APPEARED IN
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2016

Act to See and See to Act: POMDP Planning for
Objects Search in Clutter

Jue Kun Li

Abstract— We study the problem of objects search in clutter.
In cluttered environments, partial occlusion among objects
prevents vision systems from correctly recognizing objects.
Hence, the agent needs to move objects around to gather
information, which helps reduce uncertainty in perception. At
the same time, the agent needs to minimize the efforts of
moving objects to reduce the time required to complete the
task. We model the problem as a Partially Observable Markov
Decision Process (POMDP), formulating it as a problem of
optimal decision making under uncertainty. By exploiting spa-
tial constraints, we are able to adapt online POMDP planners
to handle objects search problems with large state space and
action space. Experiments show that the POMDP solution
outperforms greedy approaches, especially in cases where multi-
step manipulation is required.

I. INTRODUCTION

Searching for a specific object is a common practice
that humans carry out almost everyday and everywhere. As
workers, we speedily search for items on the jam-packed
shelves in warehouses. As cooks, we attentively search for
the right ingredient on the cupboard to prepare a delicious
meal. As researchers, we eagerly search for the Red Bull in
a cluttered refrigerator in order to survive the paper deadline.
Let us examine the last example in more details. Upon
opening the refrigerator, we are greeted with a cluttered scene
(shown in Fig. la) containing jars, bottles, boxes, etc. We
find that right behind the white cup with the NUS logo lies
a partially occluded object, whose visible part resembles that
of a Red Bull can. However, we are not completely confident
about its true type. We naturally adopt the strategy of Act fo
See and See to Act. We decide to move away the cup in front
to reduce occlusion (Act to See), which in turn reveals more
information of the scene for effective object manipulation
(See to Act).

In this paper, we deploy this search strategy in robotic
systems, taking a further step towards fully autonomous and
intelligent service robots. Here, we consider the problem of
objects search in clutter as shown in Fig. 1b. The robot has
a fixed camera view of the shelf. The goal is to find and
retrieve the target object that might be partially occluded. The
prevalence of uncertainty in cluttered environment makes
search tasks insurmountable for the cutting-edge robotics
systems. In such cases, robots have incomplete knowledge
about the environment due to noisy sensors and occlusion.
For example, if the plush eggs are fully visible, the object
detector is able to correctly report its true type. However,
once it is occluded, it will be mistakenly classified as the

The authors are with School of Computing, National University of
Singapore, Singapore. { juekun, dyhsu, leews}@comp.nus.edu.sg

David Hsu

Wee Sun Lee

plush_eggs A

=

.purple_cup
purple_cup

(b) Uncertainty due to occlusion.

(a) A cluttered refrigerator.

Fig. 1: Objects search in clutter.

purple cup. Following the idea of Act to See and See to Act,
the robot needs to plan a sequence of actions to rearrange
objects in order to reduce perception uncertainty and find
the target object in the most economical manner. More
specifically, at each step, the robot needs to decide which
objects to move to gather information and where to place that
object such that the expected reward over the entire sequence
of actions is maximized.

Planning under perception uncertainty can be modeled as
a Partially Observable Markov Decision Process (POMDP).
POMDPs provide a principled and general planning and
decision-making framework for acting optimally in partially
observable domains. Although POMDP is a powerful model-
ing tool, the curse of dimensionality and the curse of history
have prevented it from being widely applied in robotic tasks.
Robotic tasks often involve a large number of states. Since
the states are partially observable, robots must reason over
beliefs, which are probability distribution over the states.
With the increase in planning horizon, the number of action-
observation histories, which should be taken into account
during planning, grows exponentially. Fortunately, state-of-
the-art POMDP solvers can now scale to large state spaces
and reasonable planning horizons. In this work, we use an
approximate online POMDP algorithm, DESPOT [1], that
searches a sampled search tree at each time step. While
DESPOT is able to handle large state spaces, the inherent
large action space of the problem still hinders the efficient
tree search. The key insight in this paper is that the number of
feasible actions can be largely reduced by taking account of
spatial constraints, which makes efficient search in DESPOT
possible. For example, collision among objects should be

APPEARED IN

IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2016

avoided upon taking an action.

We implemented the proposed POMDP model and tested
it in eight non-trivial scenarios in simulation to demonstrate
the advantages of online POMDP planning over both greedy
algorithms using heuristic and intuitive human strategy. Ex-
periments show that the POMDP planner is able to search
for objects effectively in a cluttered and confined environ-
ment. POMDP planning has been applied to similar robotic
manipulation tasks before [2], but our work is able to handle
complex problems of much larger scale in state space and
action space.

