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Abstract As robots venture into new application domains as autonomous vehicles
on the road or as domestic helpers at home, they must recognize human intentions
and behaviors in order to operate effectively. This paper investigates a new class
of motion planning problems with uncertainty in human intention. We propose a
method for constructing a practical model by assuming a finite set of unknown in-
tentions. We first construct a motion model for each intention in the set and then
combine these models together into a single Mixed Observability Markov Decision
Process (MOMDP), which is a structured variant of the more common Partially Ob-
servable Markov Decision Process (POMDP). By leveraging the latest advances in
POMDP/MOMDP approximation algorithms, we can construct and solve moder-
ately complex models for interesting robotic tasks. Experiments in simulation and
with an autonomous vehicle show that the proposed method outperforms common
alternatives because of its ability in recognizing intentions and using the information
effectively for decision making.

1 Introduction

Motion planning is a critical capability for autonomous robots. The key issues of
motion planning—geometry, kinematics, dynamics, uncertainties in robot control
and sensing, etc. [13]—were identified many years ago. At the time, autonomous
robots were mostly confined to tightly controlled environments, such as manufac-
turing factory floors, where they seldom actively interact with humans. As robots
venture into new application domains as autonomous vehicles on the road or as
domestic helpers at home, they must recognize human intentions and behaviors in
order to operate effectively.

Recognizing human intention is difficult. In principle, estimating intention is
similar to estimating other more common quantities such as the robot position and
velocity. The true state is inferred from sensor data with some uncertainty. However,
recognizing intention is often more difficult, because of the diversity and subtlety
of human behaviors and the lack of a powerful “intention sensor”. Further, a robot
may actively gather information for intention recognition by taking sensing actions,
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Fig. 1 Our experimental platform, a robot golf cart, during an encounter with pedestrians in a
parking lot. Each pedestrian is walking towards one of several goals. Unaware of the pedestrians’
intentions in advance, the vehicle must pass over them as quickly as possible and avoid accidents.

but must balance such actions against those contributing directly to the goal of mo-
tion planning. The robot’s ultimate goal is to complete the specified tasks and not to
recognize intention. It thus should not gather more information than necessary.

We propose to treat intention-aware motion planning as planning under uncer-
tainty and model it as a partially observable Markov decision process (POMDP) [9,
19], in fact, a recently introduced variant called the mixed observability Markov de-
cision process (MOMDP) [15]. Our MOMDP model assumes that the robot interacts
with an intentional agent, e.g., a human. The agent has a finite set of intentions, each
embodied in an observable behavior. Given the intention, the agent’s behavioral dy-
namics is modeled in advance and known to the robot. The agent’s intention is then
the primary source of uncertainty for motion planning and the main partially ob-
servable state variable in the MOMDP. The remaining state variables, which specify
the agent’s and the robot’s dynamics, may be either fully or partially observable.
Consider, for example, an autonomous robot vehicle in an encounter with pedestri-
ans (Fig. 1). Each pedestrian is walking towards one of several goals, some of which
may lead him to cross the road. The robot does not know the pedestrian intention, in
this case, the goal in advance and must infer it based on observed pedestrian behav-
ior. The robot then acts accordingly. By modeling the encounter as a MOMDP and
solving it, we obtain a conditional plan that enables the robot to act optimally (with
respect to the model) despite uncertainty on the pedestrians’ intentions.

This work introduces the intention of an interacting agent into motion planning
and proposes the MOMDP as a model for it. The MOMDP formulation of intention-
aware motion planning provides several key advantages:

e The MOMDP is arich probabilistic model that captures uncertainties in intention
as well as robot control and sensing.

e Itdivides the complex task of recognizing agent intentions into two simpler parts.
We first construct a model of the agent’s behavioral dynamics for each intention
and solve the resulting MOMDP model for a plan. The execution of the plan
performs inference over a finite number of intentions already modeled, based on
observed agent behavior. This approach simplifies both modeling and inference.
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e Our MOMDP model treats intention as a single partially observable state vari-
able and limits uncertainty over intention to a small portion of the state space.
The latest MOMDP algorithm exploits this modeling feature to achieve dramatic
computational efficiency gain over standard POMDP algorithms [12, 15]. The
scalability of MOMDPs makes them useful for modeling moderately complex
robotic tasks.

e Similar to its POMDP counterpart, the MOMDP model provides a principled

general approach to planning under uncertainty and optimally balances information-

gathering and task completion actions.

