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compare the connectivity of the roadmap to that of F.
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1.1 INTRODUCTION

The path planning problem can be formulated as follows:

Given:

® A geometric and kinematic model of a rigid or articulated object,
called the robot,

] A geometric model of the obstaclesin the physical space where the
robot operates,

Find a path, i.e., a continuous sequence of collision-free configurations
(i.e., physical placements) of the robot, connecting two arbitrary input
configurations ¢, and gqe, called the query configurations, whenever such
a path exists; otherwise indicate that no such path exists.

In this definition, a “robot” can be almost any type of moving object, e.g., a
robot manipulator, a digital actor, a surgical instrument, or a flexible molecule.
Similarly, an “obstacle” can be any sort of forbidden region, e.g., a hard object
that a robot arm should not hit, a muddy terrain that a mobile robot should
not traverse, or a critical tissue structure that a surgical instrument should not
cut.

A classical way to look at the above path-planning problem is to represent a
robot’s configuration by n independent parameters, one for each of the robot’s
degrees of freedom (dofs). Thus, each configuration is a point in an n-D param-
eter space C, called the robot’s configuration space. The obstacles map into C
as regions whose complement F' is referred to as the free space. A solution path
is a continuous curve segment in F' connecting the two query configurations g
and ¢.. Such a path exists if and only if ¢, and g, lie in the same component
of F.

Path planning is a provably hard computational problem [31]. There is
strong evidence that solving it requires exponential time in the dimension n of
C. This result still holds for specific robots such as planar linkages consisting of
links serially connected by revolute joints [16] and sets of rectangles executing
axis-parallel translations in a rectangular workspace [10, 11]. Though general
and complete algorithms have been proposed [6, 33], their high complexity
precludes any useful application.

The dimension of C beyond which existing complete algorithms become prac-
tically useless is low, somewhere between 3 and 5. This means that they cannot
be applied to rigid objects translating and rotating in 3-D workspaces, nor to
6-dof robot manipulators, two important cases in practice. On the other hand,
applications tend to involve more degrees of freedom than ever before. For
example, manufacturing workcells (e.g., welding workeells for assembling car
bodies) involving several robot manipulators having more than 30 dofs in total
are no longer exceptions; by automatically computing collision-free trajectories,
a path planner would drastically reduce the cost of programming the manipu-
lators. In computer graphics, animation of synthetic actors to produce digital
movies or video games requires dealing with several dozen dofs; using a path
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planner may drastically reduce the number of input key frames. In molecular
biology, a path planner could compute plausible docking motions of candi-
date drug molecules modeled as spatial linkages with many torsional dofs and
help extracting promising leads from large databases of previously synthesized
molecules.

Recently, a general path-planning approach based on a parallelizable ran-
dom sampling scheme has emerged as a practical approach to compute paths
in high-dimensional configuration spaces. Because computing an explicit repre-
sentation of F' is prohibitive, this approach only uses the implicit representation
of F that is provided by a function dist(q), which computes the distance be-
tween the robot at configuration ¢ and the obstacles in the Euclidean space
R? or R3. This function admits several reasonably efficient implementations
(e.g., [8, 9, 15, 22, 23, 24, 27, 30]). The planner samples C at random. Using
dist, it retains the configurations in free space as milestones and, for every
pair of milestones, it checks that a simple path between them (usually, the
straight line segment in C) is collision-free. The result is a graph R called
a probabilistic roadmap. Given any pair of query configurations, the planner
tries to connect each query configuration to a milestone of R. It outputs a
path if it connects the two configurations to milestones in the same connected
component of R. A number of probabilistic roadmap planners (PRMs) have
been proposed [3, 4, 5, 14, 12, 17, 20, 29, 32]. None of them is complete in
the strongest sense, but most achieve some form of probabilistic completeness,
.e., 1f a path exists, the planner will find one with high probability after some
amount of computation. In fact, PRMs have been remarkably successful in
solving unusually difficult path-planning problems in high-dimensional config-
uration spaces. Moreover, the algorithms are easily parallelizable, though to
our knowledge this feature has not yet been significantly exploited.

Section 1.2 describes a “basic” PRM that performs a uniform random sam-
pling of the configuration space. Section 1.3 surveys more sophisticated sam-
pling strategies proposed in the literature. A “good” probabilistic roadmap is
one which provides adequate coverage of the free space, so that every query
configuration can easily be connected to it, and whose connectivity conforms
to that of the free space. In Sections 1.4 and 1.5 we formally analyze how large
a roadmap needs to be (i.e., how many milestones it should contain) in or-
der to achieve adequate coverage and connectivity with high probability. This
analysis shows that the probabilistic roadmap approach is efficient if the free
space satisfies geometric properties called e-goodness [19], expansiveness [14],
and path clearance [17, 18]. Under these assumptions, the free space does not
contain “narrow passages”. Dealing with such passages is the main remaining
issue in designing PRMs. In Section 1.6 we will briefly present ongoing efforts
addressing this issue.

