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Abstract— The partially observable Markov decision process
(POMDP) provides a principled general model for planning
under uncertainty. However, solving a general POMDP is com-
putationally intractable in the worst case. This paper introduces
POMDP-lite, a subclass of POMDPs in which the hidden state
variables are constant or only change deterministically. We
show that a POMDP-lite is equivalent to a set of fully observable
Markov decision processes indexed by a hidden parameter
and is useful for modeling a variety of interesting robotic
tasks. We develop a simple model-based Bayesian reinforcement
learning algorithm to solve POMDP-lite models. The algorithm
performs well on large-scale POMDP-lite models with up to
1020 states and outperforms the state-of-the-art general-purpose
POMDP algorithms. We further show that the algorithm is
near-Bayesian-optimal under suitable conditions.

I. INTRODUCTION

Imperfect robot control, sensor noise, and unexpected
environment changes all contribute to uncertainties and pose
significant challenges to robust robot planning. Robots must
explore in order to gain information and reduce uncertainty.
At the same time, they must exploit the information to
achieve task objectives. The partially observable Markov
decision process (POMDP) [8], [25] provides a principled
general framework to balance exploration and exploitation
optimally. It has found application in many robotic tasks,
ranging from navigation [20], manipulation [7], [12] to
human-robot interaction [14]. However, solving POMDPs
exactly is computationally intractable in the worst case [16].
While there has been rapid progress on efficient approximate
POMDP algorithms in recent years (e.g., [23], [13], [22],
[24], [21]), it remains a challenge to scale up to very large
POMDPs with complex dynamics.

The complexity of a POMDP lies in the system dynam-
ics, partial observability, and particularly, the confluence
of the two. We introduce POMDP-lite, a factored model
that restricts partial observability to state variables that are
constant or change deterministically. While this may appear
restrictive, the POMDP-lite is powerful enough to model a
variety of interesting robotic tasks:
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• Unknown system parameters. A double-pendulum ac-
robot with link mass unknown a priori swings up to
the standup configuration [3], [5].

• Unknown types. In autonomous driving, a robot vehicle
encounters a human driver of unknown behavior at an
uncontrolled traffic intersection [4]. In a human-robot
collaborative task, the robot poses an object to the
human according to unknown human preference [14].

• Unknown goals. An assistive agent helps a human
cooking one of several dishes, without knowing the
human’s intention in advance [6].

These tasks all require the robot to gather information on the
unknown quantities from noisy observations, while achieving
the task objective at the same time. They in fact belong to a
special case, in which the hidden variables remain constant
throughout. We mainly focus on this special case here.

Interestingly, the famous Tiger problem, which appeared in
a seminal paper on POMDPs [8], also belongs to this special
case, after a small modification. In Tiger, an agent stands in
front of two closed doors. A tiger is behind one of the doors.
The agent’s objective is to open the door without the tiger. In
the POMDP model, the state is the unknown tiger position.
The agent has three actions: open the left door (OL), open
the right door (OR), and listen (LS). OL and OR produce
no observation. LS produces a noisy observation, tiger left
(TL) or tiger right (TR), each correct with probability 0.85.
Listening has a cost of −1. If the agent opens the door with
no tiger, it gets a reward of 10; otherwise, it incurs a penalty
of −100. To perform well, the agent must decide on the
optimal number of listening actions before taking the open
action. While Tiger is a toy problem, it captures the essence
of robust planning under uncertainty: trade off gathering
information and exploiting the information to achieve the
task objective. The original Tiger is a repeated game. Once
the agent opens a door, the game resets with the tiger going
behind the two doors with equal probability. We change it
into a one-shot game: the game terminates once the agent
opens a door. The one-shot game has a single state variable,
the tiger position, which remains unchanged during the game,
and thus admits a POMDP-lite model. The repeated game is
a POMDP, but not a POMDP-lite.

A POMDP-lite is equivalent to a set of Markov decision
processes (MDPs) indexed by a hidden parameter. The key
idea for the equivalence transformation is to combine a
POMDP state and an observation to form an expanded MDP
state, and capture both POMDP state-transition uncertainty
and observation uncertainty in the MDP transition dynamics.
In the one-shot Tiger example, we form two MDPs indexed
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Fig. 1: A POMDP model for one-shot Tiger is transformed
into a set of two MDPs. A node is labeled by a pair,
representing a POMDP state and an observation. The start
state has null observation and is labeled accordingly. The
special terminal state is labeled as “END”. An edge is
labeled by a triple, representing the action , the probability
of reaching the next state with the action, and the reward.

by the tiger position, left (L) or right (R) (Fig. 1). An
MDP state is a pair, consisting of a POMDP state and an
observation. For example, in the MDP with the tiger on the
left, we have (L,TL), which represents that the true tiger
position is L and the agent receives the observation TL. If the
agent takes the action LS, with probability 0.15, we transit
to the new state (L,TR) and receives observation TR. See
Section III for details of the general construction.

