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Supermodular Mean Squared Error Minimization
for Sensor Scheduling in Optimal Kalman Filtering

Prince Singh ~ Min Chen* Luca Carlone

Abstract— We consider the problem of scheduling a set of
sensors to observe the state of a discrete-time linear system
subject to a limited energy budget. Our goal is to devise a sensor
schedule that minimizes the mean squared error (MSE) of an
optimal estimator (i.e., the Kalman Filter). Both the minimum-
MSE and the minimum-cardinality optimal sensor scheduling
problems are inherently combinatorial, and computationally
intractable. We remedy the combinatorial complexity by using
a greedy heuristic; the greedy heuristic is guaranteed to return
near-optimal solutions when minimizing supermodular objec-
tives. While it is known that the MSE is not supermodular (with
counterexamples available in literature), we provide conditions
on the prior information matrix and on the observation matrix
under which supermodularity holds. More specifically, we
require the prior information matrix to be a strictly-diagonally-
dominant M-matrix (plus an extra technical requirement on its
inverse). Empirical results confirm that random M-matrices
lead to supermodular problems, while this is not the case
for generic prior information matrices. M-matrices naturally
arise in estimation problems over networks and we provide a
practical application of our findings to an energy-constrained
multi robot localization problem.

I. INTRODUCTION

Sensor scheduling consists in the selection of a subset
of available sensors to observe the state of a dynamical
system. In many applications, including sensor networks and
robotics, one may not use all available sensors due to energy,
communication, or computation constraints [1]. Therefore,
an optimal sensor schedule prescribes which fraction of the
sensors to activate at each time-step in order to maximize a
given performance metric in a resource-constrained fashion.

In this work, we consider sensor scheduling for the case
where the system dynamics admits a discrete-time linear
time-variant representation for both its process and measure-
ment models. In this case, it is natural to estimate the state
via a Kalman filter (KF), which is optimal in the minimum-
mean-square-error sense, and sensor scheduling reduces to
choosing the set of measurements to include in the filter
update in order to maximize the estimation quality.

A natural function that characterizes the quality of the
state estimate is the mean squared error (MSE), which is

P. Singh, L. Carlone, S.Karaman, E. Frazzoli are with the Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA, USA (e-mail: {princel,lcarlone,sertac,frazzoli} @mit.edu).

* M. Chen and D.Hsu are with the Department of Computer Science,
National University of Singapore, Singapore 117417, Singapore (e-mail:
{chenmin,dyhsu} @comp.nus.edu.sg).

The first three authors equally contributed to this paper. This work is
supported by the Singapore National Research Foundation through the
SMART Future Urban Mobility project. Chen is supported by SMART
graduate fellowship, Hsu is supported by SMART subawared agreement
No. II-08-FM IRG.

978-1-5090-5992-8/$31.00 ©2017 AACC

Sertac Karaman

Emilio Frazzoli David Hsu*

the trace of the estimation error covariance. The selection
of the subset of sensors that minimizes the MSE subject to
a given sensor budget is a combinatorial problem, which is
inherently NP-hard and computationally intractable. One can
hope to solve these problems using brute force for a small
set of sensors by testing all possible subsets. However, such
an approach quickly becomes computationally intractable
since the number of subsets that need to be checked grows
factorially with the number of available sensors. Hence, in
this work, we resort to an efficient polynomial-time algorithm
that attains a provably-close solution to the optimal solution
by exploiting structural properties of the MSE metric.