This paper does not report on experimental results with implemented PRMs.
Such results have been presented in several previous papers, with robots hav-
ing from three to several dozen dofs. Complex practical applications of these
planners include maintenance planning for aircraft engines [7], design for man-



Figure 1.1 Car packaging model with 60,000 triangles [14]

ufacturing in the automotive industry [14], and graphic animation of human
characters [21]. Figure 1.1 displays the CAD model of a car packaging; the
path planner in [14] determines whether a subassembly designated by the user
can be extracted without removing other parts. Figure 1.2 shows several snap-
shots of a path computed by the planner in [21] for a digital actor; only the
configurations in the first and last snapshots where given to the planner.

1.2 BASIC PROBABILISTIC ROADMAP PLANNER

For simplification, we assume that the configuration space C is the Euclidean
hyper-cube [0,1]”. We say that two free configurations see each other if they
can be connected by a straight-line path in the free space F.

The basic PRM is a simplified version of the planner described in [20]. Tt con-
sists of two algorithms: roadmap, which precomputes a probabilistic roadmap,
and query, which uses this roadmap to answer path-planning queries. Each
query is defined by two configurations, g5 and ¢, in F.

1.2.1 Roadmap Construction
The procedure roadmap constructs a roadmap in two steps, as follows:
Procedure roadmap:

1. Pick s configurations uniformly at random in F. Call them mile-
stones and let M be the set of milestones.
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Figure 1.2 Animation of a digital actor [21]



2. Construct the graph R = (M, L) in which L consists of every pair
of milestones that see each other. Call R the roadmap.

The milestones are chosen at Step 1. The links between milestones are cre-
ated at Step 2. Recall that dist(g) is a procedure that computes the Euclidean
distance between the robot placed at ¢ and the obstacles. Step 1 generates
each milestone by picking successive configurations ¢ in [0, 1]”, until one sat-
isfies dist(q) > 0. Every q is obtained by choosing each of its coordinates
uniformly at random in [0, 1]. Step 2 checks the straight path between every
two milestones for collision, by recursively decomposing it into two half seg-
ments and invoking dist at each segment endpoint. One can show that if a
segment is short enough relative to the robot-obstacle distance computed at its
two endpoints, the whole segment is guaranteed to be collision-free [4].

1.2.2  Query Processing
The query-processing algorithm is the following:

Procedure query:
1. For i = {b, e} do:

(a) If there exists a milestone m that sees ¢; then m; < m,
(b) Else
i. Repeat t times
pick a configuration g in F uniformly at random in a neigh-
borhood of ¢;

until g sees both ¢; and a milestone m.

ii. If all ¢ trials failed then return FAILURE, else m; < m.

2. If mp and m. are in the same connected component of the roadmap,
then return a path connecting them, else return NO-PATH.

The procedure tries to connect each of the query configurations to a mile-
stone of the roadmap, either directly (Step 1(a)), or through an intermediate
configuration chosen in a neighborhood of the query configuration (Step 1(b)).
The implementation of Step 1 makes use of the function dist. Each free con-
figuration ¢ at Step 1(b)i is obtained by picking successive configurations at
random in a hyper-cube centered at ¢; until one is collision-free. The query
procedure returns NO-PATH if it connects the query configurations to two dis-
tinct components of the roadmap. This answer is correct whenever no two
components of the roadmap lie in the same component of F'. Moreover, the
procedure outputs FAILURE if it cannot connect a query configuration to some
milestone of the roadmap. Obviously, we would like the planner to rarely return
FAILURE or an incorrect answer.

1.2.3 Parallelization

Constructing a good roadmap can be time consuming; but, when this is done,
processing path-planning queries is very fast. Fortunately, the roadmap proce-
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dure is amenable to parallelism. In fact, we expect that it will scale well both
in shared memory and message passing architectures.

In a shared memory architecture with k processors, each processor can in-
dependently generate s/k milestones. Connections among these milestones can
also be computed independently. Since we can roughly estimate the workload
of each processor by counting the number of connections that are attempted
by the processor, we can decide the assignment of tasks to processors off-line.
A better load balancing scheme may be obtained by maintaining one or more
queues with the connections that need to be checked and having the processors
request tasks from that queue(s). Note that the selection and connections of
milestones requires no interprocessor communication. However, some interpro-
cessor communication is needed to compute the connected components of the
resulting roadmap. The latter problem is well studied in the parallel processing
literature and a discussion can be found in [1]. We simply note here that the
computation of the roadmap components is far less expensive than the compu-
tation of the connections among the milestones and cannot significantly affect
the overall scaling of our approach.

As far as message passing architectures are concerned, several schemes are
possible. For example, each processor can generate s/k milestones and inter-
connect them locally. To minimize interprocessor communication, processors
can periodically exchange a percentage of their nodes (milestones). When a
processor learns about new nodes, it adds them to its roadmap, and attempts
connections with the already existing nodes. The amount of data that needs
to be communicated in this way is small compared to the size of the roadmaps
built by the processors. Furthermore, our profiling in the uniprocessor case
has shown that the computation of connections between milestones dominates
running time. We thus expect that the time spent on communication among
the processors will be a very small percentage of the overall running time. By
communicating data during roadmap construction, we increase the probabil-
ity that when the individual roadmaps are merged, the connectivity of the
resulting roadmap will be the same as if the roadmap were generated by a
single-processor machine.

