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A probabilistic roadmap s a network of simple
paths connecting collision-free configurations obtained
by sampling a robot’s configuration space at random.
Several probabilistic roadmap planners have solved un-
usually difficult path-planning problems, but their effi-
ciency remains disappointing when the free space con-
tains narrow passages. This paper provides foundations
for understanding the effect of passages on the con-
nectedness of probabilistic roadmaps. It also proposes
a new random sampling scheme for finding such pas-
sages. An initial roadmap is built in a “dilated” free
space allowing some penetration distance of the robot
into the obstacles. This roadmap s then modified by
resampling around the links that do not lie in the true
free space. Experiments show that this strategy allows
relatively small roadmaps to reliably capture the free
space connectivity.

1 Introduction

Probabilistic roadmap planners (PRMs) construct a
network of simple paths (usually straight paths in con-
figuration space) connecting collision-free configura-
tions picked at random [2, 4, 5, 10, 11, 13, 16, 24, 27].
They have been successful in solving difficult path-
planning problems, but their efficiency remains disap-
pointing when the free space contains narrow passages.
In [4, 10, 14, 15], we have formally investigated the per-
formance of PRMs. The property of e-goodness [15] al-
lows us to determine how well a probabilistic roadmap
“covers” the free space, while the properties of expan-
siveness [10] and path clearance [14] allow us to analyze
the connectedness of a roadmap.

Exploiting these results we now motivate a new sam-
pling strategy to find paths through narrow passages
more efficiently than with previous strategies. An ini-
tial roadmap R’ is computed in a “dilated” free space

F" allowing some penetration distance of the robot into
the obstacles. Next, the milestones and links of R’
that do not lie in the free space F' are “pushed” into
F by local resampling operations, in order to construct
a final roadmap R. The underlying intuition is that,
by widening narrow passages, dilatation improves e-
goodness, expansiveness, and path clearance, so that
the connectivity of F’ is easier to capture than that
of F'. Preliminary experiments have produced very en-
couraging results.

Path planners using techniques to expand or shrink
obstacles and/or robots have previously been pro-
posed [3, 9], but with different planning approaches.

Section 2 describes a “basic” PRM. Section 3 surveys
other sampling strategies proposed in the literature.
Section 4 establishes the relation between the results
in [4, 10, 14, 15] and the complexity of the basic PRM
in the presence of narrow passages. Section b describes
and discusses the new sampling strategy.

2 Basic PRM

Let C denote the configuration space of a robot and F'
the open subset of collision-free configurations, z.e., the
free space. For simplification, let C be the Euclidean
hyper-cube [0, 1]”. We say that two free configurations
see each other if they can be connected by a straight-
line path in F.

The basic PRM 1is a simplified version of the plan-
ner in [16]. First, the procedure roadmap precomputes
a roadmap R; then query uses R to process path-
planning queries. Each query is defined by two free
configurations, ¢; and q., called the query configura-
tions. A correct answer is a path connecting them in
F', if one such path exists, and the indication that no
such path exists, otherwise.



procedure roadmap:

1. Pick s configurations uniformly at random in F. Call
them milestones and let M be the set of milestones.

2. Construct the graph R = (M, L) in which L consists
of every pair of milestones that see each other. Call R
the roadmap.

Figure 1: Roadmap-construction algorithm

procedure query:
1. for 1 = {b, e} do:

(a) if there exists a milestone m that sees ¢; then
m; «— m.
(b) else
1. repeat t times:
Pick a configuration ¢ in F uniformly at ran-
dom in a neighborhood of ¢;
until ¢ sees both ¢; and a milestone m.
ii. if all ¢ trials failed then return FAILURE,
else m; — m.

2. if my, and m. are in the same component of the
roadmap, then return a path connecting them, else
return NO-PATH.

Figure 2: Query processing algorithm

The procedure roadmap (Figure 1) chooses the mile-
stones at Step 1 and creates the links between mile-
stones at Step 2. Let dist(q) be a procedure that
computes the Euclidean distance between the robot
placed at ¢ and the obstacles. Step 1 generates each
milestone by picking successive configurations ¢ in C,
until one satisfies dist(q) > 0. Every ¢ is obtained by
choosing each of its coordinates uniformly at random
in [0, 1]. Step 2 checks the straight path between every
two milestones for collision, by recursively decompos-
ing it into two half segments and invoking dist at each
segment endpoint [4].