This paper makes two main contributions. First, we
propose a POMDP model for objects search problem in
cluttered environment with visual occlusion and perception
uncertainty; second, by exploiting spatial constraints of the
problem, we design a general and effective heuristic to
facilitate the search process.

II. RELATED WORK

Manipulation planning among movable objects has been
studied extenstively in [3], [4], [5]. The problem assumes
that the poses of all objects are known. In reality, the poses
and the attributes (e.g., colors, shapes, etc.) of objects cannot
exactly be known initially due to occlusion and noisy sensory
feedback. Hence, the strategy of Act to See and See to Act
becomes crucial to gather information of objects to reduce
uncertainty, which in turn helps accomplish the task.

With the recent advancement in sophisticated robotic
manipulators, manipulation-aided objects search has gained
its popularity in the community. Manipulation-aided objects
search allows the agent to explore unknown regions of the
space, which are not directly accessible to its sensors. In [6],
the problem of finding a fully occluded object in a container
is considered. In their work, they exploit co-occurrence
relationships among similar objects and spatial constraints of
the environment to facilitates the search process. However,
they do not try to find the target object using the minimum
amount of effort (time spent, number of objects to be moved).
For optimal search, [7] proposes a connected components
algorithm for objects search in clutter and show that it
is optimal under all conditions. However, the worst case
complexity of the algorithm is &(n>2"). They also assume
that the target is the only hidden object in the scene, which
might not be true in general. To remove this assumption, [8]
proposes an adaptive lookahead exploration algorithm that
guarantees complete exploration of the environment. At each
step, the Adaptive Horizon Exploration algorithm chooses an
action that maximizes the information gain of the search with
a given planning horizon.

All aforementioned pieces of work consider the problems
of objects search when the target is fully occluded. An
overlooked fact is that more often than not we can roughly
recognize the target object based on its partial view. How-
ever, additional information about the objects does not make
the problem any easier algorithmically because partial in-
formation naturally introduces another source of uncertainty.
As the example in Section I shows, the recognition system

might misclassify the object based on the partial view. Joni
et al.[2] model manipulation of multiple objects in clutter
as a POMDP, taking into account observation uncertainty
due to partial occlusion and action uncertainty. They use the
example of cleaning dirty cups on the table to demonstrate
the clear advantage of multi-step POMDP planning over
simple greedy approaches. However, it is not obvious that
their algorithm can handle complex problems with large
state and action spaces. In the example of searching for
objects in a refrigerator, it is preferable to move objects
inside the confined space rather than directly moving them
out when comparing their respective cost (time to move,
consequences of dropping objects due to unstable grasps,
etc.). A natural question that comes next is where exactly to
place the object inside the space. The problem of placement
requires the model to explicitly represent object poses in
certain coordinate system, which easily blows up the state
space and the action space.

In this work, we try to close the gaps by designing a
POMDP model for objects search with large state space and
action space. Specifically, the state space is at the scale of
1032, with more than 1000 number of possible actions. In
addition, objects placement is traditionally considered as an
independent research question [9], [10]. This work makes the
attempt to couple objects placement problem with objects
search. By exploiting spatial constraints of the problem, we
are able to demonstrate the superiority of POMDP planning
over greedy approaches.

III. POMDP PLANNING FOR OBJECTS SEARCH IN
CLUTTER

POMDPs provide a principled and general planning and
decision-making framework for acting optimally in partially
observable stochastic domains. This makes POMDPs a suit-
able and powerful tool to model real-world robotic tasks
where inherent uncertainties are prevalent. The state-of-the-
art online POMDP solvers are POMCP [11] and DESPOT
[1]. In this work, we opt for DESPOT, because it has a much
stronger worst-case performance bound. In [12], DESPOT
was successfully applied to real-time autonomous driving
among many pedestrians.

A. An Overview

Searching for objects in a cluttered environment is an
essential ability that intelligent robots should possess. Un-
der observation uncertainty, a robot often needs to plan a
sequence of actions to move objects inside or outside a
confined space to reveal the target that could potentially
be occluded. At the same time, certain objectives need to
be met: to find the target accurately while minimizing the
execution time. Modeling the problem of objects search in
clutter as a POMDP helps address the issue of uncertain
observation and complex objectives jointly.