Literature Review. The problem of sensor scheduling has
re-gained much attention over the past decade. For instance,
Jamali-Rad er al. [22] propose a distributed algorithm for
solving the sensor scheduling problem with performance
guarantees. Gupta et al. [2] propose a randomized sensor
schedule that minimizes the error covariance for a network
comprising of noisy sensors that communicate with each
other to estimate a noisy process. More relevant to our dis-
cussion is the use of structural properties of the metric to be
optimized, to enable formal performance guarantees. As dis-
cussed in the sequel, submodularity is an important property
of set functions that facilitates combinatorial optimization in
polynomial time via greedy algorithms with suboptimality
guarantees [3]. Shamaiah ef al. [4] have proven, over a single
time-step, that the logdet of the error covariance of the
Kalman filter is supermodular and monotone non-increasing.
Additionally, the work [4] shows through empirical tests that
the greedy heuristic outperforms the more computationally
intensive semi-definite relaxation of Joshi and Boyd [5].
Further, Jawaid and Smith [6] prove that logdet of the
error covariance of the Kalman filter is sequence super-
modular and monotone non-increasing under restrictive as-
sumptions on the system dynamics and parameters. Recently,
Tzoumas et al. [7] have proven that the logdet of the
error covariance from the Kalman filter is supermodular and
monotone non-increasing over a finite observation interval.
Similar effort has been invested in proving submodularity
of other estimation error metrics. Krause et al. [20] have
shown that the mutual information criterion is a submodular
function, in the context of sensor placement. Jawaid and
Smith [6] provide a counterexample showing that the trace
of the error covariance is not, in general, a supermodular
set function. Other counterexamples are given in [8], in the
context of sensor selection. One of our goals here is to find
specific classes of systems for which the trace of the error
covariance can be proven to be supermodular.
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Contributions. The main contribution of this work is to
provide conditions on the process and measurement model
under which the trace of the a-posteriori covariance is a
supermodular set function. These conditions mainly regard
the structure of the prior information matrix, i.e., the inverse
of the covariance resulting from the prediction phase of
the KF, as well as the observation matrix. First, we derive
technical conditions under which the trace of the covariance
is supermodular. Then, we show that a class of prior informa-
tion matrices (strictly-diagonally-dominant with ultrametric
inverse) satisfies these conditions and leads to supermodular
sensor scheduling problems. We currently consider mono-
mial observation matrices (each sensor observes a single
state of the system), while we believe that the results can
be extended to more general observation models.

Our current results already enable interesting practical
applications. The class of M-matrices naturally arises in
estimation problems over networks. Indeed we provide an
example in which a team of robots needs to localize from
relative measurements and from GPS measurements; due to
energy constraints, only a subset of robots can activate the
GPS. We show that choosing this subset via an efficient
greedy algorithm provides near-optimal solutions.

Interestingly, empirical evidence suggests that the diago-
nal dominance and ultrametric-inverse assumptions can be
relaxed, since only the requirement of the prior information
matrix being an M-matrix is sufficient for supermodularity.
Relaxing these assumptions is subject of ongoing research.

For space reasons, all proofs are omitted from this paper;
the interested reader can find them in the extended draft [9].

Outline. This paper is organized as follows. Section II pro-
vides a formal statement of the sensor scheduling problem.
Section III provides preliminary notions on submodularity
and presents our main contribution. Here we provide theo-
retical conditions under which the trace of the estimation
covariance is supermodular. Section IV confirms our finding
via numerical experiments on random systems and in a
robotic example. Section V concludes the paper.

Notation. The set of natural numbers is denoted by N,
and the set of real numbers by R. The cardinality of a set .S
is denoted by |S|. For a matrix A, its transpose is AT. We
write A = 0 (resp. A > 0) to denote that A is symmetric and
positive semi-definite (resp. positive definite). The symbols
Oy xns Inxn denote an n X n matrix of zeros and the identity
of size n, respectively. For a random variable z € R", the
expected value of z is E[z], and its covariance matrix is
Cov(z) = E[(z—E[z])(z—E[z])].

II. PROBLEM FORMULATION

This section formalizes the sensor scheduling problem.
Section II-A introduces the estimation problem over a linear
system, tailoring the presentation to a networked system of
sensors. Section II-B states the scheduling problem.

A. Network Dynamics

Consider a sensor network comprising of m sensors each
of which produces scalar measurements and operates in

discrete-time. Denote by G = {1,...,m} the set of indices
identifying each sensor. Assume that, at each time-step ¢ €
N>, we can activate a time-varying subset S; C G, with
|S¢| = r (< m,Vt), to observe a dynamical phenomenon.

The evolution of the dynamical phenomenon as well as the
sensor measurements are modeled by the following discrete-
time linear time-variant representation

Top = Agry +up +wy, 20 ~ N(Zo, Prjo)

1
yr = C(Sp)xe + vy M

where z; € R” is the state of the system at time f,
A; € R™™ describes the system dynamics, u; € R" is a
known control input, y, € R" is the measurement vector, and
C(S;) € R™"™ is a measurement matrix which is function
of the set of sensors \S; that we activate at time ¢. The terms
wy ~ N(0,W;) and vy ~ N(0,V}) are the process and the
measurement noise, which are statistically independent zero-
mean Gaussian noise processes of appropriate dimension,
with covariances W, > 0 and V; > 0, respectively. The initial
state of the system is assumed to be Normally distributed
with given mean (Z¢) and covariance (Py)o > 0).

