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Abstract

Trust is essential in shaping human interactions with one another and with robots. This paper investigates how human
trust in robot capabilities transfers across multiple tasks. It presents a human-subject study of two distinct task domains:
a Fetch robot performing household tasks and a virtual reality simulation of an autonomous vehicle performing driving
and parking maneuvers. The findings expand our understanding of trust and provide new differentiable models of trust
evolution and transfer via latent task representations: a rational Bayes model, a data-driven neural network model, and
a hybrid model that combines the two. Experiments show that the proposed models outperform prevailing models when
predicting trust over unseen tasks and users. These results suggest that (i) task-dependent functional trust models
capture human trust in robot capabilities more accurately, and (i) trust transfer across tasks can be inferred to a good
degree. The latter enables trust-mediated robot decision-making for fluent human-robot interaction in multi-task settings.
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Introduction

As robots enter our homes and workplaces, interactions
between humans and robots become ubiquitous. Trust plays
a prominent role in shaping these interactions and directly
affects the degree of autonomy rendered to robots (Sheridan
and Hennessy 1984). This has led to significant efforts in
conceptualizing and measuring human trust in robots and
automation (Muir 1994; Lee and Moray 1994; Castelfranchi
and Falcone 2010; Yang et al. 2017).

A crucial gap, however, remains in understanding when
and how human trust in robots transfers across multiple
tasks based on the human’s prior knowledge of robot task
capabilities and past experiences. Understanding trust in
the multi-task setting is crucial as robots transition from
single-purpose machines in controlled environments—such
as factory floors—to general-purpose partners performing
diverse functions. The mathematical formalization of trust
across tasks lays the foundation of trust-mediated robot
decision making for fluent human-robot interaction. In
particular, it leads to robot policies that mitigate under-trust
or over-trust by humans when interacting with robots (Chen
et al. 2018).

In this work, we take a first step on the question
of formalizing trust transfer across tasks for human-
robot interaction. We adopt the definition of trust as a
psychological attitude (Castelfranchi and Falcone 2010) and
focus on trust in robot capabilities, i.e., the belief in a robot’s
competence to complete a task. Capability is a primary factor
in determining overall trust in robots (Muir 1994), and this
work investigates how trust in robot capabilities varies and
transfers across a range of tasks.

Our first contribution is a human-subject study (n = 32)
where our goal is to uncover the role of task similarity
and difficulty in the formation and dynamics of trust. We
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present results in two task domains: household tasks and
autonomous driving (Fig. 1). The two disparate domains
allow us to validate the robustness of our findings. We
show that inter-task trust transfer depends on perceived task
similarity, difficulty, and observed robot performance. These
results are consistent across both domains, even though the
robots and the contexts are markedly different: the household
domain, involves a Fetch robot that navigates and that
picks and places everyday objects, while the driving domain
involves a virtual reality (VR) simulation of an autonomous
vehicle performing driving and parking maneuvers. To our
knowledge, this is the first work showing concrete evidence
for trust transfer across tasks in the context of human-robot
interaction. We have made our data and code freely available
online for further research (Soh 2018).

Based on our experimental findings, we propose to
conceptualize trust as a context-dependent latent dynamic
function. This viewpoint is supported by prior socio-
cognitive research showing the dependence of trust on task
properties and on the agent to be trusted (Castelfranchi and
Falcone 2010). We focus on characterizing the structure
of this “trust function” and its dynamics, i.e., how it
changes with observations of robot performance across
tasks. An earlier version of this paper (Soh et al. 2018)
presents two formal models: (i) a Bayesian Gaussian process
(GP) (Rasmussen and Williams 2006) model, and (ii)
a connectionist recurrent neural model based on recent
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Figure 1. Experiment Task Domains: (Left) Household tasks
with the Fetch Research Robot picking and placing objects (top
left) and indoor navigation (bottom left) (Right) Autonomous
Driving tasks in the Virtual Reality simulation system. Tasks
included parking and various navigation scenarios.

advances in deep learning. The GP model explicitly encodes
a specific assumption about how human trust evolves,
via Bayes rule. In comparison, the neural model is data-
driven and places few constraints on how trust evolves
with observations. Both models leverage latent task space
representations learned using word vector descriptions of
tasks, e.g., “Pick and place a glass cup”. Experiments show
both models accurately predict trust across unseen tasks and
users. This paper introduces a third model that combines the
Bayesian and neural approaches and show that the hybrid
model achieves improved predictions. All three models are
differentiable and can be trained using standard off-the-shelf
optimizers.

In comparison with prevailing computational models
(e.g., Lee and Moray 1994; Xu and Dudek 2015), a key
benefit of these trust models is their abilities to leverage
inter-task structure in multi-task application settings. As
predictive models, they can be operationalized in decision-
theoretic frameworks to calibrate trust during collaboration
with human teammates (Chen et al. 2018; Wang et al.
2016; Nikolaidis et al. 2017a; Huang et al. 2018). Trust
calibration is crucial for preventing over-trust that engenders
unwarranted reliance in robots (Robinette et al. 2016;
Singh et al. 1993), and under-trust that can cause poor
utilization (Lee and See 2004). To summarize, this paper
makes the following key contributions:

e A novel formalization of trust as a latent dynamic
function and efficient computational differentiable
models that capture and predict human trust in robot
capabilities across multiple tasks;

e Empirical findings from a human subjects study
showing the influence of three factors on human trust
transfer across tasks, i.e., perceived task similarity,
difficulty, and robot performance;

e Systematic evaluation showing the proposed methods
outperform existing methods, indicating the impor-
tance of modeling trust formation and transfer across
tasks.

Background and Related work

Research into trust in robots (and automation) is a large
interdisciplinary endeavor spanning multiple fields including
human-factors, psychology, and human-robot interaction.
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This paper extends a prior conference version (Soh et al.
2018) with additional discussion and analyses of the
human-subject experiment. In addition, we include a new
computational trust model — that hybridizes the neural
and Bayesian methods — with updated experimental results
and expanded discussion on the computational models,
learned task-spaces, and word-based task descriptions. In
this section, we provide relevant background on trust and
computational trust models.

Key Concepts and Definitions. Trust is a multidimen-
sional concept, with many factors characterizing human
trust in robots, e.g., the human’s technical expertise and
the complexity of the robot (Lee and Moray 1994; Muir
1994; Hancock et al. 2011). Of these factors, two of the
most prominent are the performance and integrity of the
machine. Similar to existing work in robotics (Xu and Dudek
2016, 2015), we assume that robots are not intentionally
deceptive and focus on characterizing trust based on robot
performance. We view trust as a belief in the competence
and reliability of another agent to complete a task.

There are two types of trust that differ in their situation
specificity. The first is dispositional trust or trust propensity,
which is an individual difference for how willing one is to
trust another. The second is situational or learned trust, that
results from interaction between the agents concerned. For
example, the more you use your new autonomous vehicle,
the more you may learn to trust it. In this paper, we will be
concerned mostly with situational trust in robots.

