial chance
the robot will have stayed in A and moved into the puddle.
We encode the same system, state estimator and planner, in
a DAN, and train the models end-to-end, to generate good
behaviour instead of accurate predictions. The optimal behavior
is recovered. How? The “failure” probability is increased over
0.5, so that after moving to the right, the most likely state is still
A, which causes additional rightward motions before moving
down. Similar situations occur in practice: for example, Monte-
Carlo localization is known to work better when the transition
noise is overestimated [46, p. 118], [26]. Through end-to-end
training, DAN may learn similar strategies for compensating
modelling approximations.

IV. CASE STUDY: LEARNING VISUAL NAVIGATION UNDER
UNCERTAINTY

We investigate the DAN approach in a simulated visual
navigation domain. The domain highlights important challenges
of robot decision making: acting under state uncertainty,
environment uncertainty, and processing rich sensory input.
Because of the combination of these challenges, an adequate
model-based system design is not immediately available—
modelling approximations are necessary. Our case study reveals
various ways DAN training may compensate for modelling
approximations, even in a moderately large modular system,
enabling substantially improved performance.

A. Domain Description

A robot is tasked to navigate to a goal in a previously unseen,
visually rich 3D environment, using a 2D floor map, and images
from an onboard camera. Each environment has different layout
and visual appearance. Examples are shown in Fig. 3. The
domain involves challenging partial observability: the location
of the robot is unknown, and the environment is uncertain, i.e.,
the map indicates walls, but not other objects, like furniture.
Since the goal is specified on the map, the robot must localize,
which involves matching features from rich camera images and
the 2D map. It must then find a path to the goal, potentially
far from its current location, and navigate while detecting and
avoiding unknown objects in the environment. We have access
to a set of training environments for learning. After learning,
the system is evaluated in new, previously unseen environments.

We develop a custom-built simulator with the Unity 3D
Engine [48] for controlled experiments. The simulator captures

Train

Test

Fig. 3. 3D simulation environments for navigation. The location of the robot
is not observed. Maps do not indicate objects to be avoided.

the critical challenges in terms of uncertainties and rich visual
appearance; however, it does not aim to simulate all aspects
of the real-world, such as dynamics. The simulator generates
randomized 3-D environments. First, a random 19×19 grid
maze is generated that defines the placement of walls in the
3-D environment. Second, additional objects are placed at
random locations, but without fully blocking passages. Objects
are chosen from a set of 23 common household furniture:
chairs, tables, beds, etc. The visual appearance is randomized,
including pictures on the walls, textures, colors and lighting.
The motion of the robot is simplified: robot states are discrete 2-
D coordinates with orientation, and transitions are deterministic.
There are a total of 1444 states corresponding to the 19×19
grid and 4 orientations. The robot does not observe the state.
It is given a set of possible initial states: in some episodes
this includes all states, in some episodes a random subset of
all states. Collisions with objects are evaluated based on the
robot bounding box of size 0.8×0.8 grid cells. In the event
of a collision the state remains unchanged. The actions are:
move forward, turn left, turn right, stay. Rewards are +20 for
reaching the goal; −10 for a collision; −0.1 for every other
action. The discount factor is 0.99.

We consider variants of the domain with increasing difficulty,
as shown in Table I. In Task A, the robot location is directly
observed, and the map given to the robot fully describes the
environment, including walls and furniture. In Task B, the
location is not observed. Instead, the robot receives local (but
noise-free) observations indicating the presence of walls or
objects in the 3 grid squares in front of the robot. In Task C, the
noise-free binary observation vectors are replaced with images
from an onboard camera. Finally, Task D is the full domain that
involves vision, uncertain location and uncertain environment.
The map given to the robot only partially describes the
environment: it indicates walls but not the furniture.

B. Architecture Description

We experiment with different architectures for systems that
learn in this domain. The systems are built by composing
up to four generic modules: vision, filtering, planning, and
local control (Fig. 4). We explore different implementations
and training strategies for each module and combinations of
modules. The different versions of the modules appear as entries
in our results table (Table II). Details are in the appendix.

Vision The vision module takes high-dimensional, 80×
40×3 images as inputs, and outputs a low-dimensional vector
representation. We consider two implementations (denoted

TABLE I
TASK VARIANTS AND CHALLENGES INVOLVED

Task A Task B Task C Task D

Map input full full full without furniture
Observation input location vector image image

Uncertain robot location x x x
Visual input x x
Partially correct map x

CNN and CNN-f) to explore the effect of relaxing the interfaces
between modules. CNN is a convolutional network [32] with
a length-3 binary vector output that indicates the presence of
walls and objects in the 3 grid squares in front of the robot; this
output is compatible with the observations provided as input
in Task B. CNN-f is a similar network that outputs length-16
embedding with no pre-specified semantics.

In Task D, where the map is partial, we use two vision
modules: one for estimating location in the map (filtering) and
one for local control. The output observation vector in the first
case is trained to only indicate walls. In the second case it is
expected to indicate all obstacles, both walls and objects. The
neural network weights in the two modules are shared except
for the last fully-connected layer.