From standard Kalman filtering theory, it follows that
the error-covariance of an optimal estimator of the state
in (1) can be computed recursively by the alternation of a
prediction and an update step:

Prpa(Sic1) = A1 Prajea (Si-1) Al + Wiy 2
Pye(S)) = (Pya (Si1) " +C(S)™Vi(S) 1 C(S) ™ 3)

where Pyj;1(S;—1) is the prior covariance resulting from
the prediction step, and P,;(S;) is the posterior covariance
after the update. The covariance P,;(S;) £ Cov(z;) and
the estimate E[x;] of x; given the measurements collected
till time ¢ are characterized by the Kalman filter. Clearly,
the covariances are functions of the set of sensors that we
use for estimation, i.e., Py = P;;(S;). Substituting (2)
into (3) results in a Riccati equation that maps the posterior
covariance at time ¢ — 1, namely Pt,l‘t,l(St,l) into the
posterior covariance at time ¢, namely Py (S;).

In this paper we discuss how to select the set of sensors
S; so to “minimize” the estimation covariance. This notion
is formalized in the following section.

B. Single time-step Optimal Sensor Scheduling Problems

A natural metric to evaluate the quality of a state estimator
is the mean squared error (MSE), which corresponds to the
trace of the estimation covariance. In this paper we look for a
suitable choice of sensors S; (with |S;| = r) that induces the
smallest MSE among all possible choices of r sensors. To
be more formal, let us introduce the following set function:

g(S¢) £ trace(Py;(St)) — trace(Pye1(Si-1)). (4

which quantifies the change in the MSE after including the
set of measurements S;. Minimizing ¢(S;) is the same as
minimizing the MSE (i.e., trace(P,;(S:))), since the second
summand in (4) is a constant for the decision to be taken at
time t. The second term is only used to make the cost (4)
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normalized (see Definition 4). Therefore, our goal is to
select an optimal set of sensors S; at time ¢, that makes (4)
minimum.

Since we minimize the MSE over a single time step, and to
keep notation simple, in the following we drop the subscript
t from S; and we simply write g(.5). Additionally, since we
already noted that trace(P;,_1 (S¢—1)) is a constant, we write
trace(Py—1) henceforth.

Problem 1 (Cardinality-constrained single time-step optimal
sensor scheduling). Given a sensor budget v (< m) € N
on |S|, i.e., the number of sensors that can be activated at
the current time, identify the optimal sensor schedule that
minimizes g(S):

9(S)

S| <r

minimize
SCG
subject to

A related formulation requires to find the smallest set of
sensors that meets a given MSE budget.

Problem 2 (MSE-constrained single time-step optimal sen-
sor scheduling). Given an error budget £ € R on g(5), find
the minimal sensor set S C G that meets the error budget:

minimize ||
Jete]
subject to g(5) <¢

Both Problems 1 and 2 are hard combinatorial prob-
lems. In order to make the above problems computationally
tractable, it will be crucial to prove that g(S) is a super-
modular and monotone non-increasing function with respect
to the set of sensors S. To this end, we make the following
assumption on the choice of the sensor matrix C(S5).

Assumption 1 (Monomial Measurement Matrix and Diago-
nal Measurement Covariance). For S C G, C(S) € R™*"
has at most one non-zero entry in each row. Moreover, the
measurement covariance V(S) is diagonal.

In words, Assumption 1 requires that each sensor mea-
sures at most one entry of the state vector x; and that all
measurements are scalar and independent across sensors.

In the following we present a greedy algorithm to solve
Problems 1 and 2, and we provide technical conditions under
which the greedy algorithm produces near-optimal results.

III. SUPERMODULARITY IN SINGLE TIME-STEP
OPTIMAL SENSOR SCHEDULING

This section contains the key contributions of this paper.
Before delving in the technical contribution, presented in
Section III-C, we recall preliminary concepts about submod-
ularity (Section III-A) and greedy algorithms (Section III-B).

A. Submodular functions

Submodularity is a property of set functions. Given a finite
set G, a set function g : 2¢ — R assigns a real number to
each subset of GG. The following definitions and result will
be useful in Section III-C.