The procedure query (Figure 2) tries to connect each
query configuration to a milestone of the roadmap, ei-
ther directly (Step 1(a)), or through an intermediate
configuration chosen in a neighborhood of the query
configuration (Step 1(b)), using dist to check connec-
tions for collision. Each free configuration ¢ at Step
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1(b)i is obtained by picking successive configurations
at random 1n a hyper-cube centered at ¢; until one
is collision-free. The procedure may output FAILURE
at Step 1(b)ii (if it cannot connect a query configura-
tion to some milestone of the roadmap) and No-PATH
at Step 2 (if it connects the query configurations to
two distinct components of the roadmap). The No-
PATH answer may be incorrect if two components of
the roadmap lie in the same component of F'. Clearly,
we would like the planner to rarely return FAILURE or
an incorrect NO-PATH answer.

The cost of computing an explicit representation of
F in a high-dimensional space is prohibitive. Instead,
a PRM uses the implicit representation of F' provided
by dist, which only computes distances in R? or R3
and admits several reasonably efficient implementa-
tions (e.g., [7, 8, 12, 18, 19, 20, 22, 25]). In this paper
we often use simple illustrative examples of 2-D free
spaces, which could easily be handled by other planning
techniques. Keep in mind that in practical problems,
it 1s often not realistic to explicitly represent F'.

3 Other Sampling Strategies

The planner in [5] uses a partially random sampling
strategy. It deterministically follows the steepest de-
scent of a heuristic potential field defined over C until
it reaches a minimum of the potential. If this mini-
mum is the goal, it stops; otherwise it tries to escape
its basin of attraction by performing a series of random
walks. Therefore, the potential field strongly biases the
planner’s sampling strategy. In some cases, it success-
fully guides the planner through narrow passages. But
it may also have exactly the opposite effect, when a
local basin of attraction contains a narrow passage.

The planner in [13, 16] includes a resampling step
to improve the connectedness of the roadmap. An ini-
tial roadmap is generated using an algorithm similar to
roadmap. Next, additional milestones are added in the
neighborhoods of milestones that see no or few other
milestones. Experiments have shown that this resam-
pling scheme is very effective. But it still does not pro-
vide an efficient means of finding connections through
narrow passages. Note that the rationale underlying
this two-stage sampling strategy is similar to the one
in this paper. In both cases, the first stage attempts to
capture the connectivity of a free space using no a pri-
or1 knowledge, while the second stage adds milestones
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in subsets of F' chosen on the basis of the information
revealed by the first stage.

We will see that the sampling strategy proposed in
this paper creates a greater density of milestones near
the boundary of the free space. Other roadmap plan-
ners try to attain this goal using different strategies.
In [2], when a configuration ¢ is generated outside F',
a number of rays are shot from ¢ along random direc-
tions uniformly distributed in €. For each ray, a binary
search is used to identify a point near the boundary of
F. In [23] a single ray is shot from ¢ along a random
direction; the procedure then simulates a walk of the
robot along this direction, until it reaches free space.
In [11] new milestones are created near F'’s boundary
to connect roadmap components that could not be con-
nected by straight paths. A ray is shot from a milestone
in one component along a direction picked at random.
Using a technique similar to [23], a milestone is cre-
ated where this ray encounters the free space bound-
ary, and the ray is reflected in a random direction at
this point to find another boundary point. All three
references listed above observe that adding milestones
near the free space boundary improves the planners’
performance.

Various sampling and connection strategies are de-
scribed and experimentally evaluated in [1]. In partic-
ular, a multi-stage strategy is proposed which allows
milestones to be connected by multiple types of paths.

4 Complexity of the basic PRM

To avoid the FAILURE outcome, a PRM must pick mile-
stones that collectively see a large portion of F', so that
any query configuration can easily be connected to one
of them. To avoid incorrect NO-PATH replies, it must
connect the milestones so that there is a one-to-one cor-
respondence between the components of F' and those
of the roadmap.

In this section we analyze the complexity of the ba-
sic PRM by estimating the number s of milestones (the
size of the roadmap) that must be generated in order
to answer queries correctly with high probability. We
relate this number to the extent to which F' satisfies
desirable geometric properties: e-goodness [4, 15], ex-
pansiveness [10], and path clearance [13, 14]. Though
not perfect, s is a reasonable measure of the work done
by the planner.

Figure 3: A free space that is not e-good

For any subset S C C, p(S) denotes its volume. For
any ¢ € F, V(q) denotes the set of all free configura-
tions seen by ¢; we call it the wvisibility set of q.

4.1 Roadmap Coverage

Definition 1. Let € be a constant in (0,1]. A free
configuration q is e-good if u(V(q)) > eu(F). The free
space F' 1s e-good if every q € F' is e-good.

There exist spaces that are not e-good. This is the
case of the 2-D free space shown in Figure 3. Every
point ¢ in this space is e-good for some € € (0, 1]. How-
ever, if ¢ tends toward the tangency point T, ¢ — 0.

Definition 2. A set of milestones provides adequate
coverage of an e-good free space F' if the volume of the
subset of F' not visible from any of these milestones is
at most (e/2)u(F).

A greater € will make it easier for query to connect
query configurations to the roadmap. Hence, as € in-
creases, the coverage requirement grows weaker, z.e.,
the portion of F' that has to be visible by at least one
milestone gets smaller.

Theorem 1. Assume that F' is e-good. Let ¢ be a
constant in (0,1] and K be a positive real large enough
that for any = € (0, 1], (1 — z)(K/®)108(2/28) < x4 /2. If
s 1s chosen such that:

K 1 9
> 2 (log = + log =
5> 6(og€+og¢),

then roadmap generates a set of milestones that ade-
quately covers F, with probability at least 1 — ¢.

See [4, 15] for a proof of this theorem.

Theorem 1 does not allow us to compute s since we
do not know the value of ¢, except for simple spaces.
Nevertheless, it tells us that although adequate cover-
age of F' is not guaranteed, the probability that in-
adequate coverages happens decreases exponentially
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Figure 4: A narrow passage in an e-good space

with the number of milestones. Moreover, the num-
ber of milestones needed increases moderately when ¢
decreases.

It now remains to establish that adequate coverage
allows query to connect any query configuration to the
roadmap, with high probability.

Theorem 2. Let the mazimum number of iterations t
at Step 1(b)i of query be set to log(2/v), where ¢ is
a constant in (0, 1]. If the milestones adequately cover
F, then the probability that query ouiputs FAILURE is
at most .

In other words, the probability that query returns
FAILURE decreases exponentially with the number ¢ of
iterations at Step 1(b)i. See [15] for a proof of this
theorem. This proof assumes that Step 1(b)i of query
samples the visibility set V(g¢;) of ¢; to find a config-
uration g that sees both ¢; and a milestone m. Since
V(g;) is unknown, any implementation of query is an
approximation of the algorithm to which Theorem 2
strictly applies.

However, e-goodness is too weak a requirement to
guarantee that roadmap will construct a roadmap
whose connectivity correctly represents that of the free
space. For example, the free space of Figure 4 is e-good
for € & 0.5. But a roadmap constructed by roadmap
will most likely consist of two connected components.
This type of example leads us to introduce the notion
of an expansive free space [10].

4.2 Roadmap Connectedness

Definition 3. Let F be an ¢-good free space. A
roadmap R is an adequate representation of F' if its
milestones provide adequate coverage of F' and no two
components of R lie in the same component of F.

Let R be an adequate representation of F'. Since
F is e-good, no component of F' has volume less than
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ep(F). Therefore, at least one milestone of R lies in
every component of F'. Since no two components of
R lie in the same component of F', there is a one-to-
one correspondence between the components of R and
those of F'.

The notion of an expansive free space is directly re-
lated to the difficulty that roadmap has to connect mile-
stones through narrow passages. The reason why it
would require considerable time for roadmap to build a
connected roadmap in the free space of Figure 4 is that
a very small subset of points in F} see a large fraction
of Fy; therefore, the probability that the planner picks
a milestone in Fy that sees a milestone in F5 1s small.
By narrowing the passage between F; and Fs, one can
make this probability arbitrarily small. We refer to
the subset of points in a subset S C F' that can see a
large portion of F\S as the lookout of S. If it is large
enough, it is easy to connect any point in S to points
outside S by picking points at random in .S and F\S.

Definition 4. Let § be a constant in (0,1] and S be
any subset of any component E of the free space F'.
The B-lookout of S s the set:

F-Lo0KoUT(S) = {g € S [k(V(@\S) > Bu(E\S)}.

Definition 5. Let ¢, o, and § be constants in (0, 1].
The free space F is (¢, «, 3)-expansive if it is e-good
and, for every connected subset S, we have:

u(f-LookoutT(S)) > au(S).

We abbreviate “(e, a, #)-expansive” by “expansive”.

Theorem 3. Assume that F' is (¢, a, §)-expansive. Let
& be a constant in (0,1]. If s is chosen such thai:

> 161 8 + 6 +4

s> —log— + —

e & cal  f '

then with probability at least 1 — &, roadmap generates
a roadmap such that no two of its components lie in

the same component of F'.

Given a set M of milestones, let a linking sequence of
a milestone mg be a sequence my, ms, ..., such that for
all i > 1, m; € LookouT(V;_1), with V5 = V(my) and
Vi = Vi1 UV(m;). Let the visibility set of a linking
sequence be the union of the visibility sets V(m;) of all
the milestones m; in the sequence. The proof of Theo-
rem 3, given in [10], first establishes that in a properly
sized roadmap, for every pair of milestones (m,m’) in
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w W w

Figure 5: An expansive free space where €, a,3 ~ w|W

the same component of F', with high probability m ad-
mits a linking sequence whose visibility set intersects
that of a linking sequence of m/; it then shows that
with high probability there exists a milestone which
lies in the intersection of the visibility sets of these two
linking sequences, so that m and m’ are in the same
component of the roadmap.