Filtering The filtering module is a histogram (Bayes) filter
[46, 25] that maintains a belief, a probability distribution
over the states of the robot, which will be the input to the
planner. The default implementation (HF-bel) takes a length-3
observation vector, the action, and previous belief as inputs,
and outputs an updated belief (probabilities over states). We
also experiment with a version of the filter module (HF-ml)
that outputs a one-hot encoding of the most-likely state. In
the DAN setting, we use the notation HF to indicate that the
semantics of filter output is not enforced. A version that has
the richer length-16 feature vectors as input is denoted as f-HF.

The histogram filter uses two parameterized models: an
observation model, Z(ot|st), that defines the probability of ob-
servations given the state; and a transition model T (st+1|st, at)
that defines the probability of next states given the current
state and an action. We represent these models by small
neural networks conditioned on the map. Specifically, the
observation model combines features from the 19×19 map
and the observation vector, and outputs a 1444-dimensional
vector, estimates of the observation likelihood for each state.

The transition model defines 3×3×4 local transition prob-
abilities for each state and action pair. We consider two
implementations: a heterogeneous model, where local transition
probabilities are estimated from the map using a convolution
layer; and a homogeneous model that is independent of the
map and the states. The parameters in the latter case are the
local transition probabilities for each action; this is used in
the DAN setting. In the independently learned settings, the
transitions are heterogeneous, giving more accurate models.

Planning We use two planning algorithms: value iteration
(VI), a simple method for solving MDPs [8, 45], and SARSOP,
a state-of-the-art POMDP planner [31]. Both planners take
in a belief vector and output an action. The planners require
transition and reward models. Transition models are identical

Filtering

𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐨𝐧

Vision
Planning

Local control

Z T R T𝐦𝐚𝐩

.ixed	algorithm parameterized	model	component parameterized	module

Fig. 4. System architecture for visual navigation.

to the histogram filter, alternatively homogeneous or heteroge-
neous. The reward model, R(s, a), defines rewards for each
state action pair. We assume rewards are unknown. The reward
model is learned using a two-layer CNN that takes in the map
and outputs a 1444-dimensional reward vector for each action.

VI planning is done by applying Bellman updates for H
(horizon) iterations, which provide approximate Q values for
each state-action pair. The length-4 action-value outputs are
obtained by weighting the Q values for each action with the
belief vector. When the belief vector is a one-hot encoded state,
this corresponds to taking the Q values for the current state.
When the belief vector is a distribution, this strategy is known
as the QMDP approximation [33, 27].

We explore a number of variations on VI: long and short
horizon, and heterogeneous and homogeneous transition models.
We denote them VI-short, VI-hom, and VI-short-hom.

Local control The local control module takes in an
observation vector from the vision module, an action-value
vector from the planner, and outputs a new action. We
experiment with a hand-built state machine policy (SM) and
learned policies, based either on the 3-vector vision output
(LSTM) or the richer feature output (f-LSTM).

An alternative to a local control policy is to update the map
based on the observations and replan. We denote that case
as VI-repl for the planning module, although it can also be
thought of as a local-control strategy.

C. Training Regimes

We consider two main approaches for training modules:
independent, conventional model learning that optimizes for
model accuracy; and joint learning that optimizes for the final
policy objective end-to-end, using DAN. Both approaches use
trajectories from 10, 000 random environments for training, 5
trajectories from each environment.

For independent model learning we use appropriately labelled
data tuples: (ot, vt)i for a vision module, where ot is an image
and vt is a local observation vector; (st, vt,M)i tuples for an
observation model where M is a map; (st, at, st+1,M)i tuples
for a transition model; and (st, at, rt,M)i tuples for a reward
model. The training loss is defined by the appropriate negative
log-likelihood of the output.

For end-to-end learning we use expert demonstrations
in the form of observation-action trajectories and a map,
(o0, a0, o1, a1, ..., ot, at,M)i. Expert trajectories are obtained
by near-optimal, clairvoyant SARSOP policies that have full
knowledge of the underlying environment model. The expert
has access to more information than the robot: it uses ground-
truth vector observations in Task C and D, and it uses the
underlying location of the robot to build a map in Task D.

The training loss is the imitation learning objective, i.e., the
negative log-likelihood of the expert action for each step along
the trajectories. To account for critical but rare events in Task
D, we inflated the loss by a factor of 10 when the expert policy
had to avoid an unexpected obstacle. We train DANs in a
curriculum of increasingly difficult task variants; and pre-train
the vision module independently. Details are in Appendix A.

V. EXPERIMENTAL RESULTS

Quantitative results on different combinations of modules,
training strategies and tasks are shown in Table II. Each row
corresponds to one experiment. The first two columns charac-
terize the task. The third column describes the architecture and
training regime: it lists some subset of the modules V (vision),
F (filter), P (planning), and C (local control); the notation
DAN(X) means that the modules inside the parentheses are
jointly trained to optimize task performance; modules not inside
a DAN grouping are either fixed, or have models trained to
optimize a predictive objective. The next columns indicate the
particular implementation of the component (a detailed list is in
Appendix B). Finally, we report the performance of the trained
system: the percentage of trials the goal is reached (within
238 steps), the average number of time steps to the goal (only
including the successful trials), the percentage of trials that
involved one or more collisions, and the total discounted reward
averaged over trials. Evaluation is in 500 randomly generated
environments that were not seen during training.