The equivalence enables us to develop an online algorithm
for POMDP-lite through model-based Bayesian reinforce-
ment learning (RL). If the hidden parameter value were
known, our problem would simply become an MDP, which
has well-established algorithms. To gather information on
the unknown hidden parameter, the robot must explore. It
maintains a belief, i.e., a probability distribution over the
hidden parameter and follows the internal reward approach
for model-based Bayesian RL [11], [26], which modifies the
MDP reward function in order to encourage exploration. At
each time step, the online algorithm solves an internal reward
MDP to choose an action and then updates the belief to incor-
porate the new observation received. Our algorithm is simple
to implement. It performs well on large-scale POMDP-lite
tasks with up to 1020 states and outperforms the state-of-
the-art general-purpose POMDP algorithms. Furthermore, it
is near-Bayesian-optimal under suitable conditions.

II. RELATED WORK

POMDP planning has a huge literature (see, e.g., [8],
[13], [25], [23], [13], [22], [24], [21] ). Our brief review
focuses on online search algorithms. At each time step, an
online algorithm performs a look-ahead search and com-
putes a best action for the current belief only [19]. After
the robot executes the action, the algorithm updates the
belief based on the observation received. The process then
repeats at the new belief for the next time step. Online
search algorithms scale up by focusing on the current belief
only, rather than all possible beliefs that the robot may

encounter. Further, since online algorithms recompute a best
action from scratch at each step, they naturally handle
unexpected environment changes without additional over-
head. POMCP [22] and DESPOT [24] are the fastest online
POMDP algorithms available today. Both employ the idea
of sampling future contingencies. POMCP performs Monte
Carlo tree search (MCTS). It has low overhead and scales up
to very large POMDPs, but it has extremely poor worst-case
performance, because MCTS is sometimes overly greedy.
DESPOT samples a fixed number of future contingencies
deterministically in advance and performs heuristic search
on the resulting search tree. This substantially improves the
worst-case performance bound. It is also more flexible and
easily incorporates domain knowledge. DESPOT has been
successfully implemented for real-time autonomous driving
in a crowd [2]. It is also a crucial component in a system that
won the Humanitarian Robotics and Automation Technology
Challenge (HRATC) 2015 on a demining task.

Instead of solving the general POMDP, we take a different
approach and identify a structural property that enables
simpler and more efficient algorithms through model-based
Bayesian RL. Like POMDP-lite, the mixed observability
Markov decision process (MOMDP) [15] is also a factored
model. However, it does not place any restriction on partially
observable state variables. It is in fact equivalent to the
general POMDP, as every POMDP can be represented as a
MOMDP and vice versa. The hidden goal Markov decision
process (HGMDP) [6] and the hidden parameter Markov
decision process (HiP-MDP) [5] are related to POMDP-
lite. They both restrict partially observability to static hidden
variables. The work on HGMDP relies on a myopic heuristic
for planning, and it is unlikely to perform well on tasks that
need exploration. The work on HiP-MDP focuses mainly on
learning the hidden structure from data.

There are several approaches to Bayesian RL [1], [17],
[27], [11]. The internal reward approach is among the
most successful. It is simple and performs well in practice.
Internal reward methods can be further divided into two main
categories, PAC-MDP and Bayesian optimal. PAC-MDP al-
gorithms are optimal with respect to the true MDP [9], [27],
[26]. They provide strong theoretical guarantee, but may
suffer from over exploration empirically. Bayesian optimal
algorithms are optimal with respect to the optimal Bayesian
policy. They simply try to achieve high expected total reward.
In particular, the Bayesian Exploration Bonus (BEB) [11]
algorithm achieves lower sample complexity than the PAC-
MDP algorithms. However, BEB requires a Dirichlet prior
on the hidden parameters. Our algorithm is inspired by BEB,
but constructs the exploration bonus differently. It allows
arbitrary discrete prior, a very useful feature in practice.

III. POMDP-LITE

A. Definition

POMDP-lite is a special class of POMDP with a “de-
terministic assumption” on its partially observable variable,
specifically, the partially observable variable in POMDP-
lite is static or has deterministic dynamic. Formally we



introduce POMDP-lite as a tuple (X,Θ, A,O, T, Z,R, γ),
where X is a set of fully observable states, Θ is the
hidden parameter which has finite number of possible
values: Θ = {θ1, θ2, ..., θN}, the state space is a cross
product of fully observable states and hidden parameter:
X × Θ = {(xi, θj)|xi ∈ X, θj ∈ Θ}. A is a set of
actions, O is a set of observations. The transition function
T (x, θ, a, x′, θ′) = P (x′|θ, x, a)P (θ′|θ, x, a) for x, x′ ∈
X, θ, θ′ ∈ Θ, a ∈ A specifies the probability of reach-
ing state (x′, θ′) when the agent takes action a at state
(x, θ), where θ′ = θ or P (θ′|θ, x, a) = 1 according to
the “deterministic assumption”. The observation function
Z(x′, θ′, a, o) = P (o|θ′, x′, a) specifies the probability of
receiving observation o after taking action a and reaching
state (x′, θ′). The reward function R(x, θ, a) specifies the
reward received when the agent takes action a at state (x, θ).
γ is the discount factor.