We evaluated our approach on two navigation tasks both in simulation and on a
robot golf cart: pedestrian interaction and interaction navigation. In the first task, in-
tentions represent pedestrian goals. In the second task, the autonomous vehicle nav-
igates through an uncontrolled intersection and encounters another vehicle. Here,
intention reflects the preference of the approaching vehicle’s driver, e.g., the level
of caution. Experimental results show that the MOMDP approach outperforms the
more common approaches such as reactive planning and Bayesian intention infer-
ence in terms of safety and navigation efficiency.

2 Background
2.1 Related Work

Our work touches on several distinct lines of research in the literature. Motion plan-
ning is a vast field [13]. Over the years, many important issues have been identified,
including the geometry of robots and environments, the kinematics and dynamics of
robots, uncertainties in robot control and sensing, efc.. Our work introduces a new
aspect, the intention of an interacting agent, into motion planning.

Both plan recognition and activity recognition deal with agent intentions (see,
e.g., [10, 21]). While they solve the state estimation problem of identifying an
agent’s plan or activity, we solve a control problem, in which a robot’s goal is to
complete specified tasks and resolve the intention only when necessary. One distin-
guishing feature is the need to balance actions that gather information for intention
recognition and actions that contribute directly to task completion.

Our work is more closely related to the Hidden Goal Markov Decision Process
(HGMDP) and the Helper Action Markov Decision Processes (HAMDP) [6]. Both
model a helper agent trying to recognize another agent’s intention and perform assis-
tive actions. Solving HGMDPs exactly is PSPACE-hard [6]. The earlier work does
not provide a practical way of solving HGMDPs, but it introduces HAMDPs, which
place restrictions on how the two agents interact, for computational efficiency.

We model intention-aware motion planning as MOMDPs, which are structured
variants of POMDPs. POMDPs provide a general framework for planning under
uncertainty. Although solving POMDPs exactly is computationally intractable in
the worst case [16], point-based approximation algorithms have greatly improved
the speed of POMDP planning in recent years [12, 17, 20]. Today the fastest algo-
rithms, such as HSVI [20] and SARSOP [12], can solve POMDPs with hundreds
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of thousands states in reasonable time. MOMDPs specify additional structural in-
formation on the corresponding POMDPs and dramatically improve efficiency of
point-based approximation algorithms under suitable conditions [15].

2.2 Preliminaries on MDPs and POMDPs

A Markov decision process (MDP) models a system taking a sequence of actions
under uncertainty to maximize its total rewards. Formally, an infinite-horizon dis-
crete MDP is a tuple (S, A, T, R, ), where S and A denote the system’s state space
and action space, respectively. At each time step, the system takes an action a € A
and moves from the current state s € S to a new state s* € S. To model action
uncertainty, we specify the system dynamics with a conditional probability function
T(s,a,s") = p(s’|s,a), which gives the probability that the system lies in s’, after
taking action a in state s. At each time step, the system receives a real-valued reward
R(s,a) that depends on its state s and action a. The goal of the system is to choose a
sequence of actions that maximizes the expected total reward E (Zfi 0V R(se, at)) ,
where s; and a; denote the system’s state and action at time ¢, and v € (0,1) is a
discount factor that reflects the preference of immediate rewards over future ones.

After solving an MDP, we obtain a policy m: S — A, which prescribes an action
a € A for each system state s € S. An optimal policy 7* maximizes the agent’s
expected total reward.

The MDP allows us to model action uncertainty only and assumes that the system
state is fully observable. To allow for observation uncertainty, due to, e.g., imperfect
sensors, we need the POMDP, which adds two additional elements: the observation
space O and the observation function Z. At each time step, the system receives an
observation o after taking action a and arriving in state s’. The observation func-
tion is again specified as a conditional probability function Z(s’, a,0) = p(o|s’, a),
which models observation uncertainty.

In a POMDP, the system state is not known exactly and is represented as a prob-
ability distribution b(s) over S, commonly called a belief. Suppose that the beliefs
of a discrete POMDP are represented as vectors and |S| is the number of states in
the POMDP. The space B of all possible beliefs then forms an (|S| — 1)-dimensional
simplex, as the probabilities over S must sum up to 1.

In contrast to an MDP policy, a POMDP policy is a mapping 7: B — A, which
prescribes a action a € A for each belief b € B. The policy 7 induces a value
Sunction V. : B — R. The value of b with respect to 7 is the system’s expected total
reward of executing 7 with initial belief b: Vi (b) = E(}_;° 7' R(s¢, ar) | m,b).
The value function V* for an optimal policy 7* can be approximated arbitrarily
closely by a piecewise-linear convex function

V(b) =max » «(s)b(s), (1)
where each o € I' is represented as a vector and called an a-vector. Each a-vector

defines a hyperplane h(b) = »_ .5 a(s)b(s) over B. The value function V' can
be then represented as a finite set of hyperplanes. Most of the fastest discrete-state
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POMDP algorithms [12, 17, 20] represent a policy by its value function and exploit
the a-vector representation for efficient computation. As the value function is de-
fined over B, a high-dimensional belief simplex is a major obstacle to computational
efficiency.