Definition 1 (Modularity [10]). For a given finite set G, a
set function g : 2¢ — R is modular <= for any subset
A C G, the set function can be expressed as g(A) = w() +
> acawl(a), for some function w : G — R.

A modular set function has the property that each element
in G gives an independent contribution to the function value.

Definition 2 (Marginal gain). For a finite set G and a given
set function g : 2¢ — R, the marginal gain of g at a subset
A C G with respect to an element a € G\ A is

MG, (al4) £ g(AU {a}) - g(A).

The above captures the change in the set function g when
adding a new element «a to the set A.

Definition 3 (Submodularity and Supermodularity). For a
given finite set G, a set function g : 2¢ — R is submodular
if for all subsets A C B C G and a € G\B, it holds that

MGy (alA) = MGy(a|B), (5)
A function g is said to be supermodular if —g is submodular.

Submodularity captures the diminishing returns property:
the contribution of adding a new element to a smaller set is
higher w.r.t. adding the new element to a bigger set.

Definition 4 (Normalized and Monotone). For a given finite
set G, a set function g : 2¢ — R is normalized if g(()) = 0,
i.e., the empty set carries no value, and the set function is
monotone non-increasing if for all subsets A, B C G it holds

AC B=g(A) >g(B),

Theorem 1 (Proposition 1.1 in [10]). For a given finite set
G, a set function g : 2¢ — R is submodular <= the
derived set functions go : 26710} 5 R,

ga(A) £ MGy(alA) £ g(AU {a}) — g(4)
are monotone decreasing for all A C G and a € G\ A.

Next, we outline greedy algorithms to approximately solve
Problems 1 and 2, and present their associated performance
guarantees in the context of supermodular minimization.

B. Greedy Algorithms

Solving Problems 1 and 2 is NP-hard [11]. Therefore, in
this paper we are interested in approximation algorithms that
can be implemented in polynomial time.

A popular approximation algorithm is the following
greedy algorithm, applied to the minimization Problem 1.

Calling Séreedy the greedy solution resulting from Algo-
rithm 1, it is well known that if ¢ is a monotone supermodular
(normalized) set function, then the greedy algorithm enjoys
the following suboptimality guarantee:

9(Shreedy) < (1= 1/e)g(S}) = 0.63 g(S!),  (6)

where S} is the optimal solution of Problem 1. In reading (6)
we remark that the cost g is non-positive. Eq. (6) provides
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Algorithm 1: Greedy algorithm for Problem 1.

Input: g,7;
Output: greedy solution S;mdy;
So + 0,i+0;
while ¢ < r do
Sit1 < S; U {arg min MGg(alS;)} ;
acG\S;

n A W N -

=)

11+ 1
7 end
8 return S;;

the best approximation any polynomial-time algorithm can
achieve [3]; the above is a worst-case bound and the greedy
algorithm often performs much better in practice.

An analogous algorithm can be devised for Problem 2:

Algorithm 2: Greedy algorithm for Problem 2.

1 Input: ¢.¢&;

2 Output: greedy solution Sgrccdy ;

38y« 0,i+0;

4 while g(S;) > ¢ do

5 Sit1 < S; U {arg min MG (a|S;)} ;
a€G\S;

6 11+ 1;

7 end

When ¢ is a monotone supermodular (normalized) set
function, then the solution Sgreedy of Algorithm 2 has
suboptimality guarantees. In particular, if k£ is the smallest
index such that g(S;) < &, then, the following is true

9(G) —9(0)
9(G) = 9(Sk-1)’
where S? is the optimal solution of Problem 2. In words, the

greedy algorithm does not select too many sensors to meet
the error budget £, when compared to the optimal selection.

|S§reedy ‘

<1+1
sap =

C. Supermodularity in MSE sensor scheduling

We provide conditions under which the MSE is a super-
modular function of the sensor set. Related work [6] provides
counterexamples showing that the trace of the covariance is
not supermodular in general. Our route here is to devise a
subset of linear systems for which supermodularity holds.

To further motivate our interest towards the MSE, we start
our discussion with an alternative yet related cost function:

ga(S) 2 trace(Pt‘_til) — trace(Pt‘t(S)fl). @)

The inverse of the covariance Py (S )~ 1 is called the infor-

mation matrix. The following trivially follows from (3).