1.3 OTHER SAMPLING STRATEGIES

The sampling strategy embedded in roadmap is extremely simple. As one would
expect, more sophisticated sampling strategies have been proposed in the litera-
ture. The goal of most of them is to capture F’s connectivity with the smallest
possible roadmap, by performing a non-uniform sampling of the free space.
Some strategies also attempt to avoid the relatively expensive precomputation
of a roadmap, which is particularly desirable when only a few path-planning
queries are to be made in the same free space. We review some of these strate-
gies below.

Several papers describe PRMs that construct a roadmap in two stages. The
first stage (similar to the above roadmap procedure) attempts to capture the
connectivity of a free space F' using no a priori knowledge, while the second
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stage adds milestones in subsets of F' chosen on the basis of the information
revealed by the first stage. In [17] the second stage consists of adding new
milestones in the neighborhoods of milestones that have been picked in the
first stage and that see no or few other milestones. Several similar heuristics
are discussed in [20]. Milestones poorly connected to other milestones at the
end of the first stage tend to lie in “difficult” regions of the free space, and
experiments reported in [17, 20] show that adding a resampling stage to the
strategy is very effective at improving roadmap connectedness. In [13] the
first stage computes a roadmap R’ in a space F' obtained by dilating F'. The
second stage “pushes” the links of R’ that do not fully lie in F into F, by adding
new milestones around those links. By first widening the narrow passages in
F, this strategy allows the planner to find paths through such passages more
efficiently than a single-step strategy. Another multi-stage strategy is proposed
in [2] which allows milestones to be connected by multiple types of paths.

“Difficult” regions of the free space tend to lie close to F'’s boundary. For
that reason, a number of papers propose sampling strategies that are directly
aimed at generating a greater density of milestones near the boundary of the
free space. In [3], when a configuration ¢ is generated outside F', a number of
rays are shot from ¢ along random directions uniformly distributed in C. For
each ray, a binary search is used to identify a point near the boundary of F.
In [28] a single ray is shot from ¢ along a random direction; the procedure then
simulates a walk of the robot along this direction, until it is in free space. In [12]
new milestones are created near F’s boundary to connect roadmap components
that could not be connected by straight paths. A ray is shot from a milestone
in one component along a direction picked at random. Using a technique sim-
ilar to [28], a milestone is created where this ray encounters the free space
boundary, and the ray is reflected in a random direction at this point to find
another boundary point. All three references listed above observe that adding
milestones near the free space boundary improves the planners’ performance.
The two-step strategy in [13] also produces milestone distributions that are
denser near the free space boundary.

Precomputing a roadmap is advantageous when multiple path-planning
queries are made in the same free space. To deal with single-query cases,
some planners build a new roadmap for each new query. Knowing the query
configurations ¢, and ¢, allows these planners to only sample the connected
components of F' that contain these configurations. The planner in [14] gener-
ates clouds of milestones picked at random in small neighborhoods of previously
generated milestones, expanding from the two query configurations, until two
clouds meet (bi-directional search). The planner in [5] uses a partially random
sampling uni-directional strategy. Starting at ¢, it deterministically follows the
steepest descent of a heuristic potential field U defined over € until it reaches
a minimum of the potential. If this minimum is the goal (U is defined such
that it has a global minimum at ¢.), the planner stops; otherwise it tries to
escape the basin of attraction of the local minimum by performing a series of
random walks. Using a heuristic potential field allows the planner to solve some
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very difficult problems efficiently. But, to be practically useful, the function U
must be fast to compute; all known such functions U have pathological cases
in which the planner behaves poorly.

The following two sections give a formal analysis of the performance of the
procedures roadmap and query. A similar analysis for more complex strategies,
such as those surveyed above, would be considerably more difficult. However, a
noticeable attempt has been made in [19] to formally explain the improvements
obtained with the two-stage strategies proposed in [17, 20].

1.4 ROADMAP COVERAGE

A first desirable property for a probabilistic roadmap is that it provides ad-
equate coverage of the free space F. This means that the milestones should
collectively see a large portion of F'| so that any query configuration can easily
be connected to one of them. Note that Step 1(b) of query allows for the case
where a query configuration does not see any milestone. Indeed, it would be
unrealistic to expect that a probabilistic roadmap provides complete coverage
of F'; in general, the probability of picking a new milestone that sees a portion
of F' not seen by previous milestones decreases and tends toward zero as the
number of milestones grows.

In this section we establish that the milestones chosen by roadmap see a large
portion of F' with high probability if every point in F sees a significant portion
of F' (a property that we call e-goodness). We also state that when the roadmap
achieves adequate coverage of the free space, query efficiently connects query
configurations to the roadmap.