Trust Measurement. Trust is a latent dynamic entity,
which presents challenges for measurement (Billings et al.
2012). Previous work has derived survey instruments
and methods for quantifying trust, including binary
measures (Hall 1996), continuous measures (Desai and
Munjal 2012; Xu and Dudek 2016; Lee and Moray 1992),
ordinal scales (Muir 1989; Hoffman et al. 2013; Jian
et al. 2000) and an Area Under Trust Curve (AUTC)
measure (Desai et al. 2013; Yang et al. 2017) which captures
participant’s trust through the entire interaction with the
robot by integrating binary trust measures over time. In this
paper, we use a self-reported measure of trust (similar to Xu
and Dudek 2015) and Muir’s questionnaire (Muir 1994).

Computational Models of Trust. Previous work has
explored explanatory models (e.g., Castelfranchi and
Falcone 2010; Lee and See 2004) and predictive models of
trust. Recent models have focused on dynamic modeling,
for example, a recent predictive model—OPTIMo (Xu and
Dudek 2015)—is a Dynamic Bayesian Network with linear
Gaussian trust updates trained on data gathered from an
observational study. OPTIMo was shown to outperform
an Auto-Regressive and Moving Average Value (ARMAYV)
model (Lee and Moray 1994), and stepwise regression (Xu
and Dudek 2016). Because trust is treated as “global” real-
valued scalar in these models, they are appropriate when
tasks are fixed (or have little variation). However, as our
results will show, trust can differ substantially between tasks.
As such, we develop models that capture both the dynamic
property of trust and its variation across tasks. We leverage
upon recurrent neural networks that have been applied to a
variety of sequential learning tasks (e.g., Soh et al. 2017) and



Soh, Xie, Chen and Hsu

Easy

Difficult

A Pick & Place

Both Success or Failure

T

-
m Ab e .

B Navigation

D Observed Tasks D Tested Tasks

Figure 2. Trust Transfer Experiment Design. Two categories of tasks were used: (A) picking and placing different objects, and (B)
navigation in a room, potentially with people and obstacles. Participants were surveyed on their trust in the robot’s ability to
successfully perform three different tasks (red boxes) before and after being shown demonstrations of two tasks. The two
demonstrated/observed tasks were always selected from the same cell (blue boxes; cell randomly assigned, with either both
successes or both failures). The tested tasks were randomly selected from three different cells—the (i) same category and difficulty
level, (i) same category but different difficulty level, and (iii) different category but same difficulty level— compared to the observed

tasks.

online Gaussian processes that have been previously used in
robotics (Soh and Demiris 2015, 2013, 2014).

Application of Trust Models. Trust emerges naturally in
collaborative settings. In human-robot collabation (Niko-
laidis et al. 2017b,a), trust models can be used to enable
more natural interactions. For example, Chen et al. (2018)
proposed a decision-theoretic model that incorporates a pre-
dictive trust model, and showed that policies that took human
trust into consideration led to better outcomes. The models
presented in this work can be integrated into such frame-
works to influence robot decision-making across different
tasks.

Human Subjects Study

In this section, we describe our human subjects study,
which was designed to evaluate if and when human trust
transfers between tasks. Our general intuition was that
human trust generalizes and evolves in a structured manner.
We specifically hypothesized that:

e H1: Trust in the robot is more similar for tasks of
the same category, compared to tasks in a different
category.

e H2: Observations of robot performance have a greater
affect on the change in human trust over similar tasks
compared to dissimilar tasks.

e H3: Trustin arobot’s ability to perform a task transfers
more readily to easier tasks, compared to more difficult
tasks.

e H4: Distrust in the robot’s ability to perform a task
generalizes more readily to difficult tasks, compared
to easier tasks.

Experimental Design
An overview of our experimental design is shown in Fig.

2. We explored three factors as independent variables:
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task category, task difficulty, and robot performance. Each
independent variable consisted of two levels: two task
categories, easy/difficult tasks, and robot success/failure. We
used tasks in two domains, each with an appropriate robot
(Fig. 3):

e Household, which included two common categories
of household tasks, i.e., picking and placing objects,
and navigation in an indoor environment. The robot
used was a real-world Fetch research robot with a
7-DOF arm, which performed /ive demonstrations of
the tasks in a lab environment that resembles a studio
apartment.

e Driving, where we used a Virtual Reality (VR)
environment to simulate an autonomous vehicle
(AV) performing tasks such as lane merging and
parking, potentially with dynamic and static obstacles.
Participants interacted with the simulation system via
an Oculus Rift headset, which provided a first-person
viewpoint from the driver seat of the AV.

The robots were different in both settings and there were
no cross-over tasks; in other words, the same experiment
was conducted independently in each domain with the same
protocol. Obtaining data from two separate experiments
enabled us to discern if our hypotheses held in different
contexts.

In both domains, we developed pre-programmed success
and failure demonstrations of robot performance for all tasks.
“Catastrophic” failures were avoided to mitigate complete
distrust of the robot; for the household navigation tasks,
the robot was programmed to fail by moving to the wrong
location. For picking and placing, the robot failed to grasp the
target object. The autonomous car failed to park by stopping
too far ahead of the lot, and failed to navigate (e.g., lane
merge) by driving off the road and stopping (Fig. 4).

The primary dependent variables were the participants’
subjective trust in the robot a’s capability to perform specific
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Household Driving
Pick & Place Navigation Parking Navigation
Domain ‘ Category ‘ ID ‘ Task
1 a bottle of soda
2 a plastic cup
A. Pick & 3 a can of chips
Place 4 an apple
5 a glass cup
6 a lemon
Household 1 to the table
2 to the door
B. Indoor 3 to living room
Navigation 4 with people moving around
5 following a person
6 while avoiding obstacles
1 Forwards, empty lot (aligned)
2 Backwards, empty lot (misaligned)
. 3 Forwards, empty lot (misaligned)
C. Parking 4 Backwards, wIi)tI}I cars (alignid)
5 Backwards, with cars (misaligned)
.. 6 Forwards, with cars (misaligned)
Driving
1 Lane merge
2 T-junction
D. Naviga- 3 Roundabout
tion 4 Roundabout with other cars
5 Lane merge with other cars
6 T-junction with other cars

Figure 3. Tasks in the Household and Driving Domains. Tasks
with IDs 1 to 3 are generally perceived to be easier than tasks
labelled with IDs 4 to 6.

tasks. Participants indicated their degree of trust given robot
a and task x at time ¢, denoted as T;t, via a 7-point Likert
scale in response to the agreement question: “The robot
is going to perform the task [x]. I trust that the robot
can perform the task successfully”. In our form, the left-
most point (1) indicated “Strongly Disagree” and the right-
most point (7) indicated “Strongly Agree”. From these task-
dependent trust scores, we computed two derivative scores:

e Trust distance across tasks d,(x,2’) = |72,
e 4| i.e., the 1-norm distance between scores for x
and =’ at time ¢.

e Trust change over time A7 (t1,t2) = |77, — 70, |,
i.e., the 1-norm distance between the scores for x at ¢;
and to.
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Figure 4. (Left Column) Autonomous car success (top) and
failure (bottom) in the lane merge task. In the failure condition,
the car drives off road and stops. (Right column) Autonomous
car success (top) and failure (bottom) in the forwards parking
task. In the failure condition, the car stops short of the parking
spot.