Lemma 1. The function gq(S) defined in (7) is a normalized,
monotone non-increasing, modular function of the set S.

One might argue that minimizing trace(P;;(S5)) in (4)
leads to similar choices of sensor sets compared to minimiz-
ing —trace(Pt|t(S)_1) in (7), hence gq(S) is a meaningful

and easy to optimize cost function. The trace of the informa-
tion matrix is indeed referred to as the T-optimality criterion
in optimal experimental design, e.g., see [12].
Unfortunately, with a simple example one can realize
that (7) may not lead to clever sensor schedules. Consider
the case in which each sensor 7 measures the ¢-th state,
ie, C({i}) = eI, where e; is the basis vector which
is zero everywhere, except the ¢-th entry which is 1, and
V({i}) = 1. Then, using (3), the following equality holds:

ga(S) = trace(PtT;l) — trace <Pt_t£1 + Z em?) = —|9]
i€S
Therefore, any set of given cardinality has the same cost
using go(.9), i.e., the function is “indifferent” to the selection
of sensors. This motivates us to study the trace of the
covariance (rather than the one of the information matrix).
We start by proving the following lemma.

Lemma 2 (Decrease in MSE). The set function g(S) in (4) is
normalized, non-positive, and monotonically non-increasing.

While optimizing the trace of the information matrix is
not a convenient choice, for our proofs it is still convenient
to work in information form. In order to do this, we need
the following notation.

Definition 5 (Information matrices in KF). The inverse of the
prior covariance matrix Py, is called the prior information
matrix: ;. = PJ;T Moreover, the inverse of the posterior
covariance matrix Py;(S) is called the posterior information
matrix: Q;(S) £ Py (S)

Using Definition 5 it is possible to rewrite (3) (the update
step) in information form:

Qu1(S) = Qi + C(S)TVA(S)1C(S) (8)

The information matrix €2,,(S) is symmetric positive def-
inite by construction with €,,_; comprising of the process
contribution and C(S)TV;(S)~*C(S) comprising the con-
tribution due to the measurements.

We note that the space of symmetric matrices is partially
ordered by the semi-definite partial order and has the fol-
lowing useful properties.

Theorem 2 (Lowner-Heinz Inequality [13], 1934). For any
two symmetric positive semi-definite matrices M, N:

M»>N»0= MP? > NP Vpe|0,1].

Theorem 2 succinctly captures the fact that among all non-
negative exponents p, the power function ¢ — t? is operator
monotone (i.e., can be represented as a Pick function, see
[13] for details) for 0 < p < 1. In particular, the positive
semi-definite partial ordering is not always preserved (i.e.,
the implication does not always hold) for integers p > 1.

Remark 1 (Additivity property of the information matrix
Q41..(5)). For two disjoint subsets S1,S2 C G, we have

Q¢ (S1 U S2) = Q)4 (S1) + Q4 (S2), )
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due to the additive structure of Qy,(S) in (8).

We can now prove a first key result that relates supermod-
ularity to the trace of a specific matrix product.

Proposition 1 (Trace Inequality = Supermodularity). For a
finite set G, the set function g in (4) is supermodular if, for
any scalar v € [0,1] and any subsets S; C Sy C G and
element a € G\ Sy, the following inequality holds:

trace(¥(y) F) <0. (10)
where the matrices ¥ () and F are defined as follows:
-2 -
T(7) £ (20) +Ad) Q)77
F 2 Q1 (S2) — Qpe(S1)

(1)
(12)

with A, = C(a)TVi(a)™'C(a) and Qy) = Qu(S1) +
V(e (S2) — Q¢ (S1)). Moreover F is positive semidefinite.

Proposition 1 provides conditions under which the MSE
is supermodular. However, the conditions are still quite hard
to grasp, since they cannot be easily related to the matrices
defining the linear system (1). Moreover, verifying if the
trace inequality (10) is satisfied still requires checking all
possible subsets of G, which is intractable. This leads us to
further develop (10) to get a more usable condition. Before
doing so, two remarks are in order.