Theorems 1 and 3 imply that with high probabil-
ity, roadmap generates a roadmap that adequately rep-
resents F'. Theorem 3 tells us that the probability
that a roadmap does not capture F’s connectivity de-
creases exponentially with the number of milestones,
and the number of milestones needed increases moder-
ately when ¢, «, and 8 decrease.

Theorems 1, 2, and 3 do not explicitly mention the
dimension n of C. This comes from the fact that the
definitions of e-goodness and expansiveness only refer
to volumes of subsets of F'. But the dependence on n
may be hidden in the parameters ¢, «, and 3. Consider
the example of Figure 5. The free space consists of
two cubes whose sides have length W; these cubes are
connected by a narrow passage of length W and width
w, with w <« W. Up to a constant factor, each of the
parameters ¢, «, and (3 is on the order of w/W. The
points with the smallest e-goodness are located in the
narrow passage. Each such point sees only a subset of
F of volume approximately 3wW; hence, ¢ ~ w/W. A
point near the top right corner of the left square sees
this entire square; but only a subset of this square, of
approximate volume wW, contains points that, each,
see a set of volume 2wW; hence, & ~ w/W and 3 =
w/W. In the n-D version of this example, two hyper-
cubes, each having volume W™, are connected by a
hyper-parallelepipedic passage that has size w along &
dimensions (k € [1,n — 1]) and size W along the n — k
other dimensions. Each of the parameters ¢, a, and
is on the order of (w/W)*. The worst case happens
when k£ = n — 1, that is, when the passage is narrow

along n — 1 dimensions.

4.3 Path-Clearance Assumption

Another analysis of the basic PRM can be done by
explicitly considering the “width” of the passages in
F [13, 14]. Let ¢ and ¢’ be two configurations in the
same component of F' and 7 be a free path connecting
them. Let £ be the Euclidean length of 7 and o its
distance to F'’s boundary. We call o the clearance of
the path.

Theorem 4. Let ¢ be a constant in (0,1] and a be the
constant 27" u(B1)/u(F) where By denotes the unit ball
m R™. If s 1s chosen such that:

s> log —

ao”® o’

then with probability at least 1 — { roadmap generates
a roadmap in which one component contains two mile-
stones m and m' such that q sees m and q' sees m'.

This theorem is proven in [14]. Consistently with
Theorem 3, it says that the probability that a roadmap
fails to provide a path through a narrow passage de-
creases exponentially with the number of milestones. It
also rightly suggests that the number of milestones may
increase as (2/0)". However, it is more conservative
than Theorem 3. For instance, in the n-D version of the
example shown in Figure 5, 0 = w/2, even if the pas-
sage is narrow along only one dimension. While The-
orem 4 suggests that the number of milestones needed
increases as w~ ", Theorem 3 tells us that it only in-
creases as w™*, where k < n is the number of dimen-
sions along which the passage is narrow.

A variant of the path-clearance assumption that may
yield a slightly tighter bound than Theorem 4 is the o-
complexity assumption proposed in [27].

5 Finding Narrow Passages

We first describe a new sampling strategy for finding
narrow passages. Then we show experimental results
with a simplified implementation of this strategy. The
computation of penetration distances is studied in the
next subsection. Finally, we discuss the new strategy
in the context of the results of Section 4.
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Figure 6: Roadmap construction steps

5.1 New Algorithms

new-—

The new
roadmap, starts by constructing a roadmap R in a di-
lated free space F’ obtained by allowing some penetra-
tion distance § of the robot into the obstacles. Next,
it “pushes” the milestones and links of R’ that do not
lie in F' into F' by performing local resampling opera-
tions. The outcome is a roadmap R in F'. The rationale
behind this two-stage strategy is that free space dilata-
tion widens narrow passages and thus makes it easier

roadmap-construction algorithm,

to capture free space connectivity. Once constructed,
R’ provides pertinent information about which areas of
F' should be more densely sampled.