For any subset S C C, we let p(S) denote its volume. For any ¢ € F, V(q)
denotes the set of all free configurations seen by ¢; we call it the wvisibility set
of q.

Definition 1. Let € be a constant in (0,1]. A free configuration q is e-good if
u(V(q)) > eu(F). The free space is e-good if every ¢ € F is e-good.

There exist spaces that are not e-good. Consider, for example, the simple
2-D free space shown in Figure 1.3. Every point ¢ in this free space is e-good
for some € € (0, 1] that depends on ¢g. However, as q tends toward the tangency
point T', ¢ — 0. Hence, F is not e-good. But any subset of F' obtained by
removing a small neighborhood of T is e-good. More generally, the non-e-
goodness of F' may be caused by the fact that two hyper-surfaces bounding ¥
are tangent. In most cases, one can render the free space e-good by removing
small subsets of it.

Definition 2. A set of milestones provides adequate coverage of an e-good free
space F' if the volume of the subset of F' not visible from any of these milestones
is at most (e/2)pu(F).

Note that, as € increases, the coverage requirement grows weaker, i.e., the
portion of F' that has to be visible by at least one milestone gets smaller. This
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T

Figure 1.3 A free space that is not e-good

comes from the fact that a greater ¢ will make it easier for query to connect
query configurations to the roadmap. Naturally, the number of milestones
needed becomes smaller.

Theorem 1. Assume that F is e-good. Let ¢ be a constant in (0,1] and K be a
positive real large enough that for any x € (0,1], (1 — )(K/2)108(2/2¢) < 24 /2.
If s 1s chosen such that:
K2
S8 €’
then roadmap generates a set of milestones that adequately covers F', with prob-
ability at least 1 — ¢.

The proof of this theorem was established in [4, 19]. We reproduce it in
Appendix A.

Theorem 1 does not allow us to compute s since we do not know the value
of €, except for simple spaces. Nevertheless, its significance is twofold. First, it
tells us that although adequate coverage of the free space is not guaranteed, the
probability that the milestones picked by roadmap does not cover F' adequately
decreases exponentially with the number of milestones. Second, the number of
milestones needed increases moderately when e decreases. Though it does not
account for all aspects of the computation of a roadmap, s characterizes well
the amount of work done by roadmap.

It now remains to establish that adequate coverage allows query to connect
any query configuration to the roadmap, with high probability.

Theorem 2. Let the mazimum number of iterations t at Step 1(b)i of query
be set to log(2/v), where ¥ is a constant in (0, 1]. If the milestones adequately
cover F, then the probability that query outputs FAILURE s at most . The
ezxpected number of iterations is at most 2.

In other words, the failure probability of query decreases exponentially with
the number ¢ of iterations at Step 1(b)i. The proof of this theorem was es-
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Figure 1.4 A narrow passage in an e-good space

tablished in [19] and is reproduced in Appendix B. This proof assumes that
Step 1(b)i of query samples the visibility set V(¢;) of ¢; to find a configuration
q that sees both ¢; and a milestone m. Since V(g;) is unknown, any implemen-
tation of query is only an approximation of the algorithm to which Theorem 2
applies strictly.

The concept of e-goodness has been extended in [19] by including multi-link
paths in the definition of the mutual visibility of two milestones. This extension
makes 1t possible to formally explain the improvements empirically observed
with the two-stage sampling strategies of [17, 20]. However, e-goodness and its
extension are still too weak to guarantee that roadmap will construct a roadmap
whose connectivity represents that of the free space. For example, the free space
of Figure 1.4 is e-good for € & 0.5. But a roadmap of moderate size constructed
by roadmap will most likely consist of two connected components. In [19] we
dealt with this issue by allowing roadmap to invoke a complete planner to try
to connect the components of a roadmap. However, running such a planner
can be totally impractical. In [14] we eliminated its need by introducing the
notion of an expansive free space.

1.5 ROADMAP CONNECTEDNESS

1.5.1 Expansive Free Space

Let us now define precisely the kind of roadmap we would like roadmap to
construct.

Definition 3. Let F' be an e-good free space. A roadmap R is an adequate
representation of F' if its milestones provide adequate coverage of F' and no two
components of R lie in the same component of F.

Let R be an adequate representation of F'. Since F' is e-good, no component
of F' has volume less than eu(F). Therefore, at least one milestone of R lies in
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every component of F'. Since no two components of R lie in the same component
of F, there is a one-to-one correspondence between the components of R and
those of F.

The notion of an expansive free space is directly related to the difficulty
that roadmap has to connect milestones through narrow passages. The reason
why 1t would require considerable time for this procedure to build a connected
roadmap in the free space of Figure 1.4 is that a very small subset of points in
F1 (the half space on the left) see a large fraction of Fs (the half space on the
right); therefore, the probability that the planner picks a milestone in Fj that
sees a milestone in Fy is small. By narrowing the passage between F; and Fy,
one can make this probability arbitrarily small. Let us refer to the subset of
points in a subset S C F that can see a large portion of F\S as the lookout of
S. If it is large enough, it is easy to connect any point in S to points outside
S by picking points at random in S and F\S.