In POMDP-lite, the state is unknown and the agent main-
tains a belief b, which is a probability distribution over the
states. In each step, the agent takes an action a and receives
a new observation, the belief is updated according to Bayes’
rule, b′ = τ(b, a, o). The solution to a POMDP-lite is a policy
π which maps belief states to actions, i.e., π(b) = a. The
value of a policy π is the expected reward with respect to

the initial belief b0: V π(b0) = E
[ ∞∑
t=0

γtR(xt, θt, at)
]
, where

(xt, θt) and at denote the state and action at time t. An
optimal policy has the highest value in all belief states, i.e.,
V ∗(b) ≥ V π(b),∀π, b, and the corresponding optimal value
function satisfies Bellman’s equation:

V ∗(b) = max
a

{ ∑
x∈X,θ∈Θ

b(x, θ)R(x, θ, a)

+ γ
∑
o∈O

P (o|b, a)V ∗
(
τ(b, a, o)

)}
B. Equivalent Transformation to a Set of MDPs

In this section, we show an important property of POMDP-
lite model that it is equivalent to a collection of MDPs
indexed by θ. A MDP model with parameter θi is a tuple
(S,A, T,R, γ, θi), where S is a set of states, A is a set of
actions, T (θi, s, a, s

′) is the transition function, R(θi, s, a)
is the reward function, γ is the discount factor.

Theorem 1: Let H = (X,Θ, A,O, T, Z,R, γ) be a
POMDP-lite model, where Θ = {θ1, θ2, ..., θN}. It
equals to a collection of MDPs indexed by θ, C =⋃
θi∈Θ

(S,A, T,R, γ, θi).

Proof: [Proof of Theorem 1] To show the equivalence
between H and C, we first reduce C to H. This direction is
easy, we can simply treat θi as part of the state in a POMDP-
lite model, the remaining part can become part of a POMDP-
lite model without change. The more interesting direction is
to reduce H to C.

Let’s first consider the case when the value of θ re-
mains constant. Given θ = θi, the POMDP-lite model
becomes a MDP model with parameter θi, which consists
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x′

θ′

a oR

MDPθi

x

õ

x′

õ′

a θiR

Fig. 2: Graphic model for POMDP-lite (left) and the MDP
model with parameter θi (right).

of the following elements: (S,A, T,R, γ, θi). Where S is
the state space: S = X × Õ, Õ = O ∪ {null}, in
which null simply means no observation received. A is
the set of actions which is identical to the actions in the
POMDP-lite model. The transition function T (θi, s, a, s

′) =
P (x′, õ′|θi, x, õ, a) = P (õ′|θi, x′, a)P (x′|θi, x, a) specifies
the probability of reaching state s′ after taking action a at
state s, where P (x′|θi, x, a) and P (õ′|θi, x′, a) are the tran-
sition and observation probability function in the POMDP-
lite model. The reward function R(θi, s, a) = R(θi, x, a)
specifies the reward received when the agent takes action
a at state s. γ is the discount factor. The graphic model
in Fig. 2 shows the relationship between POMDP-lite model
and the corresponding MDP model with parameter θi. Since
the hidden parameter has finite number of values, a POMDP-
lite can be reduced to a collection of MDPs indexed by θ.

Then, we show that a simple extension allows us to handle
the case when the value of the hidden variable changes deter-
ministically. The key intuition here is that the deterministic
dynamic of hidden variable does not introduce additional
uncertainties into the model, i.e., given the initial value of
hidden variable θ0, and the history up to any time step t,
ht = {x0, a0, x1, a1, ..., xt−1, at−1}, the value of hidden
variable can be predicted using a deterministic function, θt =
φ(θ0, ht). Thus given the initial value of hidden variable
θ0 = θ0

i and a deterministic function φ, a POMDP-lite
model can be reduced to a MDP model: (S,A, T,R, γ, θ0

i ).
Compared with the static case, the state here is further
augmented by the history ht i.e., st = (xt, õt, ht). The value
of θt was fully captured by st, θ0

i and φ, θt = φ(θ0
i , st).

The rest of the MDP model is similar to the static case. In
particular, the set of actions A is identical to the POMDP-
lite model, the transition function is T (θ0

i , st, at, st+1) =
P (õt+1|θt+1, xt+1, at)P (xt+1|θt, xt, at), the reward func-
tion is R(θ0

i , st, at) = R(θt, xt, at), γ is the discount factor.
Since θ0 has finite number of values, a POMDP-lite can be
reduced to a collection of MDPs indexed by θ0.

C. Algorithm

In this part, we present an efficient model based BRL
algorithm for POMDP-lite. The solution to the BRL problem
is a policy π, which maps a tuple (belief, state) to actions,
i.e., a = π(b, s). The value of a policy π for a belief b and



state s is given by Bellman’s equation

V π(b, s) = R(b, s, a) + γ
∑
b′,s′

P (b′, s′|b, s, a)V π(b′, s′)

= R(b, s, a) + γ
∑
s′

P (s′|b, s, a)V π(b′, s′)

Where a = π(s, b), R(b, s, a) =
∑
θi

R(θi, s, a)b(θi) is the

mean reward function, P (s′|b, s, a) =
∑
θi

T (θi, s, a, s
′)b(θi)

is the mean transition function. The second line follows from
the fact that belief update is deterministic, i.e., P (b′|b, a, o) =
1. The optimal Bayesian value function is

V ∗(b, s) = max
a

{
R(b, s, a) + γ

∑
s′

P (s′|b, s, a)V ∗(b′, s′)

}
(1)

a = π∗(b, s) is the optimal action that maximizes the right
hand size. Like the optimal policy in the original POMDP-
lite problem, the optimal Bayesian policy chooses actions not
only based on how they affect the next state but also based
on how they affect the next belief.