A video is available at https://youtu.be/4jcYlTSJF4Y.
In the following we walk through the experiments, pointing

out the most salient results and illustrating a number of ways
in which the DAN approach facilitates robot system design. A
summary of our findings is in Section V-F.

A. Task A: Discrete MDP

We begin with a value-iteration algorithm and model
representation that are complete for this task (VI*). Whether
we train the models independently (A1) or via DAN (A2), the
system performs nearly optimally.

We then consider reducing the horizon of value iteration
to 25. In this scenario, using independently trained models
(A3) performs poorly, because most problem instances require
more than 25 steps. Using DAN training (A4), we recover
near-optimal performance. As in the Puddle-MDP, DAN learns
models that compensate for the weakness of the algorithm:
we find that the learned transition model predicts that actions
move farther than they actually do.

Learning a transition model that can be different for each
state in the domain is costly in space, computation time, and
training examples. In many domains, a spatially homogeneous
model, which predicts transitions relative to the robot’s current
location, will suffice; such models have a relatively small
number of parameters and are insensitive to the size of the
domain. In our domain, the dynamics are similar in all parts of
the space, but do in fact differ locally because of the presence
of walls. Experiment A5 illustrates that learning the maximum-
likelihood homogeneous transition model and planning with

it as if it were exactly correct yields very poor performance.
However, applying DAN training to this model (A6) recovers
near-optimal performance. Examining the learned models, we
see that the penalty for collisions is inflated, causing the robot
to select actions that will keep it farther away from obstacles.

In experiments A7 and A8 we both plan with a shortened
horizon and learn a homogeneous transition model, with the
now expected poor performance of independently trained
models and significant improvement by DAN. We find that,
among other things, DAN discovers that it is rarely necessary
to take two turn actions in a row; instead, the learned transition
model combines the effects of a turn and subsequent move,
thus shortening the necessary planning horizon.

B. Task B: Discrete POMDP

In this setting the robot’s location is not observed. Instead it
receives local (but noise-less) length-3 observation vectors. The
task can be perfectly modelled by a parameterized POMDP,
conditioned on the map. We begin by using a model-class that
can represent the domain exactly, learn models independently,
and apply SARSOP [31], a near-optimal POMDP solver to the
learned models, which yields near-optimal behavior (B1). How-
ever, solving a POMDP is expensive (in our case sometimes
over 5 minutes) and it tends to grow doubly exponentially with
the horizon. We explore lower-cost, decomposed solutions.

We consider a modular system that decomposes partially
observable planning into state estimation with a histogram filter,
HF, plus fully observable planning with value iteration, VI. The
HF depends on observation and transition models, and VI on
transition and reward models. We consider two different fixed
interfaces between the modules. In B2, we extract the most
likely state and perform VI as if the robot were certain it was
in that state. The robot tends to reach the goal, but at a cost
of frequent collisions. In B3, we initialize the state-occupancy
distribution for VI to be the current belief: this corresponds
to the QMDP approximation [33], which accounts for current
uncertainty, but ignores future uncertainty. We first train the
models independently (B3) and find that the system performs
poorly. It often gets stuck, oscillating or taking a stay action,
because the approximation assumes that state uncertainty will
be dispelled after any action, which is not true in this domain.

Using DAN training to jointly optimize models both in
the filter and the planner, directly for task performance, can
compensate for the strong approximation in the decoupled
system, resulting in near-optimal behavior (B4). Because the
filter and planner modules are trained jointly, the system is free
to adapt the models in a way to optimize the combined system.
We observe that the learned reward model has a large cost for
the stay action, and the learned transition model differs from
the true model in ways that break symmetry, hence gathering
information and preventing oscillatory behavior.

C. Task C: POMDP with Image Input

In this setting, instead of three-bit noise-free observations,
the robot receives images. A full POMDP model that operates
in the space of images is intractable. Hence, we add a vision

https://youtu.be/4jcYlTSJF4Y

TABLE II
MAIN RESULTS

Map Observation Architecture Vision Filter Planner Control Success Time Collision Reward
V F P C rate steps rate

A1 full state P VI* 100% 32.80 0% 12.693
A2 full state DAN(P) VI* 100% 32.80 0% 12.692

A3 full state P VI-short 59.0% 19.50 0% 5.459
A4 full state DAN(P) VI-short 97.8% 34.13 0% 12.049

A5 full state P VI-hom 34.2% 13.88 65.8% -554.3
A6 full state DAN(P) VI-hom 100% 32.83 0% 12.686

A7 full state P VI-short-hom 33.2% 13.59 60.4% -510.8
A8 full state DAN(P) VI-short-hom 95.0% 35.82 0% 11.241

B1 full vector P SARSOP 100% 36.12 0% 11.97

B2 full vector F + P HF-ml VI 94.4% 36.13 11.4% 2.83
B3 full vector F + P HF-bel VI 63.8% 36.81 0% 4.27
B4 full vector DAN(F + P) HF VI 99.6% 36.49 0% 11.85