Definition 4. Let § be a constant in (0, 1] and S be any subset of any connected
component E of the free space F. The (-lookout of S is the set:

B-LookouT(S) = {g € Slu(V(g)\S) > Bu(E\S)}.

Definition 5. Let ¢, o, and § be constants in (0,1]. The free space F is
(e, o, B)-expansive if it is e-good and, for every connected subset S that is a
finite union of visibility sets, we have:

p(B-Lrookout(S)) > ap(S).

For simplification, we will abbreviate the term “(e, a, §)-expansive” by “ex-
pansive”.

The following comments may help apprehend the notion of expansiveness:

- In an expansive space, € is uniquely defined, while a and  may take several
values. For example, in Figure 1.4, the lookout of F; depends on the value of
B. In general, a can only decrease as [ increases. A natural choice for g is
the one that yields the smallest bound on the number of milestones given by
Theorem 3 stated below.

- There 1s no general relation between the order of magnitude of ¢ and that
of @ and 3. For instance, € 1s large in the free space of Figure 1.4, but a or /3 is
small. Instead, in Figure 1.5, € is small, but o and g are large. To see this, pick
a point p in the narrow corridor (bottom left of the free space). The volume
of V(p) is small relative to that of F, hence ¢ is small. But a large fraction of
V(p) sees a large portion of F', hence o and f are both large.

Theorem 3. Assume that F is (¢, a, B)-expansive. Let & be a constant in (0, 1].
If s s chosen such that:

S>EIO i—i—g—}—?
e g€a§ Ié; '
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Figure 1.5 A free space with small ¢ and large o and (3

W W W

Figure 1.6 An (¢, a, 3)-expansive free space where €, a, f ~ w/W

then with probability at least 1 — &, roadmap generates a roadmap such that no
two of its components lie in the same component of F.

The proof of this Theorem was established in [14] and is reproduced in
Appendix C.

Theorems 1 and 3 combined imply that with high probability, roadmap gen-
erates a roadmap that adequately represents F'. Theorem 3 tells us that the
probability that a roadmap does not capture F'’s connectivity decreases expo-
nentially with the number of milestones, and that the number of milestones
needed increases moderately when ¢, o, and [ decrease. One could be tempted
to use a Monte Carlo technique to estimate the values of ¢, @, and 8 in a given
free space, and hence obtain an estimate of the number of milestones needed
to get a roadmap that adequately represents F. But it seems that a reliable
estimation would take at least as much time as building the roadmap itself.

Remark: Note that none of Theorems 1, 2, or 3 explicitly mention the di-
mension n of the configuration space. This comes from the fact that both
e-goodness and expansiveness are visibility properties whose definitions only
refer to volumes of subsets of F'. But the dependence on n may be hidden in
the parameters ¢, a, and B. To illustrate this point, consider the example of
Figure 1.6. The free space consists of two squares whose sides have length W
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these cubes are connected by a rectangular narrow passage of length W and
width w, where w < W. Up to a constant factor, each of the parameters ¢, «,
and # is on the order of w/W. Indeed, the volume of F is W(2W + w) ~ 2W?2.
The points with the smallest e-goodness are located in the narrow passage.
Each such point sees only a subset of F' of volume approximately 3wW; hence,
e~ 3w/2W ~ w/W. A point near the top right corner of the left square sees
this entire square; but only a subset of this square, of approximate volume wW
contains points that, each, see a set of volume 2wW; hence, a &~ w/2W ~ w/W
and 8~ w/W. In the n-D version of this example, two hyper-cubes, each hav-
ing volume W™, are connected by a hyper-parallelepipedic passage that has
size w along k dimensions (k € [1,n — 1]) and size W along the n — k other
dimensions. Each of the parameters ¢, o, and (3 is on the order of (w/W)~.
The worst case happens when & = n — 1, that is, when the passage is narrow
along n — 1 dimensions.

1.5.2 Path Clearance Assumption

Another analysis of the basic PRM can be done by explicitly considering the
“width” of the passages in F [17, 18]. Let q and ¢’ be two configurations in
the same component of F' and 7 be a free path connecting them. Let £ be the
Euclidean length of 7 and ¢ be its distance to F’s boundary. We call ¢ the
clearance of the path.

Theorem 4. Let ¢ be a constant in (0, 1] and a be the constant 27" u(B1)/u(F)
where By denotes the unit ball in R™. If s is chosen such that:

20

s> og —,
ao™ gUC

then with probability at least 1 — ( roadmap generates a roadmap wn which one
component contains two milestones m and m’ such that q sees m and q' sees
m'.