Each a-vector is associated with an action. Once a value function is computed,
the corresponding policy can be executed by selecting the action associated with the
best a-vector at the current belief b, using (1).

3 Intention-Aware Motion Planning as a MOMDP

Consider a robot interacting with an intentional agent. We divide the complex task
of recognizing agent intentions and acting optimally into two stages. In the off-line
stage, we construct a motion model for each agent intention (Section 3.1) and solve
the resulting MOMDP model for a policy (Section 3.2). In the on-line stage, the
policy enables the robot to make an inference over a finite set of agent intentions
and act accordingly, based on observed agent behavior Section 3.3.

3.1 Modeling

Let X and A denote the robot’s state space and action ¢ (+1
space, respectively. Let ) denote the agent’s state space. .
The robot’s motion is governed by the probabilistic transi- \IZI\

tion function Ty (z, a, ') = p(z'|z, a), where z, 2’ € X QP—
are the robot’s current and next state and a € A is an

admissible robot action (Fig. 2). The robot may observe @
both its own and the agent’s state, and the probabilistic \é éD_
observation function is given by Z(z,y,0) = p(o|z,y),

for a robot state x € X, an agent state y € )/, and an %

observation o € O.

The agent’s motion is governed by another proba- Fig. 2 A MOMDP model
bilistic transition function T, (y,a’,y') = p(y'|y,a’) for f?r Intention-aware motion
y,y" € ) and some agent action a’ € A’. To relate the Pranning.
agent’s action a’ to its intention g € ©, we further assume that a’ is the result of
the agent executing a policy p: X x J x © — A’, which chooses a’ based on the
current robot state x, the current agent state y, and the agent’s intention 6. Recall our
earlier example in which a robot vehicle encounters a pedestrian. It is reasonable to
expect that the pedestrian chooses an action based on the robot’s and his own posi-
tion and velocity as well as his intention, in this case, the goal location. The form of
p indicates that the agent has perfect information on the robot’s and its own state.
Although these assumptions may not hold exactly, it provides a reasonable trade-off
between model fidelity and computational complexity, as we show in Section 4.

There are various ways to construct the policy p. One possibility is to specify p
manually. This potentially provides high infidelity in reproducing the agent’s behav-
ior, but becomes tedious for an agent with complex behavior. Another possibility is
to compute p by solving a simplified MDP model. We illustrate this approach with
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our vehicle-pedestrian encounter example. Assume that the pedestrian approaches
the goal location by optimizing an objective function, e.g., following the shortest
path and avoiding collision with the vehicle. Assume also that the pedestrian’s ac-
tions may be imperfect. All these can be captured in an MDP, which is then solved
to generate a policy p for the pedestrian. Now substituting a’ = p(z,y, 0) into T,
we obtain T, (y, p(x,y,0),y’), which clearly shows the dependence of the agent’s
motion on its intention. For simplicity, we assume that 3y’ does not depend on z’, but
the dependence can be added if necessary.

To summarize, our MOMDP model is a tuple (X,Y,0, 4,0, Ty, T),,Z, R,~),
which consists of the joint state space X x )} x ©, the robot action space .4, the robot
observation space O, the transition functions T, and 7T),, the observation function Z,
areward function R: X x Y — R, and a discount factor ~y. To complete the model,
we must also specify which variables are fully or partially observable. In general, the
intention is always partially observable. Other variables, which describe the robot’s
or the agent’s state, may be partially observable as well.

3.2 Policy Computation

To compute a policy, we apply SARSOP [12, 15], a leading point-based approxima-
tion algorithm, to our MOMDP model. We give a brief description of the algorithm
here for completeness. SARSOP samples incrementally a set of points from the be-
lief space I3 and maintains a set of a-vectors, which represents a piecewise-linear
lower-bound approximation V to the optimal value function V*. We can view the
sampling process as building a belief search tree rooted at a given initial belief
by € B. The nodes of the tree correspond to beliefs in B, and the edges correspond
to action-observation pairs. A child node ' is connected to its parent b by an edge
(a, 0), if performing the action a and receiving the observation o update the belief
b to a new belief b’. Thus every belief in the tree is reachable from by through a se-
quence of action and observation updates, and the approximation V is constructed
over a subset R(bg) of beliefs reachable from by. To compute V., SARSOP uses
value iteration [18], which is based on the idea of dynamic programming. Exploit-
ing the fact that V'* must satisfy the Bellman equation, value iteration starts with
an initial set of a-vectors and performs backup operations on the a-vectors at the
sampled points by iterating on the Bellman equation, until the iteration converges.