Remark 2. It may be tempting to believe that, since A, = 0:

Q7) + Aa = 2(7) 2 (2(7) + A0)? = Q(7)?
= (Q(7) +An) "2 = Q(y) 72

13)

and thus claim that U(~) =< 0 in (11). A similar logic was
undertaken in [14] to prove Theorem 5 in turn claiming that
their set function is submodular and monotone increasing
irrespectively of the system dynamics or choice of sensor
set; however, this is not generally the case as the first
implication (13) (labeled with the question mark) is not
true in general when the exponent p > 1 (see Theorem 2).
This is further substantiated by the counterexample in [15,
Proposition 2.4].

A sufficient condition that guarantees satisfaction of
Proposition 1 is to require ¥(y) = 0. In the following
corollary we show that this requirement is indeed too strict
to be practically useful.

Corollary 1. The trace inequality (10) in Proposition 1
is satisfied if the matrix V(~y) is negative semidefinite;
moreover, U(y) < 0 if and only if C(a) is either zero or
is an eigenvector of Q(7).

Corollary 1 suggests that asking ¥(vy) = 0 is too restric-
tive. Thus, in the following we leverage our assumption on
the measurement matrix (Assumption 1) to get more usable
conditions for the trace inequality (10) to be satisfied.

Corollary 2. If Assumption 1 holds true, the trace inequal-
ity (10) in Proposition 1 is satisfied if all the diagonal entries
of W(v) are non-positive.

In the following, we first derive conditions on the inverse
of Q(v) that make the diagonal elements of ¥(~y) negative,
satisfying Corollary 2 and in turn the trace inequality (10).
Then we translate these conditions into conditions on the
prior information matrix €2;;.

Proposition 2. If Assumption 1 holds true, the trace inequal-
ity (10) in Proposition 1 is satisfied if all the columns of:

P(y) £ Q)™ (14)
satisfy the following inequality,

Pwm—(fffg%ﬂ)mwg

where P(7y).; denotes the i-th column of the matrix P(7),
P(7y);j denotes the entry of P(v) in position (i,j), and € is
the only nonzero entry of the matrix C(a)TVy(a)~'C(a).

<||P():ill2, (15)
2

Next, we specify two classes of matrices which leads the
inequality in (15) to satisfaction.

Definition 6 (Strictly-diagonally dominant M-matrix [16]).
A matrix M € R"*™ is said to be an M-matrix if it has non-
positive off-diagonal entries (M;; < 0) and its eigenvalue
have positive real parts. An M-matrix M is said to be strictly
diagonally dominant if the following inequalities hold:

| M| > Z |M;;|, Vi=1,...,n.

J#i
Definition 7 (Strictly ultrametric matrix [17]). A matrix U €
R"™ ™ with elements [U;;] is a strictly ultrametric matrix if

(16)

1) U is symmetric with non-negative entries
2) Uy > min{Usy, Ug;}, V(i  k,j) € {1,...,n}
3) Uiy > Ui, V(i # k) € {1,...,n}

Strictly ultrametric matrices have been studied as co-
variance matrices of random energy models in statistical
physics, e.g., see [18], as generalizations of the diagonal case.
The following theorem formalizes the fact that ultrametric
matrices imply supermodularity in MSE minimization.

Theorem 3. If Assumption 1 holds true, the trace inequal-
ity (10) in Proposition 1 is satisfied if the matrix P(7),
defined in (14), is a strictly ultrametric matrix.

With the support of Definition 6 we present our final
results. This result translates the conditions in Theorem 3,
which are not easy to check in practice (the matrix P(7)
depends on v, S, and S2), into conditions on the prior
information matrix €2, ; the latter conditions can be readily
verified by inspection.

Theorem 4 (Condition for supermodularity). If the prior
information matrix Sl in Definition 5 is a strictly-
diagonally-dominant M-matrix with strictly ultrametric in-
verse, then, P(7) in (14) is strictly ultrametric. Further, un-
der Assumption 1, the trace inequality (10) in Proposition 1
is satisfied and the cost g(S) is supermodular w.rt. S.

The conditions of Theorem 4 can be readily checked from
the prior information matrix and its inverse by applying the
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Definitions 6-7. We note that a symmetric positive definite
M-matrix is also referred to as a Stieltjes matrix [16]. The
class of Stieltjes matrices is well studied and a celebrated
result says that the inverse of a strictly ultrametric matrix
is a s.d.d. Stieltjes matrix [17], while the reverse is not
necessarily true, for n > 2.