As a general measure of trust, participants were also asked to
complete Muir’s questionnaire (Muir 1994; Muir and Moray
1996) pre-and-post exposure to the robot demonstrations. We
also asked the participants to provide free-text justifications
for their trust scores.

Robot Systems Setup

For both the Fetch Robot and Autonomous Driving
simulator, we developed our experimental platforms using
the Robot Operating System (ROS). On the Fetch robot, we
used the Movelt motion planning framework and the Open
Motion Planning Library (Sucan et al. 2012) to pick and
place objects, and the ROS Navigation stack for navigation
in indoor environments.

The VR simulation platform was developed using the
Unity 3D engine. Control of the autonomous vehicle was
achieved using the hybrid A* search algorithm (Dolgov et al.
2010) and a proportional-integral-derivative (PID) controller.

Study Procedure

We recruited 32 individuals (Mean age: 24.09 years, SD =
2.37, 46% female) through an online advertisement and
printed flyers on a university campus. Experiments were
conducted in our lab where participants were shown live
demonstrations of the Fetch robot performing the tasks, or
observed the AV’s behavior using the driving simulator.
After signing a consent form and providing standard
demographic data, participants were introduced to the robot.
Specifically, they were provided information about the
robot’s parts and basic functions, and then asked questions
to ensure that they were paying attention and understood the
information. They then continued with the experiment’s four
stages:

1. Category and Difficulty Grouping: To gain better
control of the factors, participants were asked to
group the 12 tasks evenly into the four cells shown
in Fig. 2. As such, chosen observations matched a
participant’s own prior estimations. We found that
participant groupings were consistent — the same
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grouping was observed across participants — but
there was individual differences within each difficulty
group, e.g., some participants thought picking and
placing a lemon was comparatively more difficult than
a glass cup.

2. Pre-Observation Questionnaire: Participants were
asked to indicate their subjective trust on the three
tested tasks using the measure instruments described
above.

3. Observation of Robot Performance: Participants
were randomly assigned to observe two tasks from
a specific category and difficulty, and were asked to
indicate their trust if the robot were to repeat the
observed task. The revised trust score is the baseline
from which we evaluate the trust distance to tested
tasks.

4. Post-Observation Questionnaire and Debrief:
Finally, participants were asked to re-indicate
their subjective trust on the three tested tasks,
answered attention/consistency check questions”, and
underwent a short de-briefing.

Results

In the following, we first report our primary findings using
the task-dependent trust distance and change scores defined
above. Then, we discuss the relationship between task-
dependent trust and general trust (via comparison to the
scores obtained from Muir’s questionnaire). For the driving
domain, one participant’s results were removed due to a
failure to pass attention/consistency check questions.

For the Household domain, an ANOVA showed that
the effect of the category group on the trust distance was
significant, F'(1,89) = 24.22,p < 107, as was the effect
of difficulty, F'(1,89) = 14.05,p < 0.001. The interaction
between these two factors was moderately significant,
F(1,89) =2.94,p = 0.089. We also found a significant
effect of category on trust change F'(1,89) = 24.89,p <
1075, and of success/failure outcomes on trust change
F(1,89) = 10.04, p = 0.002. Similar results were found for
the driving domain.

Fig. 5 clearly shows that tasks in the same category (SG)
shared similar scores (supporting H1); the post-observation
trust distances (from the observed task to the tested tasks)
are significantly lower (M = 0.28, SE = 0.081) compared
to tasks in other categories (DG) (M = 1.78, SE = 0.22),
t(31) = —5.82, p < 1075 for the household tasks. Similar
statistically significant differences are observed for the
driving domain, #(30) = —2.755, p < 10~2. For both
domains, we observe moderate effect sizes (=1 on a
Likert scale of 7), which suggests practical significance; the
relative difference in trust may potentially affect subsequent
decisions to delegate tasks to the robot.

Fig. 6 shows that the change in human trust due to
performance observations of a given task was moderated
by the perceived similarity of the tasks (H2). The trust
change (between the pre-observation and post-observation
trust scores for the three tested tasks) is significantly greater
for tested tasks in the same group as the observed task
(SG) than tasks in a different group (DG); t(31) = 6.25, p <
106 for household and ¢(30) = 3.46, p < 10~ 2 for driving.
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Figure 5. Trust distance between a given task and tasks in the
same category group (SG) compared to tasks in a different
category (DG). Trust in robot capabilities was significantly more
similar for tasks in the same group.

Note also that the trust change for DG was non-zero (one-
sample t-test, p < 1072 across both domains for successes
and failures), indicating that trust transfers even between
task categories, albeit to a lesser extent. Similar to the trust
distances, the trust change effect sizes were moderately large
indicating practical significance.

We analyzed the relationship between perceived difficulty
and trust transfer (H3) by first splitting the data into
two conditions: participants who received successful
demonstrations, and those that observed failures (Fig. 7). For
the success condition, the trust distance among the household
tasks was significantly less for tasks perceived to be easier
than the observed task (M = 2.0, SE = 0.27), compared
to tasks that were perceived to be more difficult (M =
0.5,SE = 0.27), t(14) = 4.58, p < 10~3. The hypothesis
also holds in the driving domain, M = 1.25 (SE = 0.25)
v.s. M = 2.43 (SE = 0.42),t(14) = 3.6827,p < 10~3. For
the failure condition (H4), the results were not statistically
significant at the oo = 1% level, but suggest that the effect
was reversed; belief in robot inability would transfer more to
difficult tasks compared to simpler tasks.

Thus far, we have focussed on task-specific trust; a key
question is how this task-dependent trust differs from a
“general” notion of trust in the robot as measured by Muir’s
questionnaire. Fig. 8§ sheds light on this question; overall,
task-specific and general trust are positively correlated but
the degree of correlation depends greatly on the similarity
of the task to previous observations. In other words, while
general trust is predictive of task-specific trust, it does
not capture the range or variability of human trust across
multiple tasks.

Summary of Findings and Discussion

Our main findings support the intuition that human trust
transfers across tasks, but to different degrees. More
specifically, similar tasks are more likely to share a similar

*Participants were asked several questions (e.g., what the last survey
question was regarding) and to indicate their initial stated category/difficulty
for a subset of the tasks.
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Table 1. Effects of Participant Characteristics on Initial Trust and Trust Dynamics.

Un-corrected p-values are shown. Bolded rows

correspond to statistically significant coefficients at a = 0.1 after Holm-correction.