However, the optimal Bayesian policy is computationally
intractable. Instead of exploring by updating the belief each
step, our algorithm explores by explicitly modify the reward
function. In other words, each state action pair will have a
reward bonus based on how much information it can reveal.
The reward bonus used by our algorithm is motivated by
the observation that the belief gets updated whenever some
information about the hidden parameter has been revealed,
thus we use the L1 divergence between two beliefs to
measure the amount of information gain. The reward bonus
is defined formally as follows:

Definition 1: When the belief is updated from bi to bj , we
measure the information gain by the L1 divergence between
bi and bj , i.e., ‖bj − bi‖1 =

∑
θi∈Θ

∣∣bj(θi)− bi(θi)∣∣. Based on

it, the reward bonus for (s, a) is defined as the expected L1

divergence between current belief b and next belief bs′ :

RB(b, s, a) = βE
s′

[
‖bs′ − b‖1

]
= β

∑
s′

P (s′|b, s, a)‖bs′ − b‖1

where β is the constant tuning factor, bs′ is the updated belief
after observing s′.

At each time step, our algorithm solves an internal reward
MDP, M = (S,A, T, R̃, γ, b). It chooses action greedily with
respect to the following value function

Ṽ ∗(b, s) = max
a

{
R̃(b, s, a) + γ

∑
s′

P (s′|b, s, a)Ṽ ∗(b, s′)

}
(2)

Where R̃(b, s, a) = R(b, s, a) + RB(b, s, a), in which
RB(b, s, a) is the reward bonus term and it is defined
in Definition 1. Other parts are identical to Equation 1 except
that belief b is not updated in this equation. We can solve
it using the standard Value Iteration algorithms, which have
time complexity of O(|A||X|2|Θ|2). In this work, we are
more interested in problems with large state space, thus

Algorithm 1
1: t← 0, bt ← b0, st ← s0 // initialize the values

2: T ← Maximum Steps
3: while not end and t < T do
4: at ← arg maxa Q̃

∗(bt, st, a) // greedily choose an action

5: (rt, st+1)← ExecuteAction(at)
6: bt+1 ← UpdateBelief(bt, st+1) // update the belief

7: t = t+ 1
8: end while

we are using UCT [10], an online MDP solver, to achieve
online performance. Details of our algorithm is described
in Algorithm 1, in which Q̃∗(bt, st, a) = R̃(bt, st, a) +
γ
∑
st+1

P (st+1|bt, st, a)Ṽ ∗(bt, st+1).

IV. ANALYSIS

Although our algorithm is a greedy algorithm, it actually
performs sub-optimally only in a polynomial number of time
steps. In this section, we present some theoretical results
to bound the sample complexity of our algorithm. Unless
stated otherwise, the proof of the lemmas in this section are
deferred to the appendix. For a clean analysis, we assume
the reward function is bounded in [0, 1].

A. Sample Complexity

The sample complexity measures the number of samples
needed for an algorithm to perform optimally. We start with a
definition of sample complexity on a state action pair (s, a).

Definition 2: Given the initial belief b0, target accuracy
κ, reward bonus tuning factor β, we define the sample
complexity function of (s, a) as: ζ(s, a) = f(b0, s, a, κ, β),
such that if (s, a) has been visited more than ζ(s, a) times,
starting from belief b0, the corresponding reward bonus
of visiting (s, a) at the new belief b′ is less than κ, i.e.,
RB(b′, s, a) < κ. We declare (s, a) as known if it has been
sampled more than ζ(s, a) times, and cease to update the
belief for sampling known state action pairs.

The following is an assumption for our theorem to hold
true in general. The assumption essentially says that the
earlier you try a state-action pair, the more information you
can gain from it. We give a concrete example to illustrate
our assumption in Lemma 1.

Assumption 1: The reward bonus monotonically decreases
for all state action pairs (s, a) and timesteps t, i.e.,
RB(bi, s, a) ≥ RB(bi+1, s, a).

Now, we present our central theoretical result, which
bounds the sample complexity of our algorithm with respect
to the optimal Bayesian policy.

Theorem 2: Let the sample complexity of (s, a) be
ζ(s, a) = f(b0, s, a, κ, β), where β = O

( |S|2|A|
(1−γ)2

)
, κ =

ε(1−γ). Let At denote the policy followed by the algorithm
at time t, and let st, bt be the corresponding state and
belief. Then with probability at least 1 − δ, V At(bt, st) ≥
V ∗(bt, st)− 4ε, i.e., the algorithm is 4ε-close to the optimal
Bayesian policy, for all but



m = O

(∑
s,a ζ(s,a)

ε(1−γ)3 ln 1
σ ln 1

ε(1−γ)

)
time steps.

In other words, our algorithm acts sub-optimally for only
a polynomial number of time steps.

Although our algorithm was primary designed for Discrete
prior, Theorem 2 can be applied to many prior distributions.
We apply it to two simple special classes, which we can
provide concrete sample complexity bound. First, we show
that in the case of independent Dirichlet prior, the reward
bonus monotonically decreases and the sample complexity
of a (s, a) pair can be bounded by a polynomial function.
This case also satisfies Assumption 1.