Compared with the standard POMDP model, a major advantage of our MOMDP
model is computational efficiency. A POMDP models all components of a system’s
state in a single variable, thus forcing the state variable to be partially observable
even if only one component is partially observable. To simplify the presentation, let
us assume that in the rest of this section, intention 6 is the only partially observ-
able component in our model. In this case, the dimensionality of B is nevertheless
|X]|Y]|©| — 1 for the POMDP model (see Section 2.2). The belief search tree must
be constructed in this high-dimensional space. Furthermore, the primitive objects in
SARSOP—the beliefs and a-vectors—must be represented and computed over this
space as well. All these increase computational cost, unnecessarily.
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The MOMDP model separates the fully and partially observable state compo-
nents through a factored model. If 8 is the only partially observable variable, a belief
is represented as b = (z,y, bo ), where x and y are the fully observable robot and
agent states and by, is a belief over the partially observable agent intentions. The be-
lief space B then becomes a union of subspaces: B = {Bo(z,y) | x € X,y € V}.
For each = and y, B (x,y) is a space of beliefs over the intentions, and its dimen-
sionality is only |©| — 1, a drastic reduction compared with the POMDP model.
Correspondingly, a MOMDP value function V' (b) = V(z,y, be) is represented as
a collection of a-vector sets: {I's(x,y) | x € X,y € Y}, where for each z and y,
I'o(z,y) is a set of a-vectors defined over Be (z, y). Geometrically, each a-vector
set I'e(z,y) represents a restriction of V to the subspace Be(x,y), obtained by
restricting the domain of V' from B to Be(x,y). In the MOMDP policy computa-
tion, SARSOP computes only these restrictions in the lower-dimensional subspaces
Bo(z,y) forx € X and y € ), because there is no uncertainty over x or y.

3.3 Policy Execution

After computing a MOMDP policy, represented as a value function V' (z, y, be ), we
execute the policy by repeating two steps. The first step selects an action for the
current belief (z, y, be ). To evaluate V (x, y, be ), we use = and y as an index to find
the right a-vector set and then find the maximum a-vector from the set:

V(z,y,b0) = max {a-be}. (2)
a€ly(z,y)
We then execute the action associated with the chosen a-vector. The second step
updates the belief. Suppose that after the robot takes action a, the new robot state
is ' and the new agent state is 3y’. The robot receives an observation o, which is
exactly («',y’), as the robot state and the agent state are fully observable. The new
belief is then (2/,y’, b. ), where

b/(—) (9) = 77Ty (l’, Y, 03 y/)b(—) (9) (3)

and 7 is a normalizing constant.

In general, some of the constituent variables in « and y may be partially observ-
able as well. Let s¢ denote all the fully observable variables, and let s;, denote all the
partially observable variables, including, in particular, the intention 6. Let S¢ and S,
be the subspaces in S for s¢ and sy, respectively. We then have

= . . 4
V(st,bs,) aerg;)gsf){a bs, } “)
and
bsp(s':)) = UZ(x/v y/7 0) Z TX(xv a, l’l)Ty(l', Y, 0» y/)bSp (Sp) (5)
0ce

Equations (2) and (3) are merely the special case when sy = (z,y) and s, = 6. The
MOMDP model’s computational advantage decreases with an increasing number of
partially observable variables. However, it is always at least as efficient as the cor-
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responding POMDP and significantly reduce the computational cost when a system
has only a few partially observable variables.

4 Experiments

We now present experimental results on our approach evaluated on two autonomous
vehicle navigation tasks: pedestrian interaction (Sections 4.1—4.2) and intersection
navigation (Section 4.3). There has significant interest in safe navigation of au-
tonomous vehicles in recent years (see, e.g., [1, 4, 7]). However, the main objec-
tive of our work here is is to propose a general approach to intention-aware motion
planning. A comparison with these alternative approaches in the specific context of
autonomous vehicle navigation will be explored in future work.

4.1 Pedestrian Interaction

Recall the pedestrian avoidance task from Section 1. We model it as a MOMDP.
The robot vehicle and the pedestrian traverse in an environment discretized into a
uniform grid. Each grid cell has size 1 m x 1 m. The robot has three velocity levels:
0m/s, 1 m/s, and 2m/s. The robot’s state consists of its position and velocity. It has
three actions that control the acceleration: ACCELERATE (1 m/s?), MAINTAIN (0 m/s?),
and DECELERATE (—1m/s?). The robot motion may be noisy. We assume that the
robot can sense its own position and the pedestrian’s position perfectly, as the laser
range finder on-board our robot golf cart (Fig. 1) is sufficiently accurate, with respect
to the discretized environment. The robot gets a reward for safely passing over the
pedestrian and gets penalties for collision with the pedestrian, speeding, and time
delay. Each time step has duration 1 second.