Initial Trust

Trust Change

coeff. stderr t-value Pr(> |t|])  coeff. stderr t-value Pr(> [t|)
Gender 0.43569  0.34425  1.266 0.211 -0.17572  0.10067  -1.745 0.086
Computer Usage
Linear Term -0.57557 031259 -1.841 0.071 0.20846  0.09142  2.280 0.026
Quadratic Term 0.46851 0.28246  1.659 0.103 0.06314  0.08261 0.764 0.448
Cubic Term 0.52029  0.27504  1.892 0.064 -0.07554 0.08043  -0.939 0.352
Experience with Robots
Linear Term 1.02462 0.35543  2.883 0.006 -0.14597 0.10394  -1.404 0.166
Quadratic Term 0.06946  0.30585  0.227 0.821 -0.05689 0.08944  -0.636 0.527
Cubic Term 0.27462  0.22962  1.196 0.237 0.03136  0.06715  0.467 0.642
Experience with Video Games
Linear Term -0.54237 0.44622 -1.215 0.223 -0.23355 0.13049 -1.790 0.079
Quadratic Term 0.18745 0.32895  0.570 0.571 0.06359  0.09620  0.661 0.511
Cubic Term -0.07300 0.26911  -0.271 0.787 -0.03880 0.07870  0.493 0.624
Quartic Term -0.61713  0.23753  -2.598 0.012 0.19424  0.06946  2.796 0.007
WSG of the time, then I revised my trust completely based on what
DG it actually did on a similar task”. Differences in perceived
31 task difficulty also played a role in initial trust, “I trust the
© robot because this seems like a simple enough task.” and in
g’ trust transfer, for example, “Robot failed much easier task of
@ o navigating around a stationary item, so I don’t think it can
('_C) follow a moving object”.
g I Trust and Participant Characteristics. Finally, we examine
= 1 how participant characteristics may affect dispositional and
I situational trust. Specifically, we analyzed the effect of four
independent variables—gender, amount of computer usage,
prior experience with video games, and prior experience
0 . . with robots—on the average initial trust and the average
Household Driving trust change. All four independent variables were self-

Figure 6. Trust change due to observations of robot
performance. Trust increased (or decreased) significantly more
for the tested tasks in the same group (SG) as the observed
task versus tasks in different groups (DG).

level of trust (H1). Observations of robot performance
changes trust both in the observed task, and also in similar
yet unseen tasks (H2). Finally, trust transfer is asymmetric:
positive trust transfers more easily to simpler tasks than to
more difficult tasks (H3). These findings suggest that to infer
human trust accurately in a collaboration across multiple
tasks, robots should consider the similarity and difficulty of
previous tasks.

Qualitative Analyses. Participant justifications for their
trust scores were found to be consistent with the above
findings. For example, a participant who was previously
shown the robot successfully pick and place a plastic bottle
and asked about her trust in the robot to pick and place a can,
stated “I trust this robot because the shape of the can of chips
is similar to the bottle of soda”, whilst another participant
who observed failures stated he distrusted the robot because
the task was “highly similar to the last two failed tasks”.
The justifications also revealed that some participants
were more willing to trust initially (higher dispositional
trust), e.g., “Yes, I first gave the robot the benefit of the
doubt on a task I saw that similar robot can perform some
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reported; participants indicated their level of computer usage
per week by selecting one of the following five choices:
<10 hours, 10-20 hours, 20-30 hours, 30-40 hours, >40
hours. Prior experience with video games and robots was
measured using the agreement questions, “I’m experienced
with video games” and “I’m experienced with robots” using
a 5-point Likert scale. We used the scores collected using
Muir’s questionnaire to compute the average initial trust
and trust change. A polynomial contrast model (Saville and
Wood 1991) was applied since the independent variables are
ordinal and the true metric intervals between the levels are
unknown’. We also ran tests against the task-specific trust
but the results were not significant; this was potentially due
to participants being exposed to very different tasks.

Table 1 summarizes our results. After correcting for
family-wise error, we found a moderately significant
association (o = 0.1) between initial trust and prior
experience with robots. Participants who had prior exposure
to robots were more likely to trust the robots in
our experiments. More experience with video games is
significantly associated with trust changes. Although not
statistically significant, it may also be negatively associated
with initial trust (Holm-corrected p = 0.12). These results
suggest that participant characteristics, such as their prior

TPolynomial contrast allows ordinal variables to enter not only linearly but
also with higher order to better ascertain monotonic effects.
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Figure 7. Trust distance between the observed task and a more difficult task (Ez — Df) against when generalizing to a simpler task
(Df — Ez). Participants who observed successful demonstrations of a difficult task trusted the robot to perform simpler tasks, but

not vice-versa.
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Figure 8. Muir (1994)’s Trust Score vs Task-specific trust
scores (for tested tasks). The scores are positively correlated
across the three task types, but with different strengths; the
general measure is less predictive of task-specific trust for tasks
in different categories (Pearson correlation, p = 0.5 — 0.6)
compared to tasks with same category and difficulty

(p =0.93 — 0.94).

experience with technology, do play a role in trust formation
and dynamics. However, the relationships do not appear
straightforward and we leave further examination of these
factors to future work.

Study Limitations. In this work, each participant only
observed the robot performing two tasks; we plan to
investigate longer interactions involving multiple trust
updates in future work. Furthermore, our reported results are
based on subjective self-assessments in non-critical tasks.
We believe our results to remain valid when the robot’s
actions affect the human participant’s goals. Our recent
work (Xie et al. 2019; Chen et al. 2018) includes behavioral
measures, such as operator take-overs and greater forms of
risk (e.g., in the form of performance bonuses/penalties;
these experiments also provide evidence for trust transfer
across tasks..
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Computational Models for Trust Across
Multiple Tasks

The results from our human subjects study indicate that trust
is relatively rich mental construct. Although we consider
trust to be a useful information processing “bottleneck” in
that it summarizes past experience with the robot, it does
appear to be task-specific and hence, is more than a simple
scalar quantity (as assumed in prior work Chen et al. 2018;
Xu and Dudek 2016).

In this section, we present a richer model where trust
is a task-dependent latent dynamic function 78(x) : R? —
[0, 1] that maps task features, x, to the continuous interval
[0, 1] indicating trustworthiness of the robot to perform the
task. We assume that the task features are given and are
sufficiently informative of the underlying tasks; for example,
our experiments utilized word-vector features derived from
English-language task descriptions, but visual features
extracted from images or structured task descriptions may
also be used.

This functional view of trust enables us to naturally
capture trust differences across tasks, and can be extended
to include other contexts; x can represent other factors, e.g.,
the current environment, robot characteristics, and observer
properties. To model the dynamic nature of trust, we propose
a Markovian function g that updates trust,

7 = 9(Ti1,01) M

where of_; = (x¢—1,c{_;) is the observation of robot a
performing a task with features x;_; at time ¢ — 1 with
performance outcome c§_;. The function g serves to change
trust given observations of robot performance, and as
such, is a function over the space of trust functions. In
this work, we consider binary outcomes c¢f_; € {+1,—1}
indicating success and failure respectively, but differences
in performance can be directly accommodated via “soft
labels” ¢f_; € [—1, +1] without significant modifications to
the presented methods.