Lemma 1 (Independent Dirichlet Prior): Let n(s, a) be
the number of times (s, a) has been visited. For a known
reward function and an independent Dirichlet prior over
the transition dynamics for each (s, a) pair, RB(b, s, a)
monotonically decreases at the rate of O

(
1/n(s, a)

)
, and the

sample complexity function f(b0, s, a, κ, β) = O
( |S|2|A|
κ(1−γ)2

)
.

The strength of our algorithm lies in its ability to handle
Discrete prior. We use a very simple example (Discrete prior
over unknown deterministic MDPs) to show this advantage,
and we state it in the following lemma. The intuition behind
this lemma is quite simple, after sampling a state action pair,
the agent will know its effect without noise.

Lemma 2 (Discrete prior over Deterministic MDPs): Let
b0 be a Discrete prior over deterministic MDPs, the sample
complexity function f(b0, s, a, κ, β) ≤ 1.

B. Proof of Theorem 2

The key intuition for us to prove our algorithm quickly
achieves near-optimality is that at each time step our algo-
rithm is ε-optimistic with respect to the Bayesian policy, and
the value of optimism decays to zero given enough samples.

The proof for Theorem 2 follows the standard argu-
ments from previous PAC-MDP results. We first show that
V At(bt, st) is close to the value of acting according to
the optimal Bayesian policy, assuming the probability of
escaping the known state-action set is small. Then we use
the Hoeffding bound to show that this “escaping probability”
can be large only for a polynomial number of time steps.

We begin our proof with the following lemmas. Our first
lemma essentially says that if we solve the internal reward
MDP using the current mean of belief state with an additional
exploration bonus in Definition 1, this will lead to a value
function which is ε-optimistic to the Bayesian policy.

Lemma 3 (Optimistic): Let Ṽ ∗(b, s) be the value function
in our algorithm, V ∗(b, s) be the value function in Bayesian
policy. if β = O

( |S|2|A|
(1−γ)2

)
, then ∀s, Ṽ ∗(b, s) ≥ V ∗(b, s)− ε.

The following definition is a generalization of the “known
state-action MDP” in [27] to Bayesian settings. It is an MDP
whose dynamics (transition function and reward function) are
equal to the mean MDP for (s, a) pairs in K (known set).
For other (s, a) pairs, the value of taking those (s, a) pairs
in MK is equal to the current Q̃ value estimate.

Definition 3: Given current belief is b, a set of Q̃ value
estimate for each (s, a) pair, i.e., Q̃(b, s, a) = R̃(b, s, a) +

γ
∑
s′
T (b, s, a, s′)Ṽ ∗(b, s′), and a set K of known (s, a) pairs,

i.e., RB(b, s, a) < ε(1 − γ). We define the known state-
action MDP, MK = (S ∪ {s0}, A, TK , RK , γ), as follows.
s0 is an additional state, under all actions from s0 the agent
returned to s0 with probability 1 and received reward 0. For
all (s, a) ∈ K, RK(s, a) = R(b, s, a) and TK(s, a, s′) =
T (b, s, a, s′). For all (s, a) /∈ K, RK(s, a) = Q̃(b, s, a) and
TK(s, a, s0) = 1.

Our final lemma shows that the internal reward MDP and
the known state-action MDP have low error in the set of
known (s, a) pairs.

Lemma 4 (Accuracy): Fix the history to the time step t,
let bt be the belief, st be the state, Kt be the set of known
(s, a) pairs, MKt be the known state-action MDP, πt be
the greedy policy with respect to current belief bt, i.e., πt =
arg maxa Q̃(bt, s, a). Then Ṽ πt(bt, st)− V πt

MKt
(bt, st) ≤ ε.

Now, we are ready to prove Theorem 2.
Proof: [Proof of Theorem 2] Let bt, st,Kt,MKt , πt be

as described in Lemma 4. Let T = 1/(1−γ) ln(1/ε(1−γ)),
then |V πt

MKt
(bt, st, T ) − V πt

MKt
(bt, st)| ≤ ε (see Lemma 2

of [9]). Let AK denote the event that, a (s, a) pair not in Kt

is generated when executing At starting from st for T time
steps. We have

V At(bt, st, T ) ≥ V πt

MKt
(bt, st, T )− P (AK)/(1− γ)2

≥ V πt

MKt
(bt, st)− ε− P (AK)/(1− γ)2

≥ Ṽ πt(bt, st)− 2ε− P (AK)/(1− γ)2

≥ V ∗(bt, st)− 3ε− P (AK)/(1− γ)2

The first inequality follows from the fact that At equals
to πt unless AK occurs, and Q̃(b, s, a) can be bounded by
1/(1−γ)2 since we can limit the reward bonus to 1/(1−γ)
and still maintain optimism. The second inequality follows
from the definition of T above, the third inequality follows
from Lemma 4, the last inequality follows from Lemma 3
and the fact that πt is precisely the optimal policy for the in-
ternal reward MDP at time t. Now, suppose P (AK) < ε(1−
γ)2, we have V At(bt, st) ≥ V At(bt, st, T ) ≥ V ∗(bt, st)−4ε.
Otherwise, if P (AK) ≥ ε(1− γ)2, by Hoeffding inequality,

this will happen no more than Õ

(∑
s,a
ζ(s, a)T/ε(1 − γ)2)

)
time steps with probability 1 − δ, where Õ (.) notation
suppresses logarithmic factors.