To model the pedestrian behavior, we use a simplified version of Helbing et al.’s
pedestrian motion model [8], which has been carefully validated on empirical data.
This model resembles the potential field method [11] for motion planning: the
pedestrian is attracted to a goal and is repelled by the robot vehicle, which is treated
as a quasi-static obstacle. The pedestrian movement may be noisy as well. The hid-
den intention is the pedestrian’s goal location, which the robot does not know in
advance and cannot sense directly.

For comparison, we consider two common pedestrian avoidance methods. The
first one is simple reactive planning. At each time step, if the pedestrian is within
a predefined distance from the robot according to the current observation, the robot
slows down to a full stop and waits until the pedestrian passes by. The second
method, Bayes-ML, pre-computes a set of MDP policies, each assuming a known
pedestrian goal. It then performs Bayesian inference on the pedestrian’s goal based
on the received observations. Just as our MOMDP policy, Bayes-ML maintains a
belief over pedestrian goals by incorporating the observation at each time step (im-
plementing the same update Eqn. 3). However, it chooses the action by determining
a most likely goal from the current belief and looking up the action from the pre-
computed MDP policy for this goal.
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Fig. 3 Four test environments. The letters in yellow circles mark pedestrian goals. The dashed
curves in the leftmost environment mark the pedestrian paths towards the goals.
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Fig. 4 Simulation runs comparing MOMDP policies with two other methods in the (a) zebra
crossing and the (b) lane environments. Red curves mark the pedestrian’s trajectories. Light blue
curves mark the robot’s trajectories. The histograms show the robot’s belief on the pedestrian’s
goal over time. “A”, “M”, and “D” indicate the robot’s three actions.

We compared these methods in four environments in simulation (Fig. 3). In the
zebra crossing environment, the robot vehicle encounters a pedestrian, who may
follow two possible trajectories, one proceeding straight ahead and one crossing the
road over the zebra stripes. The lane environment is similar, but has four pedestrian
goals. Furthermore, as there is no zebra marking, the pedestrian can “jaywalk” to-
wards the goals directly. The open environment emulates a road going through open
space, e.g., in a park. The constrained environment emulates a narrow lane between
city blocks with pedestrian walkways across. The open and the constrained environ-
ments look similar. However, the latter is more difficult, because many pedestrian
trajectories overlap due to the constrained space, making it challenging to recog-
nize the pedestrian’s true goal. The performance statistics are shown in Table 1, and
some sample simulation runs are shown in Fig. 4.

Fig. 4a shows that that for reactive planning, the robot slows down to a full stop. It
waits until the pedestrian crosses the road and is sufficiently far. It then proceeds. If
the pedestrian stands at the location P (see Fig. 3, leftmost) for a prolonged time, the
robot must wait, as the pedestrian is within the predefined distance. This is clearly
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Table 1 Performance comparison of Bayes-ML and MOMDP in four test environments.

Environment  Noise Bayes-ML MOMDP
Time  Accident Time  Accident
zebra zero  14.8 (0.4) 4.8% 14.7 (0.5) 0%
crossing high  17.0 (3.6) 2.8%  16.8 (3.5) 2.1%
lane Zero 7.6 (1.0) 2.5% 7.7 (1.2) 0.3%

low 9.1 (1.8) 3.1% 9.1 2.2) 1.9%
med 8.6 (1.8) 6.1% 8.6 (1.8) 5.9%
high  10.1 (4.0) 58% 10.7 (4.4) 5.0%
open zero  11.3 (0.9) 0.8% 114 (1.1) 0.02%
low 13.5 (2.6) 1.7%  13.6 (2.6) 1.3%
med 14.3 (3.8) 25% 14.5 (4.0) 2.2%
high 14.6 (4.5) 3.0% 145 4.4 2.7%
constrained zero  11.3 (0.8) 1.6% 11.5 (1.2) 0.07%
low 13.5 (2.5) 1.7%  13.7 (2.5) 0.9%
med 14.6 (4.0) 3.6% 15.1 (4.3) 3.3%
high  18.4 (10.4) 4.0% 219 (13.5) 3.2%

unacceptable and is an inherent limitation of simple reactive planning, which does
not look ahead and plan for the future.