Formally, a POMDP is defined by the tuple <
S,A,Z, T,O,R,y >, where S, A and Z denote the system’s
state space, action space and observation space respectively.
T is the transition function T (s,a,s’) = p(s'|s,a) that models

(a) An example scene.

TrEINE

(b) Six types of objects.

Fig. 2: Simulated environment.

the effect of taking an action a € A in the current state
s €. O is the observation function O(s',a,z) = p(z|s',a)
that models noisy sensor observations. An immediate reward
R(s,a) is obtained upon taking action a in state s. In partially
observable domains, planning is performed on a belief by,
which denotes the probability distribution over possible states
at time ¢. Bayes’ rule is applied to update the belief after
taking action g, and receiving observation z;. In this work,
we represent a belief as a finite set of particles or weighted
state instances in order to deal with large state space.

The solution of POMDP planning is presented in the form
of a policy 7w, which maps a belief b to an action a. During
online POMDP planning, the goal is to find a policy to
maximize the expected total reward at the current belief b:

Y R(s;,m(br))|bo = b) (1)

ngk

Ve =E(

t=0

where by is the initial belief, and y € (0,1) is a discount
factor, which places preferences for immediate rewards over
future rewards. 7 is set to 0.95 in this work.

We consider a general problem of objects search in clutter.
In a cluttered and confined environment, there are typically
several objects of different attributes. The objective is to find
one target object correctly and efficiently (though there could
be multiple objects of the same attributes). Fig. 2a shows one
example scene. From this IKEA shelf, the goal is to find out
the pink-blue object that is partially occluded by the orange
object. Our POMDP model captures the information of all
objects as the state. The agent may move objects inside or
outside the shelf, which constitutes the action space. The
Kinect sensor provides RGBD image streams to the agent
to perceive the scene, from which the essential information,
such as object poses and type, is extracted as the observation.
We model the uncertainty in object types due to occlusion in
the observation function. Finally, the POMDP model encodes
the objectives of the task in the reward function. Next, we
begin by formalizing a POMDP for objects search in clutter,
and then elaborate the modified DESPOT algorithm for fast
online planning.

B. A POMDP Model for Objects Search in Clutter

1) Scene Modeling: A state s is a concise description of
the scene composition. Specifically, s = {Obj;|i € [1,MAX]}.
Objj is the attributes for the ith object inside the shelf, which
comprises its position (x,y) whose origin is shown in Fig. 2a,
orientation 0, and type ¢. Due to the limited space inside
the shelf, we put a constraint on the maximum number of
objects that could be concurrently present in the shelf. For
the IKEA shelf of real scale, it is reasonable to set MAX to
be 8. Six different types of objects are considered as shown
in Fig. 2b. For simplicity, they are distinguishable by color
only, but other object attributes (e.g., shape, affordance, etc.)
can be easily incorporated into this POMDP model, which
is explained in next section. Since all objects sit on shelf
surface of the same level, only 2D positions and orientation
in z axis are considered. Positions are further discretized into
12 in x direction and 17 in y direction with resolution of 2cm.
Orientations are discretized into 10 levels with resolution of
36°. At a rough estimate, the state space is at the scale of
1032, which is horrendously large.

2) Action Modeling: There are four types of actions for
each object present: MOVE_INSIDE(i,x,y): move the ith
object to (x,y) on the 12 x 17 2D plane; MOVE_OUTSIDE(i):
move the ith object out of the shelf if there is no space
inside the shelf; DECLARE_FIND(i): this action declares the
ith object is the target and move it to a designated location;
DECLARE_NONE: this action declares there is no instance of
the target object type in the shelf. Both declaration actions
terminate the planning. Transition function is assumed to be
deterministic. The size of the action space is over 1000.

3) Sensor Modeling: An observation, z = {Cluster;|i €
[1,MAX]}, is a set containing observed attributes for each
cluster. Clusters are obtained by performing segmentation on
point clouds from a Kinect sensor. We assume there is a min-
imum separation of 3cm between objects to ensure correct
segmentation initially. We also assume that the number of
clusters correctly reflects the number of objects on the shelf.
Cluster; is composed of its estimated positions (x,y’) and
hypothesized object type . We collect data in simulation,
and learn a decision tree regressor to estimate positions of
each cluster, based on which the positions of particles in the
belief are updated. We also learn a color-histogram classifier
using SVM that outputs a probability distribution over object
types, from which we sample a type as the hypothesized type
of this cluster. Detailed implementation on how to convert
raw Kinect input to an observation is provided in IV-A.