The proof of this theorem was given in [18] and is reproduced in Appendix C.
Consistently with Theorem 3, it says that the probability that a roadmap fails
to provide a path through a narrow passage decreases exponentially with the
number of milestones. It also rightly suggests that the number of milestones
may increase as (2/0)". However, it is more conservative than Theorem 3. For
instance, in the n-D version of the example shown in Figure 1.6, 0 = w/2, even
if the passage is narrow along a single dimension. While Theorem 4 suggests
that the number of milestones increases as w™", Theorem 3 tells us that it
only increases as w™*, where k € [1,n — 1] is the number of dimensions along
which the passage is narrow. As another instance, consider the case where F
is punctured by many holes uniformly distributed in a region of C (Figure 1.7).
By increasing the number of holes and reducing their size, one can create many
narrow passages such that €, a, and § remain large while the clearance o of any
path connecting the left side of F' to its right side becomes arbitrarily small.
Theorem 3 then tells us that the basic PRM can easily deal with such passages.
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Figure 1.7 A space with small clearance, but large ¢, «, and

Note that a variant of the path-clearance assumption that may yield a slightly
tighter bound than Theorem 4 is the o-complexity assumption proposed in [32].

On the other hand, Theorem 4 may be more easier to exploit than Theorem 3.
For example, in many robotics applications, only those paths whose clearance is
greater than some predefined threshold can be reliably executed. This threshold
can then be used to effectively estimate the size s of the roadmap.

1.6 CURRENT AND FUTURE WORK

During the last few years a number of path planning algorithms based on the
construction of probabilistic roadmaps have been proposed and experimented
with great success. This paper has described a basic probabilistic roadmap
planner and has provided a formal analysis that explains its empirical success.

However, current probabilistic roadmap planners share the same relative
inability to efficiently find paths through narrow passages. This inability has
been experimentally observed, and it is formally explained by our results in
expansive free spaces. Current research aims at dealing efficiently with free
spaces that are poorly expansive.

The regions of F' responsible for its poor e-goodness and expansiveness nec-
essary lie near the boundary of F. Consistently with this observation, sev-
eral sampling strategies have been proposed which generate a greater density
of milestones near the boundary of the free space, and these strategies have
yielded empirically observed improvements. However, they are not sufficient to
deal with narrow passages. The main reason is that they tend to increase the
density of milestones everywhere near F'’s boundary, a space that still has high
dimension (n — 1). Hence, they do not significantly increase the odds of plac-
ing milestones in narrow passages, which are the regions where the milestone
distribution needs to be the densest.

The insights provided by the analysis of roadmap presented in this paper
have recently led us to design a new two-stage strategy [13]. The first stage
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Figure 1.8 Milestone distribution obtained with a dilatation strategy

generates a roadmap R’ in a dilated free space F’ obtained by allowing some
penetration distance of the robot into the obstacles [8, 24, 26, 27]. Dilating free
space tend to increase its expansiveness, with the narrow channels benefiting
much more than the already wide areas of the free space; hence, capturing the
connectivity of R’ is relatively easy. The second stage of the strategy “pushes”
R’ into the original free space F' by picking additional milestones around the
links of R’ that do not lie entirely in F'; hence, R’ is used as a guide in the second
stage to decide where to increase the density of the milestone distribution. The
result is a roadmap R in F' whose density increases near the boundary of F
and becomes maximal inside narrow passages. For example, Figure 1.8 shows a
milestone distribution obtained with this strategy in the simple 2-D free space
of Figure 1.6, with w/W = .001. The efficiency of the strategy still needs to be
empirically confirmed with experiments on realistic path-planning examples,
t.e., in high-dimensional and geometrically complex free spaces.

The simple sampling strategy of the procedure roadmap is easily paralleliz-
able and we expect that i1t will scale well both on shared memory and message
passing architectures. As more sophisticated sampling strategies are proposed
to handle free spaces that are (¢, a, 3)-expansive for small values of €, a, and
0, efficient parallelization will become less straightforward. However, as the
computation of connections between milestones will most likely continue to
dominate running time, we also expect that these strategies will scale well on
parallel architectures. So far, parallelization has not been significantly exploited
in PRMs. However, as more demanding applications of path-planning emerge,
e.g., in graphic animation, it 1s likely to become a key aspect of future PRMs.
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Appendix: A. Proof of Theorem 1

Theorem 1. Assume that F' is e-good. Let ¢ be a constant in ( , ] cmd K bea
positive real large enough that for any x € (0,1], (1 — z)(K/2)108(2/2¢) < 24 /2.
If s 1s chosen such that:

> g
S —O

then roadmap generates a set of milestones that adequately covers F', with prob-
ability at least 1 — ¢.

Proof: Let M denote the set of the s milestones picked at Step 1 of roadmap.
The volume H of points in F' not visible from any of these milestones is:

H=p({q€Flg&UnemV(m)}).

Its expected value is:

zﬂHr=/Ug%m¢umaﬂ4mn@

The e-goodness of F entails that the probability that any given configuration
is not visible from any of the s milestones is at most (1 — €)®. Thus:

BIH] < u(F)(1 = ¢)" < p(F)ed/2. (LA
Given a random variable X assuming only non-negative values, the Markov
inequality [25]:
Pr[X > z] < F[X]/z
holds for all z € R*. Using this inequality and the relation (1.A.1), we get:
Pr{H > (¢/2)u(F)] < 6.