The operations of new-roadmap are illustrated in
Figure 6. Figure 6(a) depicts the free space F' (thin
contour) and the dilated free space F' (bold contour).
Note the narrow passage P in F'. This passage is wider
in F’, but a spurious passage has been created on the
left. Figure 6(b) displays a roadmap R’ (only a sub-
set of the links are shown) and illustrates resampling
operations. The procedure new-roadmap resamples a
neighorhood of 2, which is not in F', until it finds a
new milestone 2’ in F' through which it can connect
the milestones 1 and 3. Similarly, new-roadmap resam-
ples a neigborhood of the link between milestones 4
and 5, but this operation eventually fails to find a con-
nection. Other resampling operations are performed
for milestones and links that are not in F', but are not
illustrated in the figure.
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procedure new-roadmap:

1. Generate a roadmap R' = (M',L') of size s’ in the
dilated free space F’ by invoking roadmap.

2. Initiate a roadmap R = (M, L) in the free space F by
setting M and L to the empty set.

3. for each milestone m in M’ do:

(a) if m lies in F then add m to M.
(b) else repeat z times:
i. Pick a configuration ¢ uniformly at random
in Upn(m).
ii. if g lies in F' then add ¢ to M.
until a configuration ¢ has been added to M.
(c) if a configuration has been added to M at any of
the above steps, then denote this configuration
by p(m).
4. for each link (m,m') in L' do:
(a) if p(m) sees p(m’) then add (p(m),p(m’)) to L.
(b) else
i. Pick y configurations uniformly at random in
Ui(p(m), p(m')). Let Q be the subset of those
configurations which are in F'.
ii. if there exists a sequence qi,...,qx of con-
figurations in @, such that p(m) sees q1, ¢;
sees qi41 fori = 1,...,k—1, and gx sees p(m'),
then:
. Add every ¢;, 1 =1,....k to M.
. Add every (gi,qi41),1=0,....,k—1to L.

Figure 7: The new roadmap-construction algorithm

Figure 7 gives a more formal description of
new-roadmap. This procedure is given a function Up,
that maps any configuration m to a region of fixed size
and geometry around m, which constitutes the resam-
pling region for pushing a milestone m into F'. It is also
given a function U; that maps any pair of configurations
(m, m') to the resampling region used for pushing a link
(m,m') into F'. Step 1 builds the roadmap R’ in F”,
while Steps 3 and 4 push this roadmap into F'. Step 3
pushes each milestone m of R’ that is not already in
F' by picking up to z configurations at random in the
region Uy, (m). The milestone of R obtained by push-
ing m is denoted by p(m). If m was already in F', then
p(m) = m. Step 4 pushes each link (m, m’) of R’ into
F'; this operation may lead to adding up to y milestones
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boundary
of Fj+1

U (p(m).p(m)).

Bi’s boundary

p(m)e & p(m)

Shrunk Bi's
boundary

Figure 8: The regions Uy, and U;

to R by resampling the region U;(p(m), p(m’)).

The new query-processing algorithm uses query to
connect the two query configurations ¢; and ¢, to two
milestones my and m, of R'. For ¢ = b, e, if ¢; is directly
connected to m;, i.e., q; sees m; in F’, then, if needed,
the new algorithm pushes the link (¢;, p(m;)) into F' by
resampling the region U;(q;, p(m;)). If, instead, ¢; is
connected to (i.e., sees) an intermediate configuration
q € F' that is itself connected to m;, then ¢ is first
pushed to a configuration p(q) € F' by resampling the
region Up,(q); next, both (¢;, p(q)) and (p(q), p(m;)) are
pushed into F' by resampling the regions U;(q;, p(q))
and Ui(p(q), p(m)).

5.2 Implementation and Results

We have written two programs that respectively imple-
ment the algorithms roadmap and new-roadmap. These
programs share large portions of code to facilitate com-
parison. They both apply to polygonal free spaces.
Like the planner in [13, 16], our implementation of
roadmap only tries to connect two milestones by a link
if they are closer than some predefined distance. In all

the experiments reported below this distance was set to
0.5. To investigate the behavior of the new algorithm
in higher-dimensional spaces, a version of new-roadmap
has also been adapted to the case where F'is a polytope
in 6-D.

In the 2-D case, the free space F' is input by defin-
ing several obstacles B;, ¢ = 1,2,...,in C. Our pro-
grams access this representation by invoking a proce-
dure cdist(q, B;) that returns the Euclidean distance
between ¢ and B;’s boundary. We use the notation
“cdist” to stress the fact that the distance is com-
puted in €, which would not be the case in a more
general implementation. This distance is positive if
q & B;, while it is negative if ¢ € B;. Each obstacle B;
is a simple polygon, and no two obstacles B; and B;,
i # j, intersect.