V. EXPERIMENTS

To evaluate our algorithm experimentally, we compare it
with several state of the art algorithms in POMDP literature.
POMCP [22] and DESPOT [24] are two successful online
POMDP planners which can scale to very large POMDPs.
QMDP [28] is a myopic offline solver being widely used
for its efficiency. SARSOP [13] is a state of the art offline
POMDP solver which helps to calibrate the best performance
achievable for POMDPs of moderate size. Mean MDP is
a common myopic approximation of Bayesian planning,
which does not do exploration. For SARSOP, POMCP and
DESPOT, we used the software provided by the authors,



with a slight modification on POMCP to make it strictly
follow 1-second time limit for planning. For our algorithm
and Mean MDP, a MDP needs to be solved each step. We
use an online MDP solver UCT [10] with similar parameter
settings used in POMCP. The reward bonus scalar β used by
our algorithm is typically much smaller than the one required
by Theorem 2, which is a common trend for internal reward
algorithms. We tuned β offline before using it for planning.

We first apply the algorithms on two benchmarks prob-
lems in POMDP literature, in which we demonstrate the
scaling up ability of our algorithm on larger POMDPs. In
Rocksample(n, k) [23], a robot moving in an n × n grid
which contains k rocks, each of which may be good or
bad with probability 0.5 initially. At each step, the robot
can move to an adjacent cell, or sense a rock. The robot
can only sample the rock when it is in the grid which
contains a rock. Sample a rock gives a reward of +10 if the
rock is good and −10 otherwise. Move or Sample will not
produce observation. Sensing produces an observation in set
O = {Good,Bad} with accuracy decreasing exponentially
as the robot’s distance to the rock increases. The robot
reaches the terminal state when it passes the east edge of
the map. The discount factor is 0.95. The hidden parameter
is the property of rock and it remains constant, thus this
problem can be modeled as POMDP-lite.

In Battleship(n, k) [22], k ships are placed at random
into a n× n grid, subject to the constraint that no ship may
be placed adjacent or diagonally adjacent to another ship.
Each ship has a different size of (k+ 1)× 1, k× 1, ..., 2× 1.
The goal is to find and sink all ships. Initially, the agent does
not know the configuration of the ships. Each step, the agent
can fire upon one cell of the grid, and receives observation
1 if a ship was hit, otherwise it will receive observation 0.
There is a −1 reward per step, and a terminal reward of n×n
for hitting every cell of every ship. It is illegal to fire twice on
the same cell. The discount factor is 1. The hidden parameter
is the configuration of ships, which remains constant, thus
this problem can also be modeled as POMDP-lite.

The results for Rocksample and Battleship are shown
in Table I. All algorithms, except for QMDP and SARSOP
(offline algorithms), run in real time with 1 second per
step. The result for SARSOP was replicated from [15],
other results are from our own test and were averaged over
1000 runs. “−” means the problem size is too large for
the algorithm. RS is short for Rocksample, BS is short
for Battleship. As we can see from Table I, our algorithm
achieves similar performance with the state of the art offline
solvers when the problem size is small. However, when the
size of problem increases, offline solvers start to fail and our
algorithm outperforms other online algorithms.

Finally, we show a robot arm grasping task, which is
originated from Amazon Picking Challenge. A V-REP [18]
simulation view is shown in Fig. 3a. The goal of the robot
arm is to grasp the cup out of the shelf quickly and robustly.
The robot knows its configuration exactly and its movement
is deterministic. However, due to sensor limitations, the

initial position of the cup is uncertain. The gripper has
a tactile sensor inside each finger, which gives positive
readings when the inner part of the finger gets in touch
with the cup. The robot needs to move around to localize
the cup, and grasp it as soon as possible. Usually, this can
be modeled as a POMDP problem. However, if we model
it as a POMDP-lite, our algorithm can achieve much better
performance compared with solving it as a POMDP. Now,
we introduce our planning model for this task. We restrict the
movement of the gripper in a 2D plane, as shown in Fig. 3b.
We divide the 2D plane into 3 regions relative to the gripper.
If the cup is in region 0, the gripper can get in touch with
the cup by moving along x-axis or y-axis. If the cup is in
region 1, the gripper can get in touch with the cup by moving
along the y-axis. If the cup is in region 2, the gripper can not
sense the cup by moving in a single direction. The gripper
can move along the x or y axis with step size of 0.01. The
reward for each movement is −1 in region 0, −2 in region 1
and −5 in region 2. The gripper can close or open its fingers,
with reward of −10. Picking the cup gives a reward of 100
if the pick is successful and −100 otherwise.

We compare our algorithm with POMCP, DESPOT, and
Mean MDP, since QMDP and SARSOP do not support
continuous state space. All algorithm are tested via model
evaluation and V-REP simulation. Model evaluation means
we use the planning model to examine the policy. V-REP
simulation means we compute the best action using the
planning model, then execute it in V-REP simulation. The
next state and observation are obtained from V-REP. The
results for model evaluation and V-REP simulation are re-
ported in Table II. The time used for online planning of all
algorithms is 1 second per step. We run 1000 trials for model
evaluation and 100 trials for V-REP simulation. As we can
see, our algorithm achieves higher return and success rate in
both settings compared with other algorithms.

VI. CONCLUSION

We have introduced POMDP-lite, a subclass of POMDP
with hidden variables that are either static or change de-
terministically. A POMDP-lite is equivalent to a set of
MDPs indexed by a hidden parameter. By exploiting this
equivalence, we have developed a simple online algorithm for
POMDP-lite through model-based Bayesian reinforcement
learning. Preliminary experiments suggest that the algorithm
outperforms state-of-the-art general-purpose POMDP solvers
on very large POMDP-lite models, makes it a promising tool
for large-scale robot planning under uncertainty.

Currently, we are implementing and experimenting with
the algorithm on a Kinova Mico robot for object manipula-
tion. It is interesting and important to investigate extensions
that handle large observation and action spaces.
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PROOFS

A. Proof of Lemma 1

Proof: Let α0 denote n(s, a), and let αi denote
n(s, a, si). According the definition of the Dirichlet distri-
bution, P (sj |b, s, a) =

αj

α0
. The reward bonus term can be

described as

RB(b, s, a)

β
=
∑
sj∈S
|P (sj |b′, s, a)− P (sj |b, s, a)|

= E
sk

[ ∑
sj 6=sk

(αj
α0
− αj
α0 + 1

)
+
(αk + 1

α0 + 1
− αk
α0

)]
= P (sk|b, s, a)

( ∑
sj 6=sk

αj
α0 + α2

0

+
α0 − αk
α0 + α2

0

)
≤
∑
sj

αj
α0 + α2

0

+
α0

α0 + α2
0

=
2

1 + α0

As for the sample complexity, if RB(b, s, a) < κ, we have

RB(b, s, a) ≤ 2β

1 + α0
≤ κ⇒ α0 = O

(β
κ

)
= O

( |S|2|A|
κ(1− γ)2

)

B. Proof of Lemma 3

We first introduce some notations which will be used
in the proof. Denote a T step history as hT =
{b0, s0, a0, b1, s1, a1, ..., bT , sT }, where bt and st is the
belief and state at time step t. The following is a definition
of L1 divergence on reward function and transition function.

Definition 4: Denote R as the set of mean reward func-
tion, T as the set of mean transition function. i.e., given
belief b, R(b) = {R(b, s, a)|s ∈ S, a ∈ A}, T(b) =
{T (b, s, a, s′)|s, s′ ∈ S, a ∈ A}. Suppose the belief changes
from bi to bj , the L1 divergence of R and T are denoted as:

R(bi, bj) = ‖R(bj)− R(bi)‖1 =
∑
s,a

∣∣R(bj , s, a)−R(bi, s, a)
∣∣

T(bi, bj) = ‖T(bj)− T(bi)‖1
=
∑
s,a

∑
s′

∣∣T (bj , s, a, s
′)− T (bi, s, a, s

′)
∣∣

Based on Definition 4, we introduce the regret of a T step
history if the belief is not updated each step.

Definition 5: Given a T step history hT , if the belief
is not updated, the regret of the ith action is defined as
E(b0, i) = R(b0, bi) + 1

1−γT(b0, bi). Define RE(b0, T ) =
T∑
i=0

γiE(b0, i, π) as the total regret of the history.

The following definition measures the extra value from
reward bonus term when we are using internal reward.

Definition 6: Given a policy T step history hT , the reward
bonus for the ith action is B(b0, i) = RB(b0, si, ai). Define

RB(b0, T ) =
T∑
i=0

γiB(b0, i) as the total extra value from

reward bonus.
In the next lemma, we are going to bound the regret using

the extra value from reward bonus.

Lemma 5: Given a T step history hT , letRE(b0, T ) be the
regret of not updating the belief, as defined in Definition 5.
Let RB(b0, T ) be the extra value from reward bonus term,
as defined in Definition 6. If the constant tunning factor
of reward bonus β = O

( |S|2|A|T
(1−γ)

)
, then RB(b0, T ) ≥

RE(b0, T ).
Proof: We begin the proof by showing that the L1

divergence of the reward function is bounded by the reward
bonus if β was chosen properly.

R(b0, bi) =
∑
s,a

∣∣R(bi, s, a)−R(b0, s, a)
∣∣

=
∑
s,a

∣∣∑
θi∈Θ

R(θi, s, a)(bi(θi)− b0(θi))
∣∣

≤
∑
s,a

∑
θi∈Θ

|bi(θi)− b0(θi)|

= |S||A|‖bi − b0‖1 ≤ |S||A|
i−1∑
l=0

‖bl+1 − bl‖1

=
|S||A|
β

i−1∑
l=0

RB(bl, sl, al)

≤ |S||A|
β

i−1∑
l=0

RB(b0, sl, al)

=
|S||A|
β

i−1∑
l=0

B(b0, l)

The first inequality above follows from the fact that
R(θi, s, a) is bounded in [0, 1], and triangle inequality. The
second inequality also follows from triangle inequality, i.e.,
‖bsi − b0‖1 ≤ ‖bsi − bsi−1

‖1 + ...+ ‖bs1 − b0‖1. The third
inequality follows from our monotonicity assumption on the
reward bonus: RB(bl, sl, al) ≤ RB(b0, sl, al).

Similarly, we can show that the L1 divergence of the
transition function is bounded by the reward bonus.

T(b0, bsi) ≤
|S|2|A|
β

i−1∑
l=0

B(b0, l)

Finally, we are going to show that the total regret
RE(b0, T ) of hT can be bounded by the extra value from
reward bonus RB(b0, T ):

RE(b0, T ) =

T∑
i=0

γiE(b0, i)

=

T∑
i=0

γi
(
R(b0, bi) +

1

1− γ
T(b0, bi)

)

≤ O
(
|S|2|A|
β(1− γ)

) T∑
i=0

γi
(i−1∑
l=0

B(b0, l)

)

≤ O
(
|S|2|A|T
β(1− γ)

) T∑
i=0

γiB(b0, i) = RB(b0, i)



The first inequality above follows from the fact that the L1

divergence of reward function and transition is bounded by
the reward bonus for some value of β. The second inequality

follows
T∑
i=0

γi
(
i−1∑
l=0

B(b0, l)

)
≤

T−1∑
i=0

γi(T − i)B(b0, i) ≤

T
T∑
i=0

γiB(b0, i).

Now, we are ready to prove Lemma 3.
Proof: [Proof of Lemma 3] Let T = 1/(1 −

γ) ln(1/ε(1−γ)), then |V ∗(b0, s0, T )−V ∗(b0, s0)| ≤ ε (see
Lemma 2 of [9]), where b0 and s0 is the initial belief and
state. Consider some state s, let bt be the new belief formed
by updating b0 after t ≤ T steps, then

RB(b0, t− 1)−RE(b0, t− 1)+

Ṽ ∗T−t(b0, s)− V ∗T−t(bt, s)
= RB(b0, t− 1)−RE(b0, t− 1)+

max
a

{
R(b0, s, a) +RB(b0, s, a)+∑

s′

P (s′|b0, s, a)Ṽ ∗T−t−1(b, s′)

}
−

max
a

{
R(bt, s, a) +

∑
s′

P (s′|bt, s, a)Ṽ ∗T−t−1(bt+1, s
′)

}
≥ RB(b0, t− 1)−RE(b0, t− 1)+

min
a

{
RB(b0, s, a)−

(
R(bt, s, a

)
−R(b0, s, a))+∑

s′

P (s′|b0, s, a)Ṽ ∗T−t−1(b0, s
′)−

∑
s′

P (s′|bt, s, a)Ṽ ∗T−t−1(bt+1, s
′)

}
≥ RB(b0, t− 1)−RE(b0, t− 1)+

min
a

{
RB(b0, s, a)−

(
R(bt, s, a

)
−R(b0, s, a))−

T
∑
s′

|P (s|bt, s, a)− P (s′|b0, s, a)|+

∑
s′

P (s′|b0, s, a)
(
Ṽ ∗T−t−1(b, s′)− Ṽ ∗T−t−1(bt+1, s

′)
)}

≥ RB(b0, t)−RE(b0, t)+

min
a

{∑
s′

P (s′|b0, s, a)
(
Ṽ ∗T−t−1(b, s′)− Ṽ ∗T−t−1(bt+1, s

′)

}
≥ RB(b0, t)−RE(b0, t)+

min
s

{
Ṽ ∗T−t−1(b, s)− Ṽ ∗T−t−1(bt+1, s)

}
(3)

The first inequality transformation in Equation 3 follows:

max
x
f(x)−max

x
g(x) ≥ min

x

(
f(x)− g(x)

)
The second inequality transformation in Equation 3 fol-

lows:∑
x

p(x)f(x)−
∑
x

q(x)g(x)

≥
∑
x

p(x)(f(x)− g(x))−
∑
x

|q(x)− p(x)|g(x)

The third inequality transformation in Equation 3 follows
the definition of RB and RE .

Since s is arbitrary in Equation 3, we have for any history
hT and t ≤ T ,

RB(b0, t− 1)−RE(b0, t− 1)+

Ṽ ∗T−t(b0, s)− V ∗T−t(bt, s)
≥ RB(b0, t)−RE(b0, t)+

min
s

{
Ṽ ∗T−t−1(b, s)− Ṽ ∗T−t−1(bt+1, s)

} (4)

Where RB(b0, t) = 0,RE(b0, t) = 0 if t ≤ 0.
Apply Equation 4 repeatedly for T steps, we get

Ṽ ∗T (b0, s)− V ∗T (b0, s)

≥ RB(b0, T )−RE(b0, T )+

min
s

{
Ṽ ∗T−T (b, s)− Ṽ ∗T−T (bT+1, s)

}
≥ 0

The second inequality above follows Lemma 5 then we
have Ṽ ∗(b0, s) ≥ Ṽ ∗T (b0, s) ≥ V ∗T (b0, s) ≥ V ∗(b0, s) − ε,
which proves our lemma.

C. Proof of Lemma 4

Proof: Consider the sequence of states, actions
by following πt at state st and belief bt, pt =
st, at, s

1
t , a

1
t , ..., s

m
t , a

m
t . Suppose (skt , a

k
t ) is the first state

action pair not in K is generated. We have Ṽ π(bt, st) =
k−1∑
i=0

γiR̃(bt, s
i
t, a

i
t) + γkQ̃(bt, s

k
t , a

k
t ) and V πMKt

(bt, st) =

k−1∑
i=0

γiR(bt, s
i
t, a

i
t) + γkQ̃(bt, s

k
t , a

k
t ). Then, Ṽ π(bt, st) −

V πMKt
(bt, st) ≤

k−1∑
i=0

γiε(1− γ) ≤ ε.
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