We now focus on the comparison between Bayes-ML and our MOMDP pol-
icy, which both perform probabilistic inference on the pedestrian’s goal. For each
test environment, we varied the system noise level, and constructed and solved a
MOMDP model. For the zebra crossing environment, we varied the noise level
in robot motion. In the other three environments, we varied pedestrian movement
noise, which makes intention inference more difficult. Each data entry in Table 1
is the result over 4, 500 simulation runs. Columns 3 and 5 of the table report the
average time and the standard deviation for the robot to pass over the pedestrian
and reach the goal. Columns 4 and 6 report the rate of accident, which occurs when
the robot and pedestrian are within a predefined distance. For easy comparison, we
tuned the MOMDP reward functions so that the time to clear is roughly the same for
Bayes-ML and the MOMDP policies. The statistics show that the MOMDP policies
consistently have lower accident rate, sometimes substantially.

To understand the reasons behind MOMDP policies’ better performance, let us
look at some simulation runs (Fig. 4). In the zebra crossing environment (Fig. 4a),
Bayes-ML maintains a belief over the pedestrian’s goal based on the observations.
However, the initial stretches of the two pedestrian trajectories towards A and B
overlap. The robot has no information to distinguish the pedestrian’s goal until time
step t = 5, when the pedestrian reaches the location P. The histogram shows that
the belief at £ = 5s is roughly uniform, but not exactly because of noise in pedes-
trian movement. Bayes-ML forces the robot to act according to the most likely goal
and ignores the alternative completely. If goal A happens to have slightly higher
probability, the robot will maintain its current velocity. At ¢ = 6's, the new obser-
vation changes the belief and shows clearly that the pedestrian is crossing the road
towards B. However, it is too late by then. Because of the robot’s dynamics, no ac-
tion can prevent an accident. It cannot stop in time with DECELERATE. Neither can it
overtake the pedestrian fast enough with AccELERATE. Bayes-ML applies MAINTAIN
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simply because it incurs the lowest cost. One main weakness of Bayes-ML is its
failure to exploit the full information in the belief and instead to choose the action
based solely on the mostly likely estimate. It is overly confident and does not hedge
against all possible situations.

When faced with the same roughly uniform belief at t = 5, the MOMDP pol-
icy reasons about the future effects of both goals A and B and realizes the danger
if the pedestrian crosses the road. It chooses ACCELERATE so that the robot passes
over the pedestrian before any dangerous situation occurs. At ¢ = 6, the robot is
assured of safely overtaking the pedestrian at its current velocity. The policy then
chooses DECELERATE in order to avoid the penalty incurred in high-velocity states. It
is interesting to note that the key action, ACCELERATE, is decided at ¢ = 5s, when the
pedestrian’s true goal is still largely unresolved (see the belief histogram in Fig. 4a).

The simulation run in the lane environment (Fig. 4b) provides more information
on the MOMDP policies’ behavior. Initially, the robot’s belief on the pedestrian’s
goal is uniform. At ¢ = 1, the robot observes the pedestrian’s forward movement.
The belief now peaks on goals C and D. The robot then chooses ACCELERATE. As
the robot catches up with the pedestrian, it chooses DECELERATES at ¢ = 3 s to stay
a safe distance behind, in case the pedestrian suddenly crosses the road. At¢ = 6,
the pedestrian steps off the curb. The updated belief concentrates almost entirely on
the goal D, and the pedestrian’s intention is now resolved. The robot decelerates
until it fully stops, waits for the pedestrian to cross the road, and then proceeds.

Comparison of the MOMDP policies’ behavior in Fig. 4a and Fig. 4b clearly
demonstrates the MOMDP’s unique ability in optimally balancing exploration and
exploitation. It gathers information and resolves the uncertainty in the pedestrian’s
intention only when necessary.

4.2 A Robot Golf Cart Interacting with Multiple Pedestrians

We implemented and tested a MOMDP controller on a robot golf cart (Fig. 1). The
vehicle uses a SICK LMS200 laser range finder and a Logitech webcam for pedes-
trian detection and localization. The MOMDP controller provides high-level advi-
sory actions at 2 Hz to a low-level PID controller, which handles motor and brake
commands. For safety, the vehicle has a maximum speed limit when a pedestrian
is within a predetermined distance. More details of the hardware platform are de-
scribed in [5].

Our method is extended to handle multiple pedestrians. We instantiate a MOMDP
controller for each pedestrian detected. These controllers operate independently. We
then combine their output actions by choosing the most conservative one.