Our new-roadmap program uses a series of dilated
free spaces, FY, Fj, ..., F!, instead of a single one. The
penetration distance for each Fj (j = 1,...,7) is set
equal to p;6, where ¢ is the maximal penetration dis-
tance allowed and 1 > p; > ps > ... > p, > 0. In our
experiments, r ranged between 1 and 5 and we set p; to
(1/4)=1 (hence, p; = 1). For convenience, we define
F!,; to be F. The new-roadmap program constructs
successive roadmaps R, ..., R, R, where R, = R.
Each milestone m of R}, Jj €{1,...,r}, that does not lie
in F},, is pushed into F},, as follows. Let B; be the
obstacle in which m lies and let d = —cdist(m, B;).
Up to z configurations are picked at random in the
circular ring Uy, (m) shown in Figure 8 (top), which is
made of all points that are distant from m by more
than .75d (if j # r) or d (if j = r) and less than
1.25d, until one configuration is picked in Fj/+1~ Note
that the definition of U,, is related to the choice of
pj. For each link (m,m') of R}, if the line segment
joining p(m) to p(m') does not fully lie in F},;, then
up to y additional milestones are added in the square
Ui(p(m), p(m’)) shown in Figure 8 (bottom). In all the
experiments reported below we set z to 25 and y to 10.
The choices of U, and U; reflect ad hoc compromises.
In particular, the choice of U; allows p(m) and p(m') to
lie near the boundary of an obstacle B; on both sides
of a 90dg corner (dashed line in Figure 8).

We experimented with roadmap and new—roadmap on
several examples with narrow passages. In our experi-
ments we only worried about the connectedness of the
final roadmap. Figure 9 shows two examples, where C
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Figure 9: Two examples

Example 1 Example 2
Algorithm #mil. | #cdist || #mil. | #cdist
| new-roadmap | 65 | 16,812 | 112 | 11,035 |
| roadmap | 281 ] 67894 [ 290 | 70,971 ]

Figure 10: Ezperimental results

is the square [0,1]%. In both examples, we set r to 1,
and the maximal penetration distance é to 0.075. In
Example 1, this penetration distance causes the cre-
ation of new passages between obstacles. FEach fest
with one program consisted of performing a sequence
of runs. For the first run in a test of new-roadmap, the
size s’ of the roadmap R’ = R is set large enough so
that the final roadmap R includes a path through the
narrow passage. The following runs in the test are done
with iteratively smaller values of s’, until the connec-
tivity of the final roadmap no longer reflects that of F.
We call the run just before this last run the breaking
run of the test. Each test of roadmap is similar. The
value of s is first set large enough that the roadmap
R includes a path through the passage. The following
runs are done with iteratively smaller values of s, until
the connectivity of R is incomplete. We did 10 tests
for each example and each program, using 10 differ-
ent seeds for the random number generator; we used
the same 10 seeds for both programs. The table in
Figure 10 shows the average numbers of milestones in
the roadmap R generated in the breaking runs and the
average numbers of times cdist was invoked in those
runs. The running time is not significative and is not
indicated. In both examples we see that new-roadmap
captures the free space connectivity with, on the aver-
age, considerably fewer milestones than roadmap; the
average number of invocations of cdist is also much
smaller. Figure 11 displays distributions of milestones
generated for Example 2 by a breaking run of roadmap
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roadmap

new-roadmap

Figure 11: Milestone distributions for Example 2

w/W | r #mil. | #mil. | #cdist
(initial) | (final)

a1 33 95 9,320

01 |1 38 118 | 32,942

001 | 4 34 200 | 79,931

.0001 | 4 35 193 | 72,944

.00001 | 5 34 191 82,958

Figure 12: Results with the example of Figure 5

(left) and a breaking run of new-roadmap (right).

In another series of experiments with new-roadmap
we considered the example of Figure 5, with w/W suc-
cessively set to .1, .01, .001, .0001, and .00001. C was
defined as [0, 3] x [0, 1]. The maximal penetration dis-
tance was set to 0.45. For each value of w/W, we did
the same kind of tests as above. The table of Figure 12
displays the average results over 5 tests. Weused r = 1
for w/W = .1 and .01, r = 4 for w/W = .001 and
.0001, and » = 5 for w/W = .00001. In this table,
we indicate the numbers of milestones in the initial
roadmap (R}) and in the final one (R). Note that
the initial and final numbers of milestones, as well as
the number of invocations of cdist, remain approxi-
matively constant when w/W decreases from .001 to
.00001. (The average running time also stayed roughly
constant.) When w/W = .00001, the average num-
ber of milestones in the final roadmap is 191; in the
same free space, roadmap would have had to generate
on the order of 1000 times as many milestones, and
we believe that this factor would continue to grow if
w/W was set smaller. Figure 13 shows the distribu-
tion of milestones in a final roadmap in the case where
w/W = .001 (the passage is barely visible in the fig-
ure). Due to the resampling at Step 3(b), this distri-
bution is denser near the obstacle boundary. Due to
the resampling of Step 4(b), it is maximum near the
two entrances of the passage.



Figure 13: Milestone distribution for example of Fig. 5

k | average #mil. | estimated #mil.
(new-roadmap) (roadmap)

1 61 40

2 105 800

3 1656 16,000

Figure 14: Resulis with 6-D example

We have adapted our new-roadmap program to han-
dle the 6-D version of the example of Figure 5. We
did experiments with w/W = .05 and &k = 1, 2, and 3
(recall that £ is the number of dimensions along which
the passage is narrow). The second column of the table
of Figure 14 shows the average numbers of milestones
(over 5 runs) in roadmaps created by new-roadmap that
are connected through the narrow passage. The third
column contains an estimate of the numbers of mile-
stones that roadmap would have to pick to build con-
nected roadmaps with high probability.