The observation function O(s',a,z) captures the uncer-
tainty of object types due to occlusion. The intuition is that
the more an object is occluded, the less likely the object
detector will report its type correctly. Upon taking an action
a, a new state s is encountered. s’ captures the spatial
relationship among objects, from which occlusion ratio occl
on Cluster; can be calculated. Concretely, each type of
objects is associated with a 3D bounding box, specifying its
length, width and height. Given the poses and the types of all
objects in state s’, their 3D bounding boxes are first projected

onto the back of the shelf (y-z plane), which results in sets
of 2D rectangles R = {Rect;}. The occlusion ratio occl; of
Obj; is defined as the ratio between the area of intersection
with other rectangles and the area of the projected rectangle
of Obj;. Formally,

Area(U
Rect;€R\{Rect;}

Area(Rect;)

Rect;(\Rect ;)

occl; = 2)

The occlusion ratio is further discretized into 10 levels.
Assuming independent observation among objects, the ob-
servation function can be rewritten as,

0(s',a,2) = p(z|s',a)
MAX
= Cluster;|Obj;,occl;
iI;Il p(i|Obji i) 3)
MAX
= H p(Cluster;.t'|Obj;.t,0bj;.0,0ccl;)
i=1

=

In the processing, we assume that all features are estimated
accurately except the type which is noisy. We learn the prob-
ability distribution function p(f'|t,0,0ccl) from simulations
using a color-histogram classifier and store it as a table,
which can be looked up during planning. One technical issue
in the observation function is to ensure that Cluster; and
Obj; refer to the same entity. We treat it as an Assignment
problem and employ the Kuhn-Munkres algorithm [13] to
find the correspondence among clusters from two consecutive
observations such that the cost (Euclidean distance) of the
assignment is minimized.

4) Reward Modeling: The reward function is designed to
align with the objectives of the task: to find out the target
object by manipulating objects safely and efficiently.

o For moving an object that either does not exist or is
occluded, the agent receives a large penalty of —10000.
This ensures safety of objects manipulation.

« MOVE_INSIDE: if moving an object to a new position
results in collision with other objects, the agent receives
a large penalty of —10000; if the goal position is the
same as the current position of an object to be moved,
the agent receives a penalty of —20; otherwise, the agent
incurs a small movement cost that is proportional to the
distance traveled: abs(y—y') +abs(2*L—x—x'), where
(x,y) and (x',y") are the start and the goal positions, and
L is the length of the shelf along x axis. The first part
of it is the cost along y direction, while the second part
takes into account that the agent moves the object in a
U-shape fashion rather than a straight line path in order
to avoid collision with other objects during transition.

« MOVE_OUTSIDE: the agent receives a cost of —200.
We discourage to move objects outside because it is
more time consuming and the chances of dropping or
damaging objects due to unstable grasps is higher.

« DECLARE_FIND: if the declared object is not of the tar-
get type, the agent receives a large penalty of —10000;
otherwise it receives a reward of 10.

« DECLARE_NONE: if there is at least one target object
on the shelf, the agent receives a penalty of —250;
otherwise it receives a reward of 10.

C. Enhanced DESPOT Search

Online POMDP planning searches a belief tree for the best
action to move objects at the current belief by. A belief tree
has a maximum height H (planning horizon), with each node
being a belief, and each edge being an action-observation
pair. A new b’ is obtained by performing Bayes’ update on
the current b with an edge (a,z). At each leaf node, a default
policy is simulated to obtain a lower bound on its value. Then
Bellman’s principle of optimality (4) is applied to recursively
compute the maximum value of action branches and the
average value of observation branches. This results in an
approximately optimal policy for the current belief bg. The
complete belief tree grows on the order of &(|A|7|Z|7). In
practice, it is not affordable to search the full tree when the
action space or the observation space is large. This is indeed
the case in this work. To overcome this challenge, we use
DESPOT to handle large observation space, and we exploit
spatial constraints to reduce number of feasible actions.

V(b) = max{Zb(s)R(s,a) + YZ plzlb,a)V(D)} (4)

a€A " E3 €2

1) DESPOT: The key idea of DEterminized Sparse Par-
tially Observable Tree (DESPOT) is to search a belief
tree under K sampled scenarios only. Not all observation
branches need to be examined to identify an approximately
optimal policy, because the value of all observation branches
is ultimately averaged in the Bellman’s equation (4). A
sampled subset of observations branches may be sufficient to
estimate this average. Under each scenario, a policy traces
out a particular sequence of action-observation pairs. The
size of the DESPOT tree is reduced to & (|A|”K), leading
to dramatic improvement in computational efficiency for
moderate K values.