Fig. 5 shows a test run of the vehicle in a parking lot. There are three pedestrians.
Initially the beliefs on all the pedestrians’ goals are uniform. The time step ¢t = 2s
is quite interesting. As a result of inherent stochastic noise in human movement, the
beliefs seem to indicate that none of the pedestrians will cross the road. In this case,
Bayes-ML would choose to accelerate. The red color bars in the picture show that
for every pedestrian, the MOMDP controller chooses to either maintain low speed or
decelerate. The reason is that the probability that a pedestrian suddenly crosses the
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Fig. 5 A test run of the robot golf cart under the control of a MOMDP policy. The pictures are
taken from a camera on-board the vehicle. A full view of the test environment is shown in Fig. 1.
There are three pedestrians. For each pedestrian, the blue histogram shows the summary belief of
whether the pedestrian will stay on the left or right side of the road. The color bar indicates the
action chosen with respect to the pedestrian. Red means to decelerate from high speed or maintain
low speed. Green means to accelerate from low speed or maintain high speed.

road is still substantial and the penalty for an accident is high. With the additional
observation received at ¢ = 3's, the belief indicates that the rightmost pedestrian
will not cross; the MOMDP controller decides that it is safe to move on with respect
to him (see the green bar in the picture). Then, the belief at ¢ = 5 indicates that
the leftmost pedestrian will also not cross, and it is safe to move on. However, the
middle pedestrian is crossing the road. The action chosen with respect to him is to
decelerate or maintain low speed (see the red bar). This is the most conservative
action and is actually executed. At ¢ = 8s, the rightmost pedestrian is far away and
is no longer detected as a potential threat. At ¢ = 11s, the middle pedestrian has
crossed. The green bars show that the actions chosen now for all pedestrians are to
accelerate. The vehicle moves on and safely pass over the pedestrians.

This test uses the same model as that for the lane environment with pedestrian
movement noise. The result shows that our approach is robust under uncertainty in
robot control and sensing, and is scalable with respect to multiple pedestrians.

4.3 Intersection Navigation

The intersection navigation task is motivated by a near-miss accident in the 2007
DARPA Urban Challenge [14]. Two autonomous vehicles, R and A, approach an
uncontrolled traffic intersection (Fig. 6a). R comes to a stop and then resumes its
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Fig. 6 Intersection navigation. (a) A near-miss accident during the 2007 DARPA Urban Challenge.
(b)) A MOMDP model for vehicle R to recognize the intention of vehicle A and navigate safely
through the intersection. Observation variables are omitted to avoid clutter.

forward motion after checking for precedence. A wants to make a left turn, but fails
to yield. Without understanding A’s intention, R continues its forward motion. The
two vehicles got so close that an emergency mechanism was activated to stop both.
We want to model this scenario as intention-aware motion planning and evaluate
whether a MOMDP policy can potentially improve safety and efficiency when an
autonomous vehicle navigates through an intersection. In the special case of two au-
tonomous vehicles, intentions can in principle be communicated directly. However,
in the foreseeable future, autonomous vehicles must interact with other vehicles with
human drivers. Such direct communication will not be possible then.

Following the approach in Section 3, we built a MOMDP model for vehicle R
(Fig. 6b). The state of R consists of its position and velocity. The environment is
discretized into a uniform grid. Each grid cell has size 2.5 m x 2.5m. There are
five velocity levels from Om/s to 4 m/s. Each time step has duration At = 0.25s.
Vehicle R has four actions: ACCELERATE (1 m/s?), MAINTAIN (0 m/s?), DECELERATE
(-1 m/sQ), EMERGENCYSTOP (—3 m/s2). The actions are noisy with probability 0.05
of failing to achieve the intended outcomes. We use probabilistic transition to com-
pensate for the coarse discretization by matching the expected distance of travel per
time step. For example, if the vehicle’s speed is 1 m/s, it then travels a distance of
0.25 m per time step. Let  and =’ be two adjacent grid cells along the vehicle’s
path. We set p(z’|x) = 0.1 and p(z|z) = 0.9 so that the expected distance that
vehicle travels is also 2.5 x 0.1 + 0 x 0.9 = 0.25m in our model. Vehicle R re-
ceives observations on its own state and vehicle A’s state, but the observations may
be noisy. It gets a reward for crossing the intersection safely. It gets a penalty for
time delay and a high penalty for collision with A. By adjusting reward and penalty
values, we can trade-off accident rate and time to clear the intersection. This is an
additional practical advantage of the MOMDP formulation.

Vehicle A has a motion model similar to R’s. Its intention is unknown to R. We
assume that A exhibits one of four driving behaviors, each reflecting an intention:

e Reasonable but distracted. This driver usually slows and stops before the inter-
section, but with probability 0.1, he may not stop.