The principle challenge is then to determine appropriate
forms for 7 and g. In this work, we propose and evaluate
three different approaches: (i) a Bayesian approach where
we model a probability distribution over latent functions via
a Gaussian process, (ii) a connectionist approach utilizing a
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recurrent neural network (RNN), and (iii) a hybrid approach
that combines the aforementioned two methods.

Bayesian Gaussian Process Trust Model

In our first model, we view trust formation as a cognitive
process, specifically, human function learning (Griffiths et al.
2009). We adopt a rational Bayesian framework, i.e., the
human is learning about the robot capabilities by combining
prior beliefs about the robot with evidence (observations of
performance) via Bayes rule. More formally, let us denote
the task at time ¢ as x;, and the robot a’s corresponding
performance as c¢. Given binary success outcomes (where
cf = 1 indicates success), we introduce a latent function f¢
and model trust in the robot as,

78(%s) = / P(et = 1f* x)m (" @

where p;(f®) is the human’s current belief over f¢,
and P(cf|f% x,) is the likelihood of observing the robot
performance ¢f given the task x;. Intuitively, f* can be
thought of as a latent “unnormalized” trust function that has
range over the real number line. Given an observation of
robot performance, the human’s trust is updated via Bayes
rule,

P(ct_q|f* xt—1)pe—1(f*)

N J P(cg_q|f* %¢e—1)pe—1(f2)dfe’
(3)

Pt(fa|Xt7170?71)

where p; is the posterior distribution over f®.

To use this model, we need to specify the prior po(f*)
and likelihood P(c?|f, x) functions. Similar to prior work
in human function learning (Griffiths et al. 2009), we place a
Gaussian process (GP) prior over f¢,

po(f*) = N(m(x), k(x,x")). @)

where m(-) is the prior mean function, and k(-,-) is the
kernel or covariance function. The literature on GPs is large
and we refer readers wanting more detail to Williams and
Rasmussen (2006). In brief, a GP is a collection of random
variables, of which any finite subset is jointly Gaussian.
In this model, any given task feature x indexes a random
variable representing the real function value f(x) at specific
location x. The nice properties of Gaussians enable us to
perform efficient marginalization, which makes the model
especially attractive for predictive purposes. Note that the
GP is completely parameterized by its mean and kernel
functions, which we describe below.

Covariance Function. The kernel function is an essential
ingredient for GPs and quantifies the similarities between
inputs (tasks). Popular kernel functions include the
squared exponential and Matérn kernels (Williams and
Rasmussen 2006). Although our task features are generally
high dimensional (e.g., the word features used in our
experiments), we consider tasks to live on a low-dimensional
manifold, i.e., a psychological task space. With this in mind,
we use a projection kernel:

kX)) =exp(—(x - x) TM(x - x)) ()

with a low rank matrix M = ALA " where A € R%* and L
is a diagonal matrix of length-scales capturing axis-aligned
relevances in the projected task space.
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Capturing Prior Estimations of Task Difficulty and Initial
Bias. As our studies have shown, perceived difficulty results
in an asymmetric transfer of trust (H3), which presents
a difficulty for standard zero/constant-mean GPs given
symmetric covariance functions. To address this issue, we
explore two different approaches:

1. First, the mean function is a convenient way of
incorporating a human’s prior estimation of task
difficulty; tasks which are presumed to be difficult
(beyond the robot’s capability) will have low values.
Here, we have used a data-dependent linear function,
m(x) = 3" x where 3 is learned along with other GP
parameters.

2. A second approach is to use pseudo-observations
xT and x~ and associated f®’s to bias the initial
model. Intuitively, x* (x~) summarizes the initial
positive (negative) experiences that a person may
have had. The pseudo-observations are implemented
simply as pre-observed data-points that the models
are seeded with, prior to any trust updates. Similar
to (3, these parameters are learned during training. In
our experiments, the pseudo-observations are trained
using data from all the individuals in each training set,
and thus, represent the “average” initial experience.

Both approaches allow the GP to accommodate the
aforementioned asymmetry; the evidence has to counteract
the prior mean function or pseudo-observations respectively.

Observation Likelihood. In standard regression tasks, the
observed “outputs” are real-valued. However, participants
in our experiments observed binary outcomes (the robot
succeeded or failed) and thus, we wuse the probit
likelihood (Neal 1997),

(6)

Pt ) — o (420 )

2
On

where ®(y) = \/%fi/w exp (—%) dt is the CDF of the
standard normal, and o2 is the noise variance. Here, ®(y)
is a response function that “squashes” the function value
y = f*(x) € (—o0,00) onto the range [0, 1]. Alternative
likelihoods can be used without changing the overall
framework.

Trust Updates via Approximate Bayesian Inference.
Unfortunately, the Bayesian update (3) under the probit
likelihood is intractable and yields a posterior process
that is non-Gaussian. To address this problem and enable
iterative trust updates, we employ approximate Bayesian
inference: the posterior process is projected onto the
closest GP as measured by the Kullback-Leibler divergence,
KL(p¢||g), and ¢ is our GP approximation (Csaté and
Opper 2002). Minimizing the KL divergence is equivalent
to matching the first two moments of p; and ¢, which can be
performed analytically. The update equations in their natural
parameterization forms are given by:

(%) = o/ k(x) ™
ki(x,x') = k(x,x') + k(x) T Cik(x') 8)
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Figure 9. A High-level Schematic of the Neural Trust Model. The trust vector is updated using GRU cells as memory of previously
observed robot performance. The model uses feed-forward neural networks to project tasks into a dot-product space in which trust

for a task can be efficiently computed.

where o vector and C are updated using:

oy =oz_1+71(Ciorke + ) )
C;=Cy1 +72(Ci1k; +e)(Cirk; +e,)"  (10)

where k; = [k(x1,%t), ..., k(x¢_1,%¢)], e is the t*® unit

vector and the scalar coefficients b; and bs are given by:

29%
Y1 = Ofa log/P(c?\fa,xt)dfa = Co’,mq) (11)

1 [0%® 0P
mtho frear o = 22 (2)]
(12)

where 9® and 92® are the first and second derivatives of ®

evaluated at Si(G)=m(x)

x

Trust Predictions. Given (9) and (10), predictions can be
made with the probit likelihood (6) in closed-form:

) = [Pl =11 ()
e (m(x) - m(x))

Ox

13)

where ox = /02 + ki(x;,%;).
Neural Trust Model

The Gaussian process trust model is based on the assumption
that human trust is essentially Bayesian in nature. However,
this assumption may be too restrictive since humans are
not thought to be fully rational or Bayesian'. Here we
consider an alternative ‘“data-driven” approach based on
recent advances in deep neural models.