Hence, with probability 1—¢, H is at most (¢/2)u(F), in which case M provides
adequate coverage of F. ||

Appendix: B. Proof of Theorem 2

Theorem 2. Let the mazimum number of iterations t at Step 1(b)i of query
be set to log(2/v), where i is a constant in (0, 1]. If the milestones adequately
cover F', then the probability that query outputs FAILURE s at most . The
ezxpected number of iterations is at most 2.

Proof: For any ¢ € F, the volume of the subset of V(g) visible from some
milestone is at least:

u(V(q)) = (/2)u(F) = (e/2)p(F).
Therefore, for either query configuration ¢; (i € {b,e}), the probability that
a random configuration chosen from V(g¢;) is not visible from any milestone
is at most 1/2. The probability that query fails to connect ¢; to a milestone
on log(2/4) trials at Step 1(b)i is thus less than /2. Since Stepl(b)i is per-
formed for both query configurations, the overall failure probability is at most
). Moreover, the expected number of executions of Step 1(b)i is at most 2. I
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Appendix: C. Proof of Theorem 3

Let F be an (e, o, §)-expansive free space. We begin by defining the linking
sequence of a point p € F"

Definition 6. The linking sequence of a point p € F is a sequence of points
Po = P,P1,P2, - .. and a sequence of sets Vo = V(po), V1, Va,... C F such that
forall i > 1, p; € p-LookouT(V;_1) and V; = Vi_1 UV (pi).

Since the sets Vp, Vi, Vs, ... are completely determined by the sequence
po, P1, P2, - - ., we will refer to just the sequence pg, p1,p2,... as a linking se-
quence for p.

We now establish two lemmas. Lemma 1 says that any set of milestones M
produced by roadmap is likely to contain a linking sequence of a given length
for any milestone in M. Lemma 2 says that the sets associated with a linking
sequence of this length span a large volume. The consequence is that the final
sets determined by long-enough linking sequences for any two milestones p and
q must intersect, since their volumes are large enough. In that case p and ¢
will be connected by a path.

Lemma 1. Let w = 1/ae. Given any milestone p € M, there exists a linking
sequence in M of length t for p with probability at least 1 — we=(s=t=1)/w,

Proof: Without loss of generality, let us assume that p(F) = 1. Let L; be the
event that there exists a linking sequence in M of length ¢ for pg = p and L;
be the event that there does not exist such a sequence.

PI’(ZZ) = PI‘(ZZ | Li—l) Pr(fi_l) —}-PI‘(IZ | Li—l)Pr(Li—l)
< Pr(fi_l) —}-PI‘(ZZ | Li—1)~

We would like to estimate Pr(L; | L;_1). That is, given that there exist a linking
sequence pg = p, p1, P2, ..., Pi—1 € M, what 1s the probability that M contains
no linking sequence of length ¢ for p? All we need is that M contains no point
lying in 8-L.ooKoUT(V;_1). Note that pg,p1,pa,...,pi—1 are conditioned and
we cannot expect them to lie in 8-L.ooKoUT(V;_1). However, the remaining
s — 1 points in M are unconditioned and chosen uniformly and independently
from F. Since V(p) = Vo C V;_1 and F is expansive, we have that:

n(Vicr) > u(V(p)) > ¢

and:
#(B-LookoUT (Vi_1)) > ap(Vie1) > ae = 1/w.

It follows that the probability that M does not contain a point in
B-LooKoUT (V;_1) is at most:

(1 _ l/w)s—i < e—(s—i)/w

Hence we have:

Pr(L;) < Pr(Li_q) + e~ G0/
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and:
t—1
Pr(L —(s=i)/w _ _—(s—1)/w o _ —(s—1)/w etlv _ 1
: t)siz:;e - ;6 - el/lw _ 1°

Noting that ¢!/* — 1 > 1/w, we obtain the desired bound:

Pr(L;) < we~(8=t=1)/w,
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That is, with probability at least 1 — we=(=t=1/% Af contains a linking se-

quence of length ¢ for p. Il

Lemma 2. Let vy = pu(V;) denote the volume of the tth set Vi determined by a
linking sequence pg = p, p1, pa2, ... for a point p € E, where F 1s some connected

component of F. Then, fort > 7 'log4~ 1.39/3, v; > 3u(E)/4.

Proof: Let us scale up all the volumes so that u(E) = 1. Observe that since

Vi = Vic1 UV(p;), we obtain:

p(Vi) = p(Vic) +u(V(pi) \ Vic1)
> u(Vier) + fu(E\ Vic).

The last inequality follows by the definition of an expansive space. Observing

that u(F\ Vi—1) = p(E) — u(Vi—1) = 1 — v;_1, we have the recurrence:
vi > vio1 + B(1 — vi—q).
The solution to this recurrence turns out to be:
vi > (1= B)vg+ B (1-p)7 =1—(1—p) (1 - ).
7=0
Observing that vg > 0 and that (1 — 3) < e™#, we obtain:
v; > 1—e PP
Clearly, for t > = 'log4, we have v; > 3/4. |

We are now ready to prove Theorem 3.