C1 full image V+P CNN SARSOP 98.4% 38.07 0.6% 11.21

C2 full image V+F+P CNN HF-ml VI 95.2% 37.63 13.2% 3.10
C3 full image V+F+P CNN HF-bel VI 61.8% 36.18 0.4% 3.89
C4 full image V+DAN(F+P) CNN HF VI 97.4% 40.04 0.0% 10.80
C5 full image DAN(V+F+P) CNN HF VI 98.8% 36.30 0.8% 11.03
C6 full image DAN(V+F+P) CNN-f f-HF VI 99.0% 34.35 0.4% 12.09

D1 partial image V+F+P CNN HF-ml VI-repl 89.6% 39.81 7.0% -29.40
D2 partial image V+F+P CNN HF-bel VI-repl 58.4% 36.47 5.4% -15.64
D3 partial image V+F+P+C CNN HF-ml VI SM 41.4% 29.96 1.8% -11.18
D4 partial image V+F+P+C CNN HF-bel VI SM 40.0% 29.72 0.8% -5.42
D5 partial image V+F+P+C CNN HF-bel VI LSTM 66.0% 43.18 4.4% -15.87
D6 partial image V+F+P+C* CNN HF-bel VI LSTM 76.6% 40.53 3.0% -12.14

D7 partial image V+DAN(F+P)+C CNN HF VI LSTM 96.4% 45.17 3.6% 8.11
D8 partial image V+DAN(F+P)+C* CNN HF VI LSTM 70.2% 42.34 3.2% 3.60
D9 partial image V+DAN(F+P+C) CNN HF VI LSTM 98.6% 40.55 4.0% 4.12

D10 partial image DAN(V+F+P+C) CNN HF VI LSTM 99.4% 39.60 0.2% 11.09
D11 partial image DAN(V+F+P+C) CNN-f f-HF VI f-LSTM 99.8% 38.05 0.8% 11.43

module, in the form of a CNN. In most experiments in this
section, its output is a vector of 3 binary classifications with
the same expected semantics as inputs in Task B.

We begin with a classic architecture, in which the vision
module is trained via supervised learning, and the observation,
transition, and reward models from B1 are used to generate a
near-optimal POMDP policy, mapping sequences of outputs
from the vision module into actions. C1 shows that reasonable
performance can be obtained this way, although a large amount
of computation is needed to solve for the policy, and there are
failures due to imperfect vision.

We attempt to reduce computational complexity by com-
bining the independently trained vision module with both a
most-likely-state, and a QMDP approximation, based on inde-
pendently trained models (C2 and C3). We obtain performance
similar to B2 and B3. Applying DAN training to just the F
and P modules (C4) improves performance. Applying DAN to
the whole composition of V, F, and P (C5) further improves
performance. In each case, we have relaxed the semantics of
the interfaces between modules. In C5, we believe the DAN
learns to capture the prediction confidence of vision in the
observation model allowing increased robustness.

Finally, we relax the constraint on the interface between
vision and state estimation. Instead of going through a binary
classification vector, we allow the DAN to learn an observation
model for state estimation directly using features extracted
from images. Performance further improves, even beyond C1.

In particular, the goal is reached in fewer steps. This implies
that, by removing the interface constraint, the DAN learns to
extract more information from images for faster localization—
the images, in fact, contain more information than just the
occupancy of the three cells in front of the robot.

D. Task D: POMDP with Image and Partial Map Input

In this setting the maps given to the robot no longer perfectly
describe the environment: they indicate walls, but not the
furniture. Even without the problems of image processing, the
partially observable decision-making problem is intractable:
both the robot state and the environment are partially observed,
resulting in an N×2N -dimensional belief space for N grid
cells. It is also not clear how the problem can be decomposed.

One simple strategy is to try the same architectures as
for Task C. Unmodified, they fail disastrously, as the robot
repeatedly attempts to move through unmodeled obstacles. A
simple idea is to put newly encountered obstacles into the
map—but this solution presupposes that the robot is localized!
D1 and D2 show the results of updating the map as if the
robot were at the most likely location and replanning whenever
an obstacle is encountered. There is some success with this
approach, but with many collisions.

A better strategy is to add a local controller to avoid obsta-
cles, which would select alternative actions if the nominally
commanded action would result in collision. We begin by using
a simple hand-coded strategy in D3 and D4: it largely avoids

TABLE III
RESULTS FOR UNSTRUCTURED NEURAL-NETWORK LEARNING

Map Observation Success Time Collision Reward
rate steps rate

A full state 92.6% 39.79 9.2% -20.65
B full vector 22.2% 50.40 1.6% -4.86
C full image 38.2% 74.50 82.8% -103.59
D partial image 38.4% 75.97 11.4% -8.94

collisions, but at the cost of often not reaching the goal. Next,
we replace the fixed local controller with an LSTM network
that maps the commanded action and the current inputs to an
updated action. In D5, we train the LSTM in isolation, with the
same distribution of objects, but in a fully observed setting (C).
In D6, we train the LSTM in a partially observable setting, with
the HF and VI modules from system D3, still in isolation (C*).
The learning objective is the same as for training DAN, but
only the LSTM is trained. Performance remains poor.