The satisfaction of Proposition 1 under the conditions of
Theorem 4 ensures that the corresponding MSE minimization
is supermodular, hence a greedy algorithm produces near-
optimal solutions. We conclude the theoretical contribution
of this paper with a remark about the tightness of Theorem 4.

Remark 3 (Tightness of Theorem 4). One might wonder
if the conditions (on the prior information matrix and its
inverse) required by Theorem 4 are also necessary for
supermodularity. Empirical evidence presented in Section IV
suggests that the assumptions can be loosened. In particular,
the experiments suggest that whenever the prior information
matrix is an M-matrix, supermodularity holds. This obser-
vation is useful since M-matrices naturally arise in estima-
tion problem over networks (Section IV-B). Ongoing work
involves relaxing some of the assumptions in Theorem 4.

IV. NUMERICAL EXPERIMENT

In this section, we validate our results in two different
setups. For the first setup, we consider random linear systems
and empirically show that some conditions in Theorem 4 can
be relaxed, as the requirement of the prior information matrix
being an M-matrix is sufficient for supermodularity to hold.
The second setup provides an example of the applicability
of our results to a multi robot localization problem.

A. Random Linear Systems

In this experiment, we empirically show that if the prior in-
formation matrix €2;;_; is an M-matrix, then supermodularity
holds. The numerical setup is as follows: we generate 1000
random systems (n = 6) with €,_; being an M-matrix, and
another 1000 random systems with €2, ; being a positive
definite matrix. The latter one is a generic prior information
matrix resulting from the Kalman filter. We assume C(i) =
eiT, i.e., sensor ¢ measures the ¢-th entry of the state vector.
To test supermodularity, we check Definition 4 for all choices
of subsets S; C S2 C G, and a € G \ S2. Supermodularity
holds if the marginal gain is monotonically increasing, i.e.,
5((1,51,52) = MGq(a|Sl) — MGq(a|52) < 0; this brute-
force check is feasible since the dimension of the state space
is small (n = 6). For each system we store the maximum
value of d(a,Sy,S2) across the tests, which is denoted as
Om(a, S1,S52). If 6,,(a,S1,52) < 0, supermodularity holds
numerically for the corresponding random system.

Fig. 1 shows the results of the supermodularity tests. When
the prior information matrix is a general positive definite ma-
trix, Fig. 1(b), then supermodularity fails and 9,,(a, S1, S2)
becomes positive; this agrees with the counterexamples in the
literature. However, when the prior information matrix is an
M-matrix, then supermodularity empirically holds, Fig. 1(a).
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Fig. 1: Supermodularity tests on random systems. d,, (a, S1,.S2) <
0 indicates that supermodularity holds, while d,,(a,S1,S2) > 0
corresponds to failure in the problem being supermodular.

Fig. 2: Multi robot localization. Each solid circle denotes a robot,
moving in the direction defined by the corresponding arrow. The
dotted circles picture the sensing range of the robots. Each robot can
communicate and take relative measurements of teammates within
its sensing range. The (bi-directional) magenta arrows represent
pairs of robots that can communicate with each other. Due to energy
constraints, only a subset of the robots can take GPS measurements.

B. Resource-Constrained Multi Robot Localization

Consider a swarm of n robots moving in the 2D plane
according to the following linear dynamics (see Fig. 2):

Tpp1 = Apwy + up + wy )

where z; 2 [2{V 2{? 2™] € R denotes the

position of all robots in the swarm at time ¢, and argl) €
R? denotes the 2D position of robot i. We assume A; =
I5, «2, meaning that each robot controls its displacement
independently through its local control action ugl) (with
w2 [ul w® . ul™] € R27); as in the rest of the paper,
wy ~ N (0, W,), for all £ > 0. For our tests we assume that
the control actions are randomly chosen at each time-step,
resulting in each robot performing a random walk.