DESPOT builds its tree incrementally by performing
heuristic search guided by a lower bound and an upper
bound on the value of each tree node. The lower bound
at a leaf node b; is the empirical value of a default policy
under sampled scenarios. In this work, the default policy for
the lower bound is to choose an action that maximizes the
weighted total reduction in occlusion ratio and the movement
cost of that action, which is of the same form as (5) but is
calculated based on a state instance in the belief. The value
of this policy under a set of sampled scenario can be easily
calculated by simulation. The upper bound is an optimistic
estimate of the value at a node. We employ the same
strategy to choose actions, but we use underestimated cost of
movement to obtain the upper bound value at b;. Specifically,
we assign a small constant cost to all valid MOVE_INSIDE
actions. For the internal nodes of the DESPOT tree, we
evaluate their lower and upper bounds recursively by (4).

Kinect Raw
Image
Objects

Segmentation

Table Plane bservation

Octomap o] 6rid | gg o Goal Request
Server ’
Clusters Signal
Tr‘qjecToryi T Signal
Clysters
Objects

Object

Recognition Hypothesis

Fig. 3: System architecture.

2) Enhancement: DESPOT expands its tree by trying all
possible actions. When the action space is large, the search
is prohibitive. In our POMDP formulation, the number of
possible actions is over 1000. Fortunately, exploiting spatial
constraints helps reduce the number of feasible actions
tremendously. The insight is that many of the actions are
invalid. Specifically, before expanding the tree we apply an
action filter to exclude invalid actions based on the current
observation z. Invalid actions can be categorized into: 1) an
object is not movable due to occlusion; 2) an action results in
collision between objects; 3) an object is moved to a location
that results in itself being occluded; 4) an action keeps an
object where it is; 5) an action only moves an object in
x direction. The result is that over 95% of the actions are
filtered out. An interesting discovery is that as the number
of objects inside the shelf increases, the number of feasible
actions decreases. This is understandable that the remaining
free space shrinks as more objects are present in a confined
space. However, there are still around 80 actions to expand
the tree. Another insight that further reduces the number of
actions is that not all objects need to be moved in order to
get the target object. This drives us to design a heuristic that
unveils the utility of an action. Formally, the utility of an
action a given the current observation z is defined as,

U(a,z) =w; * ORT (a,z) + wy * ORO(a,z)
+ws3 % OB(a,z) +wa * MC(a)

where wi,wp,w3 and wy are constant weights, and

e ORT(a,z): total reduction in occlusion ratio on the
target object by taking a given z.

o ORO(a,z): total reduction in occlusion ratio on objects
other than the target.

e OB(a,z): a bonus is assigned to a if it tries to move
away an object that occludes the target.

o MC(a): move cost of taking a.

®)

The remaining actions after filtering are sorted by their utility
in descending order. The top 10 actions are then used to
expand the DESPOT tree. This enhancement enables the
DESPOT to search for near optimal plan efficiently.
IV. EXPERIMENTS AND RESULTS

A. Setup

We designed eight non-trivial test cases in V-REP'! simu-
lation environment as shown in Fig. 4. Across all test cases,

Uhttp://www.coppeliarobotics.com/

the goal is to find out a pink-blue object and put it on a table
besides the shelf. For each figure in Fig. 4, the top right and
the bottom right windows are the RGB and depth images
seen by the robot respectively. The left part of the figure is
used to show the object configuration only. All test cases
involve occlusion of varying degree. In test case (1), both
the pink-blue and the yellow-blue objects are occluded, and
the robot only sees the blue portion of both objects, which
confuses the robot on where the target object is. Test cases
(2), (3) and (4) are to test if our planner can find the optimal
solution. Test case (4) is a blocking chain problem, in which
two objects need to be moved in sequence in order to reach
the target. Test case (5) is to verify whether our planner
can tell the existence of the target object. In test case (6),
the orange object has to be moved outside due to limited
space. Test cases (7) and (8) are designed to show clear-cut
advantage of POMDP planning over baseline approaches.