In experiments D7 through D11, we apply the DAN
methodology to different groups of subsystems of the full
architecture. We find that allowing the system to adapt all of
the models and to choose interfaces between the modules gives
the best performance. The overall reward very closely rivals
the optimal solution in a completely observable version of the
problem, even when challenged by image interpretation and
incorrect maps.

E. Unstructured Learning Systems

We have reported on extensive experiments that illustrate
how the DAN learning can improve significantly over classical
model-learning. In addition, we experimented with standard
neural-networks on the same tasks, with the same end-to-end
objective and training data as for the DAN systems. We used
simple combinations of CNN and LSTM components, and
performed a basic search over hyper-parameters. Details are in
Appendix C. We report the best achieved results for each task
in Table III, which are generally quite poor.

These results are consistent with those from prior work on
learning map-based navigation, but in much simpler settings,
e.g., [45, 27]. It is, of course, entirely possible that a greater
investment in the search over neural network architectures and
hyper-parameters, as well as the acquisition of more training
data, would result in significantly better performance.

The important message of the DAN approach is that it allows
robotics experts to use their prior understanding of the problem,
in the form of model-based algorithms, to effectively structure
a learning system that has the appropriate bias. Learning is
more efficient, both in terms of the engineer’s time to set up
the problem, and in terms of robot time to gather data. At
the same time flexibility and performance can significantly
increase over the traditional model-based learning approach.

F. Summary

The experimental results point to several strengths of DAN.
Compensate for approximate algorithms. In Task A, the

state-transition model learns “macro actions” to compensate for
an approximate planner with short horizon (A3-A4, A7-A8).

Compensate for model mis-specification. In Task A, the
reward model learns inflated collision penalty to compensate
for a transition model assumed to be homogeneous incorrectly
(A5-A6, A7-A8).

Compensate for approximate decomposition. In Task
B, the reward model learns to penalize the stay action to
compensate for the approximate decomposition of partially
observable planning into state estimation and fully observable
planning system (B3-B4). Further, in Task C and Task D,
the vision model possibly learns to encode uncertainty in its
output, and the observation model of the filter learns to take the
uncertainty into account. This improves the overall performance
of state estimation (C5-C6, D10-D11).

Unify model-based and model-free representations. In
Task D, the model-free LSTM controller module, integrated
into and trained jointly with a model-based modular system,
learns to select actions that compensate for the incompleteness
of the map based on perceptual input (D5-D10).

Together the experimental results suggest that through
end-to-end learning, DAN compensates for imperfections in
models, algorithms, and system decomposition. Further, DAN
substantially outperforms unstructured neural networks on the
evaluation tasks, demonstrating the benefits of structured priors
through models, algorithms, and system decomposition.

VI. CONCLUSION

DAN represents a first step towards a general methodol-
ogy for designing and implementing robot learning systems.
It combines well-understood structures—models, algorithms,
interfaces—with end-to-end learning. This enables DAN to
achieve strong performance in the presence of modeling errors,
while using only limited training data. Our case study suggests
that DAN scales up to moderately complex robotic systems
involving multiple common components.

DAN adapts the models to compensate for various imper-
fections in manually specified structures. The improved task
performance comes at the cost of reduced model reusability.
This is, however, acceptable, when no alternative better
structures are known.

Scalability is a major challenge in applying the DAN
methodology in practice. A complex systems results in a
large network. Further, the optimization landscape of DANs
may be more challenging than that of over-parameterized,
unstructured neural networks. To alleviate the difficulty of
training, one may add “skip” connections or improve credit
assignment [50]. Another interesting direction is to combine
classical local model learning with end-to-end learning, possibly
in a training curriculum. Related ideas in reinforcement learning
are promising [22].

ACKNOWLEDGEMENTS

We thank Ngiaw Ting An Ian and Aseem Saxena for help with the
experimental infrastructure. This work is supported, in part, by the Singapore
MoE AcRF grant 2016-T2-2-068; ONR Global and AFRL grant N62909-18-
1-2023; NSF grants 1523767 and 1723381; AFOSR grant FA9550-17-1-0165;
ONR grant N00014-18-1-2847; Honda Research; and the MIT-Sensetime
Alliance on AI. PK is supported by the NUS Graduate School for Integrative
Sciences and Engineering Scholarship.

REFERENCES

[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra
Malik, and Sergey Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In Advances in
Neural Information Processing Systems, pages 5074–5082,
2016.

[2] Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauza,
Leslie P Kaelbling, Joshua B Tenenbaum, and Alberto
Rodriguez. Augmenting physical simulators with stochas-
tic neural networks: Case study of planar pushing and
bouncing. In International Conference on Intelligent
Robots and Systems, pages 3066–3073, 2018.

[3] Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Interna-
tional Conference on Machine Learning, pages 136–145,
2017.

[4] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots,
and J Zico Kolter. Differentiable MPC for end-to-end
planning and control. In Advances in Neural Information
Processing Systems, pages 8299–8310, 2018.

[5] Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis
Savva, et al. On evaluation of embodied navigation agents.
arXiv preprint arXiv:1807.06757, 2018.