The architecture of our neural trust model is illustrated
in Fig. 9. We leverage a learned task representation
or “embedding” space Z C R* and model trust as a
parameterized function over this space. The key idea is
that (un-normalized) trust for a task is obtained via an
inner-product between two components: a trust-vector 6,
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and a task representation z. The trust vector 6; is a
compressed representation of the human’s prior interaction
history (observations of robot performance of) and is derived
using a recurrent neural network. The task representations z
are derived using a learned function f,(x) over task features
x. To obtain a normalized trust score between [0, 1], we use
the sigmoid function,
afo. o T R T

T (x;0¢) = sigm(0, f.(x)) = sigm(0, z). (14)
The trust function 7/ is fully parameterized by 6, and its
linear form has benefits: it is efficient to compute given
a task representation z and is interpretable in that the
latent task space Z can be examined, similar to other dot-
product spaces, e.g., word embeddings (Mikolov et al. 2013).
Similar to the GP, Z can be seen as a psychological task
space in which the similarities between tasks can be easily
ascertained.

Task Projection. Whilst it is possible to train the model
to learn separate task representations z for each task in the
training set, this approach limits the model to only seen
tasks. Our aim was to create a general model that potentially
generalizes to new tasks. One could use the task features
x directly in the trust function, but there is no guarantee
that the task features would form a space in which dot
products would give rise to meaningful trust scores. As such,
we project observed task features x into Z via a nonlinear
function, specifically, a fully-connected neural network,

z = f.(x) = NN(x;6.) (15)
where 6, is the set of network parameters. Similarly, the
robot’s performance c® is projected via a neural network,
c® = NN(c%; 0%). During trust updates, both the task and
performance representations are concatenated, z;, = [z; ¢?],
as input to the RNN’s memory cells.

fMoreover, whether brains are truly Bayesian remains a matter of debate
within the cognitive sciences (Bowers and Davis 2012).
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Trust Updating via Memory Cells. We model the trust
update function g using a RNN with parameters 0,

Ot = RNN(Gt_l,it_l;Gg). (16)

In this work, we leverage on the Gated Recurrent Unit
(GRU) (Cho et al. 2014), which is a variant of long short-
term memory (Hochreiter and Schmidhuber 1997) with
strong empirical performance (Jozefowicz et al. 2015). In
brief, the GRU learns to control two internal “gates”—the
update and reset gates—that affect what it remembers and
forgets. Intuitively, the previous hidden state is forgotten
when the reset gate’s value nears zero. As such, cells that
have active reset gates have learnt to model short-term
dependencies. In contrast, cells that have active update gates
model long-term dependencies (Cho et al. 2014). Our model
uses an array of GRU cells that embed the interaction history
up to time ¢ as a “memory state” h;, which serves as our trust
parameters 6;.

More formally, a GRU cell k£ that has state hgli)l and
receives a new input z;, is updated via
WO = (1o, 1 RP, )

i.e., an interpolation of its previous state and a candidate

activation ng). This interpolation is affected by the update
(k)

gate v, ’, which is parameterized by matrices W, and U,,,
o = sigm([W,2; + U,hy_1)]x). (18)
The candidate activation izgk) is given by
A% = tanh([Wz, + U(r; © hy_1)]) (19)

where ® denotes element-wise multiplication. The reset gate
r) — [r¢]x is parameterized by two matrices W, and U,.,

") = sigm([W, 2, + U, hy_1)]x) (20)

A GP-Neural Trust Model

Both the neural and Bayesian models assume Markovian
trust updates and that trust summarizes past experience with
the robot. They differ principally in terms of the inherent
flexibility of the trust updates. In the RNN model, the
update parameters, i.e., the gate matrices, are learnt. As such,
it is able to adapt trust updates to best fit the observed
data. However, the resulting update equations do not lend
themselves easily to interpretation. On the other hand, the
GP employs fixed-form updates that are constrained by
Bayes rule. While this can hamper predictive performance
(humans are not thought to be fully Bayesian), the update is
interpretable and may be more robust with limited data.

A natural question is whether we can formulate a
“structured” trust update that combines the simplicity of
the Bayes update, while allowing for some additional
flexibility. Here, we examine a variant of the GP model
that incorporates a neural component in the mean function
update. In particular, we modify Eq. (9) with an additional
term:

oy =01 +71(Croike + )+

U(atfl,Ct71kt,AXt71»C?71) 21
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where u(-) models any residual not fully captured by
the Bayes update. The function u takes as input the
previous mean parameters a1, C;_1k;, the latent task
vector z;—; = Ax;_1, and the robot performance c{_;. The
key idea here is that a neural component may modify
the posterior distribution in a data-driven (non-Bayesian)
manner to better capture the intricacies of human trust
updates. In our experiments, u(-) is a simple feed-forward
neural network, but alternative models can be used without
changing the overall framework. For example, using a GRU-
based network would enable non-Markovian updates and
may further improve performance.

Experiments

Our experiments were designed to establish if the proposed
trust models that incorporate inter-task structure outperform
existing baseline methods. In particular, we sought to answer
three questions:

Q1 Is it necessary to model trust transfer, i.e., do
the proposed function-based models perform better
than existing approaches when tested on unseen
participants?

Q2 Do the models generalize to unseen tasks?

Q3 Is it necessary to model differences in initial bias,
specifically perceptions of task difficulty?

Q4 Does incorporating additional flexibility into the GP
trust updates improve performance?

Experimental Setup

To answer these questions, we conducted two separate
experiments. Experiment E1 was a variant of the standard
10-fold cross-validation where we held-out data from 10%
of the participants (3 people) as a test set. This allowed us to
test each model’s ability to generalize to unseen participants
on the same tasks. To answer question Q2, we performed a
leave-one-out test on the tasks (Experiment E2); we held-
out all trust data associated with one task and trained on the
remaining data. This process yielded 12 folds, one per task.

Trust Models. We evaluated six models in our experi-
ments:

e GP: A constant-mean Gaussian process trust model;

e PMGP: The GP trust model with prior mean function;

e POGP: The GP trust model with prior pseudo-
observations;

e RNN: The neural RNN trust model;

e GPNN: The Bayesian GP-neural trust model with
prior pseudo-observations;

e LG: A linear Gaussian trust model similar to the
updates used in OPTIMo (Xu and Dudek 2015);

e CT: A baseline model with constant trust.

The baseline CT and LG models did not utilize task features
as they do not explicitly consider trust variation across tasks.
The general LG model applies linear Gaussian updates:

T i1 2
a a a a
P(TE Ty i, cfg) = N | wig iy 1 ILG
a a
Ct—1— Ct—2
(22)
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where wi g and UEG are learned parameters. In our dataset,
the robot a’s performance in the two time steps was the same
(both success/failure). Hence, the updated trust only depends
on the previous trust 7;*_; and robot performance cf_;.

We implemented all the models using the PyTorch
framework (Paszke et al. 2017). Preliminary cross-validation
runs were conducted to find good parameters for the models.
The RNN used a two layer fully-connected neural network
with 15 hidden neurons and Tanh activation units to project
tasks to a 30-dimensional latent task space (Eqn. (15)). The
trust updates, Eqn. (16), were performed using two layers
of GRU cells. A smaller 3-dimensional latent task space
was used for the GP models. GP parameters were optimized
during learning, except the length-scales matrix, which was
set to the identity matrix L =1I; fixing L resulted in a
smoother optimization process. For the GPNN, u/(-) was set
as a simple two-layer feed-forward neural network with 20
neurons-per-layer and Tanh activation units.