14 T. Bandyopadhyay et al.

---2-- MDP, Distracted but reasonable ---e-- MDP, Distracted but reasonable
16| MDP, Oblivious al 03] ° --¢-- MDP, Oblivious
%=~ MDP, Impatient ) --%-- MDP, Impatient
M --o-- MDP, Opportunistic — -~ -~ MDP, Opportunistic
R —4— MOMDP S . —&—MOMDP
o L
£ T 02
€ 4 €
3 oig
Q g Q
2 2 ot
4
J 0.05
PR S, e
TR L
&5 20 205_ 0 i 15" A 225 197 1975 198
Time to clear (s) Time to clear (s)
(@) (®)
---2-- MDP, Distracted but reasonable ix ---2-- MDP, Distracted but reasonable
18 MDP, Oblivious 8 --¢-- MDP, Oblivious
16 -~ MDP, Impatient il 16| ---#---MDP, Impatient
— -~ MDP, Opportunistic — --©-- MDP, Opportunistic
X4 —A— MOMDP §14 —A—MOMDP
12 2 12 R
| ©
=10 g 10|
8 8 S 3
Q Q
< <6
4 4| i
2| 2 e
R
195 196 197 198_ 199 20 201 202 203 204 196 197 198 199 20 201 202 203
Time to clear (s) Time to clear (s)
() ()

Fig. 7 Performance of the robot vehicle when faced with another vehicle that is (a) reasonable but
distracted, (b) oblivious, (c) impatient, and (d) opportunistic but rational.

e Oblivious. This driver increases his speed to 2m/s and maintains it, totally ig-
noring the presence of other vehicles.

e Impatient. This driver seeks to cross the intersection as fast as possible. He reacts
to the speed of vehicle R, increasing his speed if R slows down and vice versa.
He never comes to a complete stop at the intersection.

e Opportunistic. Similar to the impatient driver, this driver increases his speed if
R slows down and vice versa. However, he will come to a complete stop at the
intersection to avoid a collision.

Although not exhaustive, the list includes some common behaviors encountered in
intersection navigation, and more can be added if desired.

We built several MOMDP models by varying the reward function, in order to
trade off accident rate and time to clear the intersection. We evaluated the resulting
policies in SUMO, an established open-source package for microscopic road traffic
simulation [3]. For comparison, we also computed and evaluated four MDP poli-
cies, which assume that the intended behavior of vehicle A is known. The MDP
policies must perform better than our MOMDP policies, as they know A’s intention
in advance. The results are shown in Figs. 7 and 8, which plot the performance of
vehicle R measured in accident rate versus time to clear the intersection. Each data
point was obtained from 10, 000 simulation runs.

The results in Fig. 7 assume that vehicle R has perfect observations. Each plot
shows the performance of the MOMDP and MDP policies, when vehicle A has a
particular driving behavior. The plots show that the MOMDP policy consistently
performs almost as well as the MDP policy that knows the true underlying driving
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Fig. 8 Performance of the robot vehicle with noisy observations, when faced with another vehicle
that is (a) reasonable but distracted and () oblivious.

behavior. The performance gap between the MOMDP and MDP policies is very
small. In contrast, the MDP policies with the wrong assumption of vehicle A’s be-
havior usually perform poorly. This suggests that identifying A’s underlying behav-
ior is crucial and the MOMDP policies do so successfully.

We performed further testing by adding noise to the observations. The noise
causes the position of vehicle A to be observed at the adjoining grid cells with
probability 0.3 rather than its actual cell. Due to space limitation, Fig. 8 shows the
results for two of the four driving behaviors only. The remaining results are similar.
Observation noise causes moderate performance degradation of the MOMDP poli-
cies. This is expected, because with observation noise, it is more difficult to infer
vehicle A’s true behavior. However, the performance gaps between the MOMDP
policy and the best POMDP policy is still relatively small.

5 Conclusion

This paper introduced the intention of an interacting agent into motion planning.
We treat intention-aware motion planning as planning under uncertainty and model
it as a MOMDP. The MOMDRP is a structured variant of the more common POMDP.
It is a rich probabilistic model that can accommodate not only uncertainty in the
intention of an interacting agent but also uncertainty in robot control and sensing.
It provides a principled general approach to planning under uncertainty and opti-
mally balances information-gathering and task completion actions. By separating
the fully and partially observable variables through a factored model, the MOMDP
significantly improves computational efficiency for policy computation under suit-
able conditions, making it a practical tool for modeling interesting robotic tasks.

Our current model assumes that the interacting agent’s intention is fixed and does
not change over time. To allow changing intentions, we can generalize our MOMDP
model by adding a new component for the intention dynamics.

SARSOP, the MOMDP solver used in our implementation, assumes a discrete
state state. We are investigating the possibility of using a continuous POMDP
solver [2] to remove this modeling restriction.
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