[6] Marcin Andrychowicz, Bowen Baker, Maciek Chociej,
Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur
Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al.
Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177, 2018.

[7] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine,
and Claire J Tomiin. Goal-driven dynamics learning via
bayesian optimization. In IEEE 56th Annual Conference
on Decision and Control, pages 5168–5173, 2017.

[8] Richard Bellman. Dynamic programming. Courier
Corporation, 2013.

[9] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM, 13
(7):422–426, 1970.

[10] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations.
In Advances in Neural Information Processing Systems,
pages 6572–6583, 2018.

[11] Mark Cutler, Thomas J Walsh, and Jonathan P How. Real-
world reinforcement learning via multifidelity simulators.
IEEE Transactions on Robotics, 31(3):655–671, 2015.

[12] Sanjoy Dasgupta, Timothy C Sheehan, Charles F Stevens,
and Saket Navlakha. A neural data structure for novelty
detection. Proceedings of the National Academy of
Sciences, 115(51):13093–13098, 2018.

[13] Marc Deisenroth and Carl E Rasmussen. PILCO: A
model-based and data-efficient approach to policy search.
In International Conference on Machine Learning, pages
465–472, 2011.

[14] Guilherme N DeSouza and Avinash C Kak. Vision for

mobile robot navigation: A survey. IEEE transactions on
pattern analysis and machine intelligence, 24(2):237–267,
2002.

[15] Priya Donti, Brandon Amos, and J Zico Kolter. Task-based
end-to-end model learning in stochastic optimization.
In Advances in Neural Information Processing Systems,
pages 5484–5494, 2017.

[16] Finale Doshi-Velez, Joelle Pineau, and Nicholas Roy.
Reinforcement learning with limited reinforcement: Using
bayes risk for active learning in pomdps. Artificial
Intelligence, 187:115–132, 2012.

[17] Amir-Massoud Farahmand. Iterative value-aware model
learning. In Advances in Neural Information Processing
Systems, pages 9090–9101, 2018.

[18] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and
Shimon Whiteson. TreeQN and ATreeC: Differentiable
tree planning for deep reinforcement learning. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2018.

[19] Arthur Guez, Théophane Weber, Ioannis Antonoglou,
Karen Simonyan, Oriol Vinyals, Daan Wierstra, Rémi
Munos, and David Silver. Learning to search with
MCTSnets. In International Conference on Machine
Learning, pages 1822–1831, 2018.

[20] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and
Pieter Abbeel. Backprop KF: Learning discriminative
deterministic state estimators. In Advances in Neural
Information Processing Systems, pages 4376–4384, 2016.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Computation, 9(8):1735–1780,
1997.

[22] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-
necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray
Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[23] Nan Jiang, Alex Kulesza, Satinder Singh, and Richard
Lewis. The dependence of effective planning horizon on
model accuracy. In Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems,
pages 1181–1189, 2015.

[24] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan
Luo, Avinash Kumar, Matthias Loskyll, Juan Aparicio
Ojea, Eugen Solowjow, and Sergey Levine. Residual
reinforcement learning for robot control. arXiv preprint
arXiv:1812.03201, 2018.

[25] Rico Jonschkowski and Oliver Brock. End-to-end learn-
able histogram filters. In NeurIPS Workshop on Deep
Learning for Action and Interaction, 2016.

[26] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock.
Differentiable particle filters: End-to-end learning with
algorithmic priors. Proceedings of Robotics: Science and
Systems, 2018.

[27] Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-net:
Deep learning for planning under partial observability.
In Advances in Neural Information Processing Systems,
pages 4697–4707, 2017.

[28] Peter Karkus, David Hsu, and Wee Sun Lee. Particle
filter networks with application to visual localization. In
Proceedings of the Conference on Robot Learning, pages
169–178, 2018.

[29] Alina Kloss and Jeannette Bohg. On learning het-
eroscedastic noise models within differentiable bayes
filters, 2019. URL https://openreview.net/forum?id=
BylBns0qtX.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems, pages 1097–1105, 2012.

[31] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SAR-
SOP: Efficient point-based POMDP planning by approxi-
mating optimally reachable belief spaces. Proceedings of
Robotics: Science and Systems, 2008.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998.

[33] Michael L Littman, Anthony R Cassandra, and Leslie P
Kaelbling. Learning policies for partially observable
environments: Scaling up. In International Conference
on Machine Learning, pages 362–370, 1995.

[34] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael
Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea,
and Ken Goldberg. Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. Proceedings of Robotics: Science and
Systems, 2017.

[35] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert
Soyer, Andy Ballard, Andrea Banino, Misha Denil,
Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al.
Learning to navigate in complex environments. arXiv
preprint arXiv:1611.03673, 2016.

[36] Nils J Nilsson. Shakey the robot. Technical report, SRI
AI Center Menlo Park CA, 1984.

[37] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value
prediction network. In Advances in Neural Information
Processing Systems, pages 6120–6130, 2017.

[38] Masashi Okada, Luca Rigazio, and Takenobu Aoshima.
Path integral networks: End-to-end differentiable optimal
control. arXiv preprint arXiv:1706.09597, 2017.