Datasets. The models were trained using the data
collected in our human subjects study. The RNN and
GP-based models were not given direct information
about the difficulty and group of the tasks since this
information is typically not known at test time. Instead,
each task was associated with a 50-dimensional GloVe word
vector (Pennington et al. 2014) computed from the task
descriptions in Fig. 3 (the average of all the word vectors
in each description). Complete task descriptions and code to
derive the features are available in the online supplementary
material (Soh 2018).

Training. In these experiments, we predict how each
individual’s trust is dynamically updated. The tests are not
conducted with a single “monolithic” trust model across
all participants. Rather, training entails learning the latent
task space and model parameters, which are shared among
participants, e.g., 3 and A for the PMGP and the gate
matrices for the GRU. However, each participant’s model is
updated only with the tasks and outcomes that the participant
observes.

To learn these parameters, all models are trained “end-
to-end”. We applied maximum likelihood estimation (MLE)
and optimized model parameters € using the Bernoulli
likelihood of observing the normalized trust scores (as soft
labels):

= — Zf'“ log(1 — 7%(x))+
(1 —7%)1og(1 - 7(x))

(23)
(24)

where 7¢ is the observed normalized trust score. In more
general settings where trust is not observed, the models can
be trained using observed human actions, e.g., in (Chen et al.
2017). We employed the ADAM algorithm (Kingma and Ba
2014) for a maximum of 500 epochs, with early stopping
using a validation set comprising 15% of the training data.

Evaluation Evaluation is carried out on both pre-and-
post-update trust. For both experiments, we computed two
measures: the average Negative Log-likelihood (NLL) and
Mean Absolute Error (MAE). However, we observed that
these scores varied significantly across the folds (each
participant/task split). To mitigate this effect, we also
computed relative Difference from Best (DfB) scores:
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Figure 10. MAEpg scores for experiment E1 with medians
(lines) and means (triangles) shown. The proposed
task-dependent trust models (GPNN, RNN, and POGP) models
are superior at predicting trust scores on unseen test
participants. The GPNN achieves the lowest average MAEpp
scores across the two domains.

NLLp (%, k) = NLL(4, k) — NLL"(4), where NLL(z, k) is
the NLL achieved by model & on fold ¢ and NLL* (%) is the
best score among the tested models on fold i. MAEpsp is
similarly defined.

Results

Results for E1 are summarized in Tbl. 2 with boxplots
of MAEp¢s shown in Fig. 10. In brief, the GPNN,
RNN, and POGP outperform the other models on both
datasets across the performance measures. The POGP makes
better predictions on the Household dataset, whilst the
RNN performed better on the Driving dataset. The GPNN,
however, obtains good performance across the datasets.
In addition, the GP achieves better or comparable scores
on average relative to LG and CT. Taken together, these
results indicate that the answer to Q1 is in the affirmative:
accounting for trust transfer between tasks leads to better
trust predictions.

Next, we turn our attention to E2, which is potentially the
more challenging experiment. The GPNN, RNN, and POGP
again outperform the other models (see Tbl. 3 and Fig. 11).
Both models are able to make accurate trust predictions on
unseen tasks (Q2), suggesting that (i) the word vectors are
informative of the task, and (ii) the models learnt reasonable
projections into the task embedding space.

To answer Q3 (whether modeling initial human bias
is required), we examined the differences between the
POGP, PMGP, and GP. The PO/PMGP achieved lower or
similar scores to the GP model across the experiments and
domains, indicating that difficulty modeling enabled better
performance. The pseudo-observation technique POGP
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Figure 11. MAEpsgs scores for experiment E2 with medians
(lines) and means (triangles) shown. The proposed
task-dependent trust models (GPNN, RNN, and POGP) models
are superior at predicting trust scores on unseen test tasks.

Table 3. Model Performance on Held-out Tasks (Experiment
E2). Average Negative log-likelihood (NLL) and Mean Absolute
Error (MAE) scores shown with standard errors in brackets.

Best scores in bold.

Household Driving
Models 11" "MAE NLL  MAE
0.533  0.156 0542  0.163
GPNN" 0.014) (0.007) (0.019) (0.009)
any | 0542 0166 0531 0.174
0.012)  (0.006) (0.016) (0.014)
0542  0.164 0562  0.186
POGP 1014y (0.007) (0.018) (0.008)
0564  0.174 0574 0202
PMGP 6 014)  (0.009) (0.015) (0.008)
ap 0551  0.174 0586 0207
0.010) (0.009) (0.013) (0.009)
LG 0568  0.195  0.584 0222
0.014) (0.009) (0.013) (0.010)
ot 0669 0273  0.661  0.284
(0.008) (0.007) (0.013) (0.005)
Discussion

In summary, our experiments show that modeling trust

Similar to Fig. 10, the GPNN achieves the lowest average
MAEpss scores across the two domains.

Table 2. Model Performance on Held-out Participants

(Experiment E1). Average Negative log-likelihood (NLL) and
Mean Absolute Error (MAE) scores shown with standard errors

in brackets. Best scores in bold.

Household Driving
Models  \y1 MAE NLL MAE
0.558  0.158  0.555  0.172
GPNN 0.028) (0.011) (0.026) (0.010)
any | 0571 0173 0549 0175
0.023) (0.010) (0.024) (0.011)
0558  0.161 0553  0.176
POGP 1 027)  (0.013) (0.025) (0.012)
0577 0.176 0567  0.197
PMGP 6 019)  0.010) (0.018) (0.011)
ap 0575  0.175 0588 0208
0.023) (0.013) (0.022) (0.012)
LG 0578 0182 0584 0208
0.023)  (0.011) (0.022) (0.011)
ot 0.662 0249 0649  0.266
0.029) (0.016) (0.017) (0.010)

always outperformed the linear mean function approach
PMGP, suggesting initial bias is nonlinearly related to the
task features. Potentially, using a non-linear mean function
may allow PMGP to achieve similar performance to POGP.

Finally, we observed that the including additional
flexibility in the GP mean update improved model
performance (Q4). As stated above, the GPNN achieves
similar or better performance on both datasets compared to
the other GP variants.
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correlations across tasks improves predictions. Our Bayesian
and neural models achieve better performance than existing
approaches that treat trust as a single scalar value. To
be clear, neither model attempts to represent exact trust
processes in the human brain; rather, they are computational
analogues. Both modeling approaches offer conceptual
frameworks for capturing the principles of trust formation
and transfer. From one perspective, the GP model extends
the single global trust variable used in Chen et al. (2018) and
Xu and Dudek (2015) to a collection of latent trust variables.
In the following, we highlight matters relating to the learned
feature projections, changes in trust during a task, and the
neural-GP trust updates.