The system architecture is illustrated in Fig. 3. Our system
is based on the Robot Operating System (ROS) Indigo in
Ubuntu 14.04. The Kinect sensor streams RGBD images of
the scene to the Commander, which relays the information to
various modules for preprocessing. The Objects Segmenta-
tion module is adapted from tabletop_segmentation package’.
Given a table plane, it segments out point cloud clusters on
the table. The Octomap Server converts each cluster to its
occupancy grid representation, which are the input features to
our position estimator. It is adapted from octomap_mapping
package’. The Objects Recognition module uses our color-
histogram classifier to produce object hypothesis for each
cluster. Commander fuses all processed information to form
an observation, which is passed to the DESPOT planner. The
planner returns an action to Commander, which requests the
robot to execute that action. This process repeats until the
program terminates.

We compared our POMDP planning with two other
reasonable baselines. One employs greedy search strategy,
which is the same as our lower bound. The other is an “Out-
only” approach, which we humans often adopt to search
for objects in clutter. At each step, the agent simply moves
outside one object, which potentially occludes the target
object most.

B. Results and Discussion

We performed 100 runs for each test case for all three
approaches. We compared them based on two criteria: the
average discounted reward with its standard deviation and
the success rate in 100 runs. The result is shown in Table I.
With limited space, we present the sequence of movement
for some test cases for illustration as shown in Fig. 5. For
more details, see the video online at https://goo.gl/
8MX55h.

The results for all test cases demonstrate the capability
of our approach to handle perception uncertainty under
severe occlusion. In terms of the average discounted re-
ward, our approach outperforms the greedy approach for 4

Zhttp://wiki.ros.org/tabletop_object_detector
3http://wiki.ros.org/octomap_mapping

https://goo.gl/8MX55h
https://goo.gl/8MX55h

&)

7 (8)

Fig. 4: Initial configurations of eight test cases. The objective is to find out and retrieve the pink-blue object.

TABLE I: Comparison of POMDP planning and baseline algorithms.

(1) 2 3) €]) (6) 7 (8)
Average | DESPOT 11.87 (@.41) 0.50 (0.00) 450 (0.00) | -16.25 (0.56) | -5.52 (0.00) | -190.50 (0.00) | -190.50(0.00) | -10.50 (0.15)
Roaat [Greedy 1243 (0.00) 0.50 (0.00) ~8.58 (0.00) ~19.66 (0.0) 552 (0.00) | -190.50 (0.00) - .
“Out-only” | -354.31 (66.09) | -190.50 (0.00) | -190.50 (0.00) | -380.98 (0.00) | -190.50 (0.00) | -190.50 (0.00) | -190.50 (0.00) | -190.50 (0.00)
Success | _DESPOT 0.92 0.97 0.98 084 .00 1.00 1.00 083
Rae | Greedy .00 1.00 1.00 .00 .00 .00 - .
“Out-only” 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

((1),(3),(4),(8)) out of the 8 cases and matches the perfor-
mance in the remaining 4 cases. The “Out-only” strategy
incurs much larger cost by only considering moving objects
out. We take a closer look at a few test cases, where our
approach can find near-optimal solution while the greedy
approach cannot. As illustrated in Fig. 5, in test case (4),
the greedy approach first moves the pink cylinder slightly
to the right. Then it realizes there is no space to put away
the yellow-blue object, so it moves the pink cylinder to
the right again, which creates enough space to move the
yellow-blue to the right. Finally, the target object can be
retrieved. In contrast, our approach creates enough space in
the first step by moving the pink cylinder further to the right.
The reason is that the greedy baseline chooses an action
that does not take into account the long-term rewards. This
results in a suboptimal solution. Our approach looks ahead
several steps to choose an optimal action given the horizon.
The greedy approach may even be stuck forever for certain
configurations ((7),(8)). In test case (8), the greedy approach
falls into an infinite loop by moving the orange block from
the left to the right and then from the right to the left. This
is because the heuristic value of moving the orange block is
higher than that of moving the pink cylinder. On the contrary,
POMDP planning employs lookahead search and figures out
that the optimal strategy is to move the pink cylinder to the
right first, which creates space for the large orange block.
Despite the fact that the immediate reward of moving the
pink cylinder is less than that of moving the orange block,
its long-term reward is much higher. Another observation
is that our approach usually takes fewer steps to retrieve
the target than the greedy approach. This serves as positve
evidence that our approach will be more efficient on real
robotic systems, because fewer steps imply less execution
time in general.