5.3 Computation of Penetration Distance

The function cdist used in our implementation of
new-roadmap computes the (penetration) distance in
configuration space. But for path-planning problems
involving objects of complex geometry and robots with
many degrees of freedom, it is impractical to perform
this computation in configuration space.

In Section 2 we introduced the function dist(q) that
computes the Euclidean distance of the robot placed
at ¢ and the obstacles. To be more specific, let the
robot be made of p rigid bodies Li,...,L,. Let %;
be the shortest translation that L; must undergo be-
fore it touches an obstacle. The distance dist(q) is
min}_;{#;}. As we mentioned in Section 2, a num-
ber of techniques have been proposed to implement

dist [7, 8, 12, 18, 19, 20, 22, 25].

To be usable by new-roadmap, the function dist(q)
should be extended to compute the (negated) penetra-

tion distance of the robot into the obstacles at config-
urations where ¢ € F. Then, ¢ € F' if and only if
dist(q) > —é. Consistently with the above definition
of dist(q) when ¢ € F, we can define the penetra-
tion distance of the robot placed at ¢ & F' as follows.
Let ¢; be the shortest translation that L; must undergo
before it does not collide with any obstacle. The pen-
etration distance dist(q) is maxi_,{¢;}. Techniques
for computing this penetration distance are proposed
in [6, 7, 17, 26] for convex polytopes and in [20] for
nonconvex ones. Note that this distance does not cor-
respond to any metric in C. Hence, allowing a penetra-
tion distance § of the robot into the obstacles does not
result in a uniform dilatation of F.

Another penetration distance is defined in [21, 22]. Tt
is based on the notion of the “growth distance” between
two objects and it is computed by growing/shrinking
objects about a seedpoint. The computation of this
distance has been implemented for convex obstacles.

To experiment with our sampling strategy on realis-
tic path-planning problems, we project to implement a
new version of the new-roadmap that uses a function

dist based on V-Clip [20].

5.4 Discussion

We now discuss several aspects of the new sampling
strategy in light of the results presented in Section 4.
We recognize that a more formal analysis will eventu-
ally be desirable. For simplification, we assume that
the dilated free space F" is obtained by growing F' by 6
isotropically. As mentioned above, allowing some pen-
etration distance § of the robot into the obstacles does
not entail a uniform dilatation of F' by 6. But, for
any given robot, there exists a positive constant A such
that ¥ C Fy C F’, where F} is obtained by uniformly
dilating F' by h x §. We also assume that the volume
of F’ is not much greater than that of F', which sim-
ply means that ¢ is relatively small. This makes sense
since the only thing we want is to significantly widen
those passages which are too narrow to be found by
roadmap.

e Consider the path-clearance assumption of Subsec-
tion 4.3. If two configurations ¢ and ¢’ are connected
by a path of small clearance ¢ in F', the same path
has clearance ¢ + é in F’. This reduces the bound on
the number of milestones given by Theorem 4 by a fac-
tor approximately equal to 1/(1 + ¢)”, where ¢ = é/0.



Figure 15: Ezample of a dilated free space

In the example of Figure 5, ¢ can be made very large.
Hence, a relatively small roadmap R’ can reliably cap-
ture the connectivity through the narrow passages of

F.

o Consider the example of Figure 5. Recall that this
problem has an n-D version where the passage is nar-
row along k£ dimensions, with £ = 1,2,...,or n— 1. In
2-D, F’ is the region depicted with a dotted boundary
in Figure 15 (assuming that F’ does not extend beyond
C’s boundary). In n-D, F'is (¢, , f)-expansive for val-
ues of ¢, a, and 3 that are on the order of (w/W)*. In
F' the values of these parameters are on the order of
[(w+ 8)/W]*. So, posing ¢ = §/w, the e-goodness and
expansiveness of F’ are greater than those of F' by a
factor of (14 ¢)*. The higher k, the greater this factor,
which means that the worst case for F' (which occurs
when k& = n — 1) also yields the best improvement.
Again, this means that a relatively small roadmap R’
can reliably capture the connectivity of F'.