Theorem 3. Assume that F is (¢, a, B)-expansive. Let & be a constant in (0, 1].

If s s chosen such that:

5>Elo i—i—g—}—‘Z
~ e gea£ Ié; '

then with probability at least 1 — &, roadmap generates a roadmap such that no

two of its components lie in the same component of F.
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Proof: Let R = (M, L) be a roadmap constructed by roadmap in F. For each
connected component F; in F, let M; C M be the set of milestones belonging
to Fj;, and R; be the subgraph of R containing the set M; of vertices.

Suppose that we sample a total of s = 2r 4+ 2 milestones from F'. Consider
any two points p,q € M; for some j. Partition the rest of M into two sets,
M’ and M" of r milestones each. It follows from Lemma 1 that any milestone
in {p} U M’ has a linking sequence of length ¢ in M’ with probability at least
1 — we=("=8/¥ The same holds for any milestones in {g} U M’. Let V;(p) and
Vi(q) be the final sets determined by the linking sequences of length ¢ for the
two milestones p and ¢, respectively. By Lemma 2, both sets have volume at
least 3u(F;)/4 if we choose ¢t = 1.5/, and hence they must have a non-empty
intersection with volume at least u(F;)/2 > €/2. Since the r milestones in
M'" are sampled independently at random, it follows that with probability at
least 1 — (1 —¢/2)" > 1 —e~"%/? there is a milestone € M that lies in the
intersection. Note that both p and g have a path to z consisting of straight-line
segments bending only at the linking sequence points, which of course belong
to the set of milestones M;. This means that there is a path from p and ¢ to
x using only the edges of the roadmap graph R;.

Let B denote the event that p and ¢ fail to be connected. We now calculate
the probability Pr(B). Event B occurs if the sets in the linking sequences of
p and ¢ do not intersect or no points of M lie in the intersection. Hence,
choosing r > 2t and recalling that w = 1/a¢, we have:

PI'(B) S 2we—(r—t)/w _|_e—re/2 S 2we—r/2w _|_e—r/2w S 3we—r/2w.

The graph R; will fail to be a connected graph if any pair of nodes p,q € M;
fail to be connected. The probability is at most:

(r) 3we™"/ W

<

(;) Pr(B)
uwrle "W

2w€—(r—4w logr)/2w

INIAIA

¢ —r/4w
2we™"! ,

where the last inequality follows from the observation that r/2 > 4wlogr for
r > 8wlog8w. Now if we also require that r > 8wlog(8w/¢), we have:

2w€—r/4w < 2we—2log(8w/§)
£ 2
< 2 —
= <8w
< &

Clearly, it is sufficient to choose r > 8wlog(8w/§) + 2¢. Substituting w =
1/ae and t = 1.5/4 into the expression for s = 2r 4+ 2, we obtain the desired
result. ]



CAPTURING THE CONNECTIVITY OF HIGH-DIMENSIONAL GEOMETRIC SPACES 21

Appendix: D. Proof of Theorem 4

Theorem 4. Let ¢ be a constant in (0, 1] and a be the constant 27" u(B1)/u(F)
where By denotes the unit ball in R™. If s is chosen such that:

L2
52 gon B o’

then with probability at least 1 — ( roadmap generates a roadmap wn which one
component contains two milestones m and m' such that q sees m and q' sees

m'.

Proof: We assume the existence of a path 7:u € [0,¢] = 7(u) € F connecting
gy to ge, where u stands for the arc length from ¢ and £ denotes the total length
of the path. Let o designate the infimum of the Euclidean distance between
7(u) and the boundary of F, when u spans the interval [0, 1]. Given any two
configurations ¢ = 7(u) and ¢’ = 7(u’) on 7, let I(q,¢’) denote the path length
|lu — u'|.

Let B,(z) designate the ball of radius r centered at # € R". We pick k =
[2¢/c] configurations on 7, denoted by qo = ¢»,q1,...,9k = ¢e, such that
Uqi,qis1) < /2, for all i € [0,k — 1]. We have that:

Boya(qi+1) C Bo(4i).

For any two points p; € Bo/2(q:) and piy1 € Bo/2(giy1), the straight-line
segment connecting p; and p;41 lies entirely in F'; indeed, the above relation
implies that p;y1 also lies in By (g;). So, a sufficient condition for query to
find a path is that each ball By/5(¢;), i = 1,...,k — 1 contains at least one
milestone. The probability that a ball of radius r lying entirely in F' contains
none of the s milestones is (1 — p(B,)/u(F))*. In R™ we have u(B,) = r” u(B1).
Therefore, the probability that the planner does not find a path is at most:

(- (-55)

which is itself no greater than:

2¢ <1 3 2—n//L(Bl)0_n)s .

o pu(F)

Hence, choosing s such that the above quantity is at most ¢ € (0, 1] guarantees
that the planner will find a path with probability at least 1 — ¢. 11
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