Learned Trust-Task Spaces. Although the neural and
Bayesian models differ conceptually and in details, they both
leverage upon the idea of a vector task space Z C R¥ in
which similarities—and thus, trust transfer—between tasks
can be easily computed. For the RNN, Z is a dot-product
space. For the GP, similarities are computed via the kernel
function; the kernel linearly projects the task features into
a lower dimensional space (z = Ax) where an anisotropic
squared exponential kernel is applied. As an example, Figs.
12 and 13 show the learned GPNN latent task points
for the Household and Driving domains respectively; we
observe that tasks in the same group are clustered together.
Furthermore, the easy and difficult tasks within each task
group are also positioned closer together. This structure is
consistent with the use of a squared exponential kernel where
distances between the latent points determine covariance;
the closer the points (more similar), the similar the latent
function value at those points.

Generalization across Task Word Descriptions. In our
experiments, we used word vector representations as task
features, which we found to enable reasonable generalization
across similar descriptions. For example, after seeing the



Soh, Xie, Chen and Hsu

13

Household
A6,
Pickand s
Place A4 01
A3, ®A1 100
°A2
o B6 ol
(] |
B4 +B3 0.2
Bs Bt _ep> o
Indoor Lo

Navigation

T-14
-12 -15
-1.0

Figure 12. The task space for the Household domain where
each point is a task. Tasks of a similar type and difficulty are
clustered together; tasks labelled A correspond to
Pick-and-Place tasks and B are Indoor Navigation tasks. The
lower-numbered tasks (1-3) were considered easier by
participants.

robot successfully navigate around obstacles, but failing to
pick up a lemon, the model predicts sensible trust values for
the following tasks:

e “Navigate while following a path™: 0.81
e “Go to the table”: 0.86
o “Pick up a banana”: 0.61

We posit that this results from the fact that vector-based
word representations are generally effective at capturing
synonyms and word relationships. Given a latent space with
sufficiently large dimensionality, we expect the model to
scale to a larger number of task categories and domains;
there is evidence that moderately-sized latent spaces (<
1000) yield accurate models for complex tasks such as
language translation (Sutskever et al. 2014) and image
captioning (Ren et al. 2017). Given longer task descriptions,
more sophisticated techniques from NLP (e.g., Bowman
et al. 2016) beyond the simple averaging used in our
experiments can be adapted to construct usable task features
of reasonable length.

A prevailing issue is that the current word/sentence
representations may not distinguish subtle semantics, e.g.,
the task features lack a notion of physical constraints.
As such, the model may make unreasonable predictions
when given task descriptions that are syntactically similar
but semantically different. As an example, the same
model predicts the human highly trusts the robot’s
capability to “Navigate to the moon” (7% = 0.83). To
remedy this issue, we can use alternative features; more
informative vector-based features can be used without
changing the methods described. Applying structured feature
representations (e.g., graphs) would require different kernels
and embedding techniques. Future work may also examine
more sophisticated hierarchical space representations.

Trust Variations within a Task. The presented computa-
tional models are “event-based” in that trust was updated
after each complete task performance. However, prior work
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Figure 13. The task space for the Driving domain. Similar to
Fig. 12 above, similar tasks are closer together. Points C
corresponds to Navigation tasks (e.g., lane merging) and D are
Parking tasks. The lower-numbered tasks (1-3) were considered
easier by participants.

has shown that trust can change even as the task is being
carried out (Desai et al. 2013; Yang et al. 2017). To accom-
modate intra-task trust variability, the presented Bayesian
and neural models can be easily altered to be updated at user-
defined intervals with a corresponding observation. These
modifications and studies to validate such models would
make for interesting future work.

GP-Neural Updates. Finally, we sought to better
understand the relationship between the Bayesian and neural
components of the GPNN mean update. Was the neural
network u(-) only making minor “corrections” to the trust
update or was it playing a larger role? To answer this
question, we compared the relative norms of the second term
(77GP = nyl(Ct_lkt + et)||/||04t_1 ||) and third term (T]NN =
u(oi—1, Cr_1ke, Ax_1,¢f_1)/||at—1]]) on the RHS of Eq.
(21) during updates across randomly sampled tasks. Fig.
14 shows a scatter plot of the relative norms of both
components. We find a positive correlation (Kendall tau
= 0.2, p-value = 10739, but the relationship is clearly
nonlinear. Interestingly, nnn could be relatively large when
the ngp was close to zero, indicating that neural component
was playing a significant role in the trust update. We
also experimented with completely removing the Bayesian
portion of the update, but this modification had poorer
performance, potentially due to limited data. This suggests
that trust is not purely Bayesian and a non-trivial correction
is needed to achieve better performance.

Conclusion

This paper takes a first step towards conceptualizing and
formalizing predictive of human trust in robots across
multiple tasks. It presents findings from a human-subjects
study in two separate domains and shows the effects of task
similarity and difficulty on trust formation and transfer.

The experimental findings leads to three novel models that
capture the form and evolution of trust as a latent function.
Our experiments show that the function-based models
achieved better predictive performance on both unseen
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Figure 14. The relative norms of the GP component ngp
(x-axis) and neural component nnn (y-axis) for updates across
randomly sampled tasks. Blue points are for the Household
domain and orange +'’s for Driving. There is a general positive
correlation between the norms, but the relationship is nonlinear.

participants and unseen tasks. These results indicate that
(i) a task-dependent functional trust model more accurately
reflects human trust across tasks, and (ii) it is possible to
accurately predict trust transfer by leveraging upon a shared
task space representation and update process.

Formalizing trust as a function opens up several avenues
for future research. In particular, we aim to fully exploit
this characterization by incorporating other contexts. Does
trust transfer when the environment changes substantially or
a new, but similar robot appears? Proper experimental design
to elicit and measure trust is crucial. Our current experiments
employ relatively short interactions with the robot and rely
on subjective self-assessments. Future experiments could
employ behavioral measures, such as operator take-overs and
longer-term interactions where trust is likely to play a more
significant role.

This work limits the investigation to trust result-
ing from complete observations of the robot’s perfor-
mance/capabilities. However, in real-world collaborative set-
tings, the human user may not observe all the robot’s
successes or failures: how humans infer the robot’s perfor-
mance under conditions of partial observability remains an
interesting open question. It is also essential to examine
trust in the robot’s “intention”, e.g., its policy (Huang et al.
2018) and decision-making process. Arguably, trust is most
crucial in new and uncertain situations whereby both robot
capability and intention can influence outcomes. In very
recent work (Xie et al. 2019), we have begun to examine how
human mental models of these factors influence decisions to
trust robots.

Finally, it is important to investigate how these
trust models enhance human-robot interaction. In our
current experiments, the human does not get involved in
task completion. Our trust model can be used without
modification in the collaborative setting where the human
and the robot work together to complete a task, provided
that the shared goal is unaffected by the change in trust.
Embedding trust models in a decision theoretic framework
enables a robot to adapt its behavior according to a
human teammate’s trust and as a result, promotes fluent
long-term collaboration. We have begun a preliminary
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investigation using trust transfer models in a Partially-
observable Markov Decision Process (POMDP), extending
the work in (Chen et al. 2018). We are particularly interested
in how trust models impacts decision-making in assistive
tasks (Gombolay et al. 2018; Soh and Demiris 2015).
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