With our current implementation, the POMDP planning
does not achieve 100% success rate. Sometimes our planner
moves objects too close to each other, which results in
segmentation failure, i.e., two clusters merge into one. This
totally messes up the observation in the current system.
Hence, we treat such cases as failures. This is a normal
behavior of our planner because of its aggressiveness in
maximizing the long-term reward. For example, in test case
(3), moving the pink cylinder anywhere to the right of the
green block can reveal the target. Therefore, moving the pink
cylinder closer to the green block is preferred because it
minimizes the moving cost. Even though we enforce a safety
margin to prevent objects from moving too close to each
other, it still happens due to inaccurate position estimates.
Nonetheless, one workaround is to track each object [14]
in real time so that the system will not be confused when
objects get too close to each other.

V. CONCLUSION

Motivated by the idea of Act fo See and See to Act, this
paper presents a POMDP framework for objects search in
clutter with large state space and action space. Exploiting
spatial constraints makes it possible for our planner to
efficiently search for near-optimal plans under perception
uncertainty due to partial occlusion. Experiments show clear-
cut advantages of our planner over greedy heuristic search
and a natural baseline strategy. One lesson we have learned
is that when a scene has complex occlusion relationships,
multi-step lookahead POMDP planner is preferred since it
takes the long-term effects into account. In the future, we
plan to connect the current system with our real robotic
manipulator to complete the story. Future experiments will
contain randomly generated scenes, which may help reveal
more about the problem structure of object search in confined

%

Fig. 5: Sequence of moves (from top to bottom: case (3) with our approach; case (3) with greedy approach; case (4) with our approach;
case (4) with greedy approach; case (8) with our approach; case (8) with greed approach).

spaces. These experiments will be conducted on a set of real
household objects from the YCB Object and Model Set*.

ACKNOWLEDGMENT

This research was supported in part by A*STAR Industrial
Robotics Program grant (R-252-506-001-305).

[1]

[2]
[3]

[4]

[51

REFERENCES

A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” in Advances in Neural Information
Processing Systems (NIPS), pp. 1772-1780, 2013.

J. Pajarinen and V. Kyrki, “Robotic manipulation of multiple objects
as a POMDP,” Artificial Intelligence, 2015.

D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII, pp. 87-102, Springer, 2008.
J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: a probabilistically complete
approach,” in Algorithmic Foundation of Robotics VIII, pp. 599-614,
Springer, 2009.

M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-
tion planning among movable obstacles,” in Proc. IEEE Int. Conf. on
Robotics & Automation, pp. 3327-3332, 2007.

“http://r1l.eecs.berkeley.edu/ycb/

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez, “Manipulation-
based active search for occluded objects,” in Proc. IEEE Int. Conf. on
Robotics & Automation, pp. 2814-2819, 2013.

M. R. Dogar, M. C. Koval, A. Tallavajhula, and S. S. Srinivasa,
“Object search by manipulation,” Autonomous Robots, vol. 36, no. 1-2,
pp. 153-167, 2014.

M. Gupta, T. Ruhr, M. Beetz, and G. Sukhatme, “Interactive environ-
ment exploration in clutter,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, pp. 5265-5272, 2013.

M. J. Schuster, J. Okerman, H. Nguyen, J. M. Rehg, and C. C.
Kemp, “Perceiving clutter and surfaces for object placement in indoor
environments,” in Humanoid Robots (Humanoids), 2010 10th IEEE-
RAS International Conference on, pp. 152-159, IEEE, 2010.

Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new
objects in a scene,” Int. J. Robotics Research, 2012.

D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in Neural Information Processing Systems (NIPS), pp. 2164—
2172, 2010.

H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
POMDP planning for autonomous driving in a crowd,” in Proc. IEEE
Int. Conf. on Robotics & Automation, pp. 454—460, 2015.

J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32-38, 1957.

A. Teichman, J. T. Lussier, and S. Thrun, “Learning to segment
and track in RGBD,” Automation Science and Engineering, IEEE
Transactions on, vol. 10, no. 4, pp. 841-852, 2013.

	Introduction
	Related Work
	POMDP Planning for Objects Search in Clutter
	An Overview
	A POMDP Model for Objects Search in Clutter
	Scene Modeling
	Action Modeling
	Sensor Modeling
	Reward Modeling

	Enhanced DESPOT Search
	DESPOT
	Enhancement

	Experiments and Results
	Setup
	Results and Discussion

	Conclusion
	References