[39] Marcus Pereira, David D Fan, Gabriel Nakajima An,
and Evangelos Theodorou. MPC-inspired neural network

policies for sequential decision making. arXiv preprint
arXiv:1802.05803, 2018.

[40] Sébastien Racanière, Théophane Weber, David Reichert,
Lars Buesing, Arthur Guez, Danilo Jimenez Rezende,
Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess,
Yujia Li, et al. Imagination-augmented agents for
deep reinforcement learning. In Advances in Neural
Information Processing Systems, pages 5690–5701, 2017.

[41] John Schulman, Nicolas Heess, Theophane Weber, and
Pieter Abbeel. Gradient estimation using stochastic
computation graphs. In Advances in Neural Information
Processing Systems, pages 3528–3536, 2015.

[42] Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie
Kaelbling. Residual policy learning. arXiv preprint
arXiv:1812.06298, 2018.

[43] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey
Levine, and Chelsea Finn. Universal planning networks.
arXiv preprint arXiv:1804.00645, 2018.

[44] Erik Talvitie. Model regularization for stable sample
rollouts. In UAI, pages 780–789, 2014.

[45] Aviv Tamar, Sergey Levine, Pieter Abbeel, Yi Wu, and
Garrett Thomas. Value iteration networks. In Advances in
Neural Information Processing Systems, pages 2146–2154,
2016.

[46] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.
Probabilistic Robotics. MIT Press, 2005.

[47] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp,
David Stavens, Andrei Aron, James Diebel, Philip Fong,
John Gale, Morgan Halpenny, Gabriel Hoffmann, et al.
Stanley: The robot that won the DARPA Grand Challenge.
Journal of field Robotics, 23(9):661–692, 2006.

[48] Unity 3D. Game engine. URL http://unity3d.com.
[49] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg.

LQG-MP: Optimized path planning for robots with
motion uncertainty and imperfect state information. The
International Journal of Robotics Research, 30(7):895–
913, 2011.

[50] Théophane Weber, Nicolas Heess, Lars Buesing, and
David Silver. Credit assignment techniques in stochastic
computation graphs. arXiv preprint arXiv:1901.01761,
2019.

[51] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep
reinforcement learning. In International Conference on
Robotics and Automation, pages 3357–3364, 2017.

https://openreview.net/forum?id=BylBns0qtX
https://openreview.net/forum?id=BylBns0qtX
http://unity3d.com

APPENDIX A
IMPLEMENTATION DETAILS

We implement DAN modules in Tensorflow. The DAN
implementation of HF and VI are based on [27] and [45] with
the following differences. In VI we use soft-max for performing
Bellman updates; the computed Q values are directly used
without an additional fully-connected layer; and our transition,
reward and observation models have a different form depending
on the task variant and experiment setting, as discussed in the
paper.

We train DAN systems end-to-end using expert demonstra-
tion data. We use backpropagation through time (BPTT) with
gradient clipping. In the partially observable domains the latent
belief in DAN is initialized with the true underlying initial
belief; however, we do not have access to ground-truth beliefs
after the first step.

For more complex tasks we found it necessary to train DANs
in multiple stages of curriculum. In each stage DAN is trained
end-to-end with expert demonstrations, in increasingly difficult
task settings. Specifically, in Task B, we start with a training
stage where initial beliefs are set to be certain at the true
underlying state (while the true state is still not observed after
the first step). The second training stage corresponds to the
full Task B setting, i.e., initial beliefs are uniformly distributed
across a random subset of the state space. In Task C we use
three training stages. We first replace image inputs with binary
observations and follow the two training stages of Task B. We
then add the vision module to DAN and train further with
image observations. In Task D we follow the same training
stages as in Task C (but now map inputs are only partially
correct).

The vision models in Task C and Task D are pre-trained
independently with ground-truth binary observation vectors.
CNN-f is obtained by replacing the last, fully-connected layer
of a pre-trained CNN model and initializing the new weights
randomly. We use L2 regularization for the convolutional layers
of CNN and CNN-f.

In each training stage we follow an early stopping with
patience strategy. Specifically, we decay the learning rate by
factors of 0.8 in multiple steps. The first decay step is executed
when the validation loss is not decreasing for 15 consecutive
epochs. Four more decay steps are executed when the validation
loss is not decreasing for 5 consecutive epochs. Training
terminates when the next decay step would be triggered. The
model with lowest validation loss is chosen for evaluation.

We use the RMSProp optimizer with 0.9 decay rate. The
batch size is set to 100. The initial learning rate is set to 0.001.
In Task B and Task C we truncate BPTT at 4 time steps. In
Task D the initial learning rate is 0.0005 and we truncate BPPT
at 8 time steps. Longer sequences did not improve performance.

We use NVidia GTX1080Ti GPUs. Training required ap-
proximately 1–8 GB GPU memory and 6–48 hours depending
on the task and training setting.

APPENDIX B
DETAILED MODULE DESCRIPTIONS

Vision

1) CNN. A convolutional neural network with a length-3
binary vector output that indicates the presence of walls
and objects in the 3 grid squares in front of the robot.
This output is compatible with the observations provided
as input in Task B. The CNN has 3 convolutional layers
(3-3-1 kernels and 128-128-1 filters) connected to a fully
connected layer that maps to the output vector.

2) CNN-f. A similar network as CNN, but with 16-
dimensional feature vector outputs that have no pre-
determined semantics.

Filtering

1) HF-bel. Histogram filter that takes in 3-dimensional
observation vectors, the last action of the robot, and
the previous belief distribution represented by a 1444-
dimensional vector. The output is the updated belief
distribution. At the beginning of a trajectory the belief
is initialized to the true initial belief. The transition
model in the DAN implementation is homogeneous, in the
independently learned implementation it is heterogeneous.

2) HF-ml. The same histogram filter as above, but with the
output transformed into a one-hot vector representing the
most likely state.

3) HF. The same histogram filter as HF-bel but when used as
a DAN, the output is only constrained to be a distribution,
i.e., the vector is normalized, but it is not directly enforced
to represent the true belief.

4) f-HF. The same filter as HF with a different observation
model that takes in 16 dimensional observation features
with undetermined semantics.

Planning

1) VI. The default setting of value iteration. When imple-
mented as a DAN we use the homogeneous transition
model, and H=76. When learned independently, we
use the heterogeneous transition model and plan until
convergence.

2) VI*. Value iteration with a sufficiently long planning
horizon (H=200) to guarantee finding the optimal path
and an environment-dependent, heterogeneous transition
model. The same setting is used in the independent
implementation and in DAN.

3) VI-short. Value iteration with a short planning hori-
zon (H=25).

4) VI-hom. Value iteration with a homogeneous transition
model and long planning horizon.

5) VI-short-hom. Value iteration with short planning horizon
and homogeneous transition model.

6) VI-repl. In this implementation when an obstacle is
detected by the vision module it is added to the map
according to the current most likely state. Whenever
the map is updated we replan, i.e., the Q values are
recomputed.

7) SARSOP. The SARSOP planner embodies its own Bayes
filter. It directly takes in a length-3 binary observation
vector and outputs an action. It uses the same transition
and reward models as VI, and the same observation model
as HF.

Local control

1) SM. Simple, hand-coded state machine for obstacle
avoidance. When the action with the highest value would
lead to a collision, it picks one of the turn actions with the
higher value. Further, to prevent oscillation, consecutive
left-right turns are replaced by a forward action if it does
not lead to collision.

2) LSTM. A parameterized module using LSTM. We con-
catenate the observation vector, the action-value vector
and the last action vector, and input them to an LSTM
layer with 64 hidden units. The output of the LSTM is
combined with the input action-values to produce new
action values. The action with the highest value is chosen.

3) f-LSTM. Same as LSTM, but takes in observation vectors
with undetermined semantics from the CNN-f vision
module.

APPENDIX C
UNSTRUCTURED LEARNING SYSTEMS

The unstructured learning systems all use similar recurrent
neural network architectures, which are adapted to the different
set of inputs for each task variant. First, features are extracted
from the inputs. The map, goal and initial belief inputs
are encoded as 19×19×x images, and processed by N

convolutional layers with 3×3 kernels and 256 convolutional
filters. Observations are different for each task. In Task A
observations are robot locations. They are represented as one-
hot beliefs, and processed together with the map and goal for
each time step. In Task B observations are binary vectors. They
are processed by two fully connected layers, with 128 and 32
hidden units. In Task C and Task D observations are images.
They are processed by the same CNN-f network module as in
the model-based systems, which is pre-trained independently
with ground-truth binary observation vectors. The features
extracted from all inputs are concatenated, and along with the
one-hot encoding of the last action, they are fed to an LSTM
layer with L hidden dimensions. The output of the LSTM layer
is led to a fully connected layer with D hidden dimensions,
which maps to the action output.

We perform a basic search over hyper-parameters inde-
pendently for each task. We search the number of convo-
lutional layers, N = {3, 4, 5}; the LSTM hidden dimensions,
L = {128, 256, 512}, and the fully-connected layer hidden
dimensions D = {512, 1024, 2048}. We train in the same
imitation learning setup as for DAN systems. We use a learning
rate of 0.0005, batch size of 64, BPTT truncated to 8 time
steps. We explored varying these training parameters but we
found them to have little impact on the final performance. We
report the policy performance for the network architecture that
achieved the lowest loss on a validation set. During the hyper-
parameter search we terminated training slightly earlier than
for DANs; however, after the search we have re-trained with
the best hyper-parameter, using the same training schedule and
stopping criteria as for DANs.

	Introduction
	Related work
	Differentiable algorithm networks
	General Architectures for Robot Learning Systems
	Differentiable Algorithms
	Compensating for Approximations: Illustrative Examples

	Case study: Learning visual navigation under uncertainty
	Domain Description
	Architecture Description
	Training Regimes

	Experimental results
	Task A: Discrete MDP
	Task B: Discrete POMDP
	Task C: POMDP with Image Input
	Task D: POMDP with Image and Partial Map Input
	Unstructured Learning Systems
	Summary

	Conclusion
	Appendix A: Implementation details
	Appendix B: Detailed Module Descriptions
	Appendix C: Unstructured learning systems