We tackle a multi robot localization problem in which
we estimate the absolute positions z; of the robots from
on-board sensor measurements. We assume that each robot
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has two sensors: a laser scanner, that allows measuring the
relative position of other robots within a sensing radius, and
a GPS, that measures the absolute position of the robot.
While a robot can always acquire relative measurements of
neighboring robots, we consider the case in which energy
constraints prevent all robots to collect GPS data, hence only
a subset of the robots can use the GPS at each time step and
our task is to compute the most convenient subset of those
robots, so to minimize the mean squared error of the global
positions of all robots. For this purpose, we show that for
this localization problem the prior information (before GPS
measurements are included) is an M-matrix, and that the
greedy algorithm produces near-optimal results.
Mathematically, the measurement model for the relative
measurements from the laser scanner is as follows:

Yrij = ( 1 —x) + Vi ij
where each pair of robots (7,7) € {1,...,n}, within sensing
radius, measures the relative state 27 —x of the sensed robot,
plus zero-mean additive Gaussian noise vy ;;. For the sake
of simplicity we assume vf;; ~ N(0, I2x2). Stacking all
measurements y; ;; € R? in (19) into a single vector y; we
get a more compact measurement model:

(18)

y; = Clay + vy (19)

It is well known [19] that C} € R?"<*2" is a close relative
of the incidence matrix of the graph underlying the problem;
such graph has a vertex for each robot and edges connecting
robots within communication radius (we denote with n. the
number of edges). In particular, C} includes n. block-rows
of size 2 x 2n, where each block row is zero everywhere
and equal to Isxo and —I.o for the entries corresponding
to the position of robot j and ¢, respectively.
The GPS measurement model for robot ¢ is:
(I xgl)

’ + vt (20)

i.e., the GPS measures the absolute position xiz) of robot
i, plus zero mean Gaussian noise vy ;. Assuming that G =
{1,...,n} is the set of all robots, and assuming that we can
only acquire GPS measurements from a subset S C G of
r robots (i.e., |S| = r), then we can express model (21) in
matrix form as:

yg = C(S)xy + vy, 21

We note that C'(S) is a monomial measurement matrix.
This setup naturally falls within the framework of
the cardinality-constrained single time-step optimal sensor
scheduling problem outlined in Problem 1. Note that we only
choose the subset of GPS measurements, while we always
collect the relative measurements when possible.
The prior information matrix, before including GPS mea-

surements, is given by:
Q1 = (P + W)™t + (e (Cy) (22)

where we used our assumptions about the matrix A; and the
measurement covariance being the identity. Assuming that
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Fig. 3: Multi robot localization: MSE comparison for different
sensor schedules. The results are averaged over 100 runs.

Qo0 is an M-matrix, implies that €2;,_; remains an M-matrix
for all £ > 0 (a simple proof is given in the supplemental
material [9]). Therefore, according to the empirical evidence
of Section IV-A, we conclude that supermodularity holds
and the greedy algorithm applied to our GPS-measurement-
selection problem obtains near-optimal results.

For our tests we set n = 10 and » = 4. Moreover, we
assume that time ¢ = 0 the robots are uniformly distributed in
a square environment and they move according to the random
walk (17), and that the initial covariance is Pyjo = I2nx2n-

Fig. 3 compares the MSE resulting from the GPS-
measurement selection obtained by three approaches applied
to the sensor scheduling Problem 1:

1) the greedy Algorithm 1 (solid red line);

2) a brute-force search algorithm, which gives the optimal
solution of Problem 1 (dashed green line);

3) a random selection algorithm that selects r out of n
robots uniformly at random (dotted blue line).

Fig. 3 shows the MSE for a 20-time-step simulation. The
sensor scheduling problem is solved at each time step. The
MSE is averaged over 100 Monte Carlo runs. We note
that the performance of the greedy algorithm is practically
indistinguishable from the optimal selection, and remarkably
better than a random selection, further confirming the prac-
ticality of the findings in this paper.

V. CONCLUSION AND FUTURE WORK

We study a single-time-step sensor scheduling problem in
which one needs to select  out of N available sensors to
minimize the MSE of an optimal estimator. Our goal is to
study specific properties of the MSE, namely supermodu-
larity, which enables efficient near-optimal selection of the
sensor set via greedy algorithms. While it is known that
the MSE is not supermodular (nor submodular) in general,
we show that if the prior information matrix is a strictly-
diagonally-dominant M-matrix with strictly ultrametric in-
verse, then the MSE (trace of the covariance) is indeed
supermodular. We elucidate on our theoretical results with
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numerical simulations on random linear systems and we
provide a concrete application to a multi robot localization
problem. Empirical evidence shows that the only requirement
that is actually needed for supermodularity is that the infor-
mation matrix is an M-matrix. Future work includes relaxing
current assumptions on the prior information matrix to meet
the empirical evidence.
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