The above two arguments indicate that, when a
passage gets narrower, the gain in number of mile-
stones achieved by new-roadmap over roadmap is on
the same order of magnitude as the number of addi-
tional milestones that roadmap must generate to keep
the roadmaps connected. This indication 1s consistent
with the observation that the number of milestones re-
mains approximately constant in Figure 12.

o Every milestone m picked at Step 1 in F’, but
not in F, is pushed into F' at Step 3(b) by resampling
Up(m). This operation produces a milestone distribu-
tion in F' that is denser near its boundary. This effect
is accentuated further by Step 4(b). If F' has poor e-
goodness or expansiveness, the regions responsible for
that are necessarily close to its boundary. Therefore,
the resampling operations at Steps 3(b) and 4(b) in-
crease the density of milestones where they are they
are likely to be the most useful.

o In general, there is no guarantee that F’ is more e-
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Figure 16: A pathological case

good and/or expansive than F'. However, we can define
the e-goodness and expansiveness of F' through F’ by
extending the visibility relation as follows: two config-
urations in F' see each other through F' if the straight
line segment joining them lies in F’. The e-goodness
of F through F’ is greater than its e-goodness. Let S
be a subset of a component E of F'. Let the lookout
of S through F’ be the set of all points in S that see a
significant portion of E\S through F’. The expansive-
ness of F' through F’ is greater than its expansiveness.
Consider the roadmap R that contains all the mile-
stones of R lying in F' and all the links between these
milestones. (While all the milestones of R” lie in F,
its links may lie in F’.) Theorems 1 and 3 indicate
that R can capture the connectivity of F' (through
F’) with fewer milestones than a roadmap generated
by roadmap in F'.

e R’ may contain more links than desired, since there
may exist connections between milestones through F’
that do not exist in F'. In that case Step 4 will fail
to push such links into F'. It will waste some time
trying to establish impossible connections. But it is
reasonable to expect that this will only happen in a
small number of localized areas. It is to be compared
to the uniformly denser sampling that roadmap would
have to perform to find existing narrow passages.

e The above comment raises the opposite question.
Can Steps 3 and 4 of new-roadmap push the other links
into F' reliably? For example, shrinking the two trian-
gular obstacles in Figure 16(a) by a relatively small é
causes a big widening of the passage, as depicted in
Figure 16(b). The two milestones m and m’ in this
figure see each other through F’, but pushing the link
between them into F' would require resampling a re-
gion U;(m, m') that would grow arbitrarily large as the
angle w decreases. The choice of U; in our implementa-
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tion (Figure 8) rests on an ad hoc compromise. When
C has many dimensions and penetration distances are
computed in the robot’s workspace, there seems to ex-
ist no easy way to optimally set U;’s size. The use of
successive dilated free spaces, as in our implementa-
tion, is one way to reduce the risks of disconnecting a
roadmap when Uj is too small. Another way would be
to try to connect pushed milestones p(m) to more mile-
stones in R. Finally, one should also note that a typical
roadmap contains redundant links; hence, if Step 4 fails
to push a link into F' because U; 1s too small, it may
successfully push another nearby link and still get an
adequate roadmap R.

e One may be tempted to choose a large value for §
in order to widen narrow passages as much as possible.
However, a large value of 6 may also cause large por-
tions of obstacles or entire obstacles to vanish. At one
extreme, if the dilated free space F’ becomes the en-
tire configuration space, the roadmap R’ does not pro-
vide pertinent information to new-roadmap on which
regions should be more densely sampled. To illustrate,
consider Example 2 in Figure 9. One could make the
two obstacles very “skinny” and the passage between
them arbitrarily narrow. Setting é to a value greater
than half the thickness of the obstacles eliminates these
obstacles and makes F’ useless. Alternatively setting
6 to a smaller value only results in a small widening of
the passage, which hence remains hard to find.

e In Subsection 5.1 we could have kept the query-
processing algorithm unchanged. However, it is possi-
ble that by reducing the number of milestones in R,
these milestones may not adequately cover F', even
though they may adequately cover F' through F’. For
that reason, the new query-processing algorithm con-
nects the query configurations to R’ and, if needed,
pushes the connections into F'.

6 Conclusion

This paper investigates the effect of narrow passages on
the performance of a PRM. Section 4 provides founda-
tions for understanding the effect of narrow passages
on probabilistic roadmaps. It proposes three geomet-
ric properties, e-goodness, expansiveness, and path-
clearance, to assess the complexity of a path-planning
problem submitted to a PRM. Section 5 uses these
properties to propose and motivate a new approach to

effectively deal with such passages. It also presents en-
couraging experimental results with an implementation
of this approach in a polygonal configuration space.

It is clear, however, that much additional work is
needed to formally analyze the proposed strategy, to
understand the role of key parameters (e.g., 6, Upn,
Ui, z, y) and how they could be adjusted on-line, to
efficiently compute penetration distances, and to con-
duct more realistic experimentation. The computation
of penetration distances is likely to be the key imple-
mentation issue when the robot and the obstacles have
complex geometry, since it is inherently more expensive
than the computation of separation distances.
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