
Monte Carlo Value Iteration for
Continuous-State POMDPs

Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

APPEARED IN

Int. Workshop on the Algorithmic Foundations of Robotics, 2010

Abstract Partially observable Markov decision processes (POMDPs) have been
successfully applied to various robot motion planning tasks under uncertainty.
However, most existing POMDP algorithms assume a discrete state space, while
the natural state space of a robot is often continuous. This paper presents Monte
Carlo Value Iteration (MCVI) for continuous-state POMDPs. MCVI samples both
a robot’s state space and the corresponding belief space, and avoids inefficient a
priori discretization of the state space as a grid. Both theoretical results and prelimi-
nary experimental results indicate that MCVI is a promising new approach for robot
motion planning under uncertainty.

1 Introduction
A challenge in robot motion planning and control is the uncertainty inherent in
robots’ actuators and sensors. Incorporating uncertainty into planning leads to much
more reliable robot operation.

Partially observable Markov decision processes (POMDPs) provide a principled
general framework for modeling uncertainty and planning under uncertainty. Al-
though POMDPs are computationally intractable in the worst case [13], point-based
approximation algorithms have drastically improved the speed of POMDP plan-
ning in recent years [12, 14, 19, 20]. Today, the fastest POMDP algorithms, such as
HSVI [19] and SARSOP [12], can solve moderately complex POMDPs with hun-
dreds of thousands states in reasonable time. POMDPs have been used successfully
to model a variety of robotic tasks, including navigation [3, 18], grasping [8], target
tracking [10, 14], and exploration [19]. Most of the existing point-based POMDP
algorithms, however, assume a discrete state space, while the natural state space for
a robot is often continuous. Our primary goal is to develop a principled and practical
POMDP algorithm for robot motion planning in continuous state spaces.

Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo
Department of Computer Science, National University of Singapore, Singapore
e-mail: {haoyu,dyhsu,leews,ngoav}@comp.nus.edu.sg

1

2 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

If the state space S is continuous, one common way of using existing POMDP
algorithms would be to place a regular grid over S and construct a discrete POMDP
model first. The difficulty with this approach is that the number of states grow ex-
ponentially with the robot’s degrees of freedom (DoFs), resulting in the “curse of
dimensionality” well known in geometric motion planning (without uncertainty).
The effect of a large number of states is in fact aggravated in POMDP planning.
Due to uncertainty, the robot’s state is not known exactly and is modeled as a belief,
which can be represented as a probability distribution over S. We plan in the belief
space B, which consists of all possible beliefs. The result of POMDP planning is
a policy, which tells the robot how to act at any belief b ∈ B. A standard belief
representation is a vector b, in which an entry b(s) specifies the probability of the
robot being in the discretized state s ∈ S. The dimensionality of B is then equal to
the number of states in the discrete POMDP model.

Probabilistic sampling is a powerful idea for attacking the curse of dimension-
ality [23]. In geometric motion planning, the idea of probabilistically sampling a
robot’s configuration space led to tremendous progress in the last two decades [5].
Similarly, in POMDP planning, a key idea of point-based algorithms is to sample a
small set of points from the belief space B as an approximate representation of B
rather than represent B exactly. However, this is not enough, if the robot’s state space
S is continuous. To compute a policy, we need to evaluate the effect of executing
a sequence of actions with an initial belief b. Conceptually, we apply the sequence
of actions to each state s ∈ S and average the execution results with probabilistic
weights b(s). It is clearly impossible to perform this computation exactly in finite
time, as there are infinitely many states in a continuous state space S.

In this paper, we propose Monte Carlo Value Iteration (MCVI) for continuous
state POMDPs. MCVI samples both a robot’s state space S and the corresponding
belief space B, and avoids inefficient a priori discretization of the state space as a
grid. The main technical innovation of MCVI is to use Monte Carlo sampling in
conjunction with dynamic programming to compute a policy represented as a fi-
nite state controller. We show that, under suitable conditions, the computed policy
approximates the optimal policy with a guaranteed error bound. We also show pre-
liminary results of the algorithm applied to several distinct robotic tasks, including
navigation, grasping, and exploration.

In the following, we start with some preliminaries on POMDPs and related work
(Section 2). Next, we describe the main idea of MCVI and the algorithmic details
(Section 3). We then present experimental results (Section 4). Finally, we conclude
with some remarks on future research directions.

2 Background

2.1 Preliminaries on POMDPs
A POMDP models an agent taking a sequence of actions under uncertainty to max-
imize its total reward. In each time step, the agent takes an action a ∈ A and moves
from a state s ∈ S to s′ ∈ S, where S and A are the agent’s state space and action

Monte Carlo Value Iteration for Continuous-State POMDPs 3

space, respectively. Due to the uncertainty in actions, the end state s′ is represented
as a conditional probability function T (s, a, s′) = p(s′|s, a), which gives the prob-
ability that the agent lies in s′, after taking action a in state s. The agent then takes
an observation o ∈ O, where O is the observation space. Due to the uncertainty in
observations, the observation result is also represented as a conditional probability
function Z(s′, a, o) = p(o|s′, a) for s′ ∈ S and a ∈ A. To elicit desirable agent be-
havior, we define a reward function R(s, a). In each time step, the agent receives a
real-valued rewardR(s, a), if it is in state s ∈ S and takes action a ∈ A. The agent’s
goal is to maximize its expected total reward by choosing a suitable sequence of
actions. When the sequence of actions has infinite length, we typically specify a
discount factor γ ∈ (0, 1) so that the total reward is finite and the problem is well
defined. In this case, the expected total reward is given by E

(∑∞
t=0 γ

tR(st, at)
)
,

where st and at denote the agent’s state and action at time t, respectively.
The goal of POMDP planning is to compute an optimal policy π∗ that maximizes

the agent’s expected total reward. In the more familiar case where the agent’s state
is fully observable, a policy prescribes an action, given the agent’s current state.
However, a POMDP agent’s state is partially observable and modeled as a belief,
i.e., a probability distribution over S. A POMDP policy π : B → A maps a belief
b ∈ B to the prescribed action a ∈ A.

A policy π induces a value function Vπ : B → R. The value of b with respect to π
is the agent’s expected total reward of executing π with initial belief b:

Vπ(b) = E
(∞∑
t=0

γtR(st, at)
∣∣∣ π, b). (1)

If the action space and the observation spaces of a POMDP are discrete, then the
optimal value function V ∗ can be approximated arbitrarily closely by a piecewise-
linear, convex function [15]:

V (b) = max
α∈Γ

∫
s∈S

α(s)b(s) ds, (2)

where each α ∈ Γ is a function over S and commonly called an α-function. If
the state space is also discrete, we can represent beliefs and α-functions as vectors
and replace the integral in (2) by a sum. For each fixed α, h(b) =

∑
s∈S α(s)b(s)

then defines a hyperplane over B, and V (b) is the maximum over a finite set of
hyperplanes at b. In this case, it is clear why V (b) is piecewise-linear and convex.

POMDP policy computation is usually performed offline, because of its high
computational cost. Given a policy π, the control of the agent’s actions is performed
online in real time. It repeatedly executes two steps. The first step is action selection.
If the agent’s current belief is b, it takes the action a = π(b), according to the given
policy π. The second step is belief update. After taking an action a and receiving an
observation o, the agent updates its belief:

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∫
s∈S

T (s, a, s′)b(s) ds, (3)

where η is a normalizing constant.
More information on POMDPs is available in [11, 22].

4 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

2.2 Related Work
POMDPs provide a principled general framework for planning under uncertainty,
but they are often avoided in robotics, because of their high computational com-
plexity. In recent years, point-based POMDP algorithms made significant progress
in computing approximate solutions to discrete POMDPs [12, 14, 19, 20]. Their
success hinges on two main ideas. First, they sample a small set of points from
the belief space B and use it as an approximate representation of B. Second, they
approximate the optimal value function as a set of α-vectors. The α-vectors allow
partial policies computed at one belief point to be used for other parts of B when
appropriate, thus bringing substantial gain in computational efficiency.

In comparison, progress on continuous POMDPs has been much more limited,
partly due to the difficulty of representing beliefs and value functions for POMDPs
when high-dimensional, continuous state spaces are involved. As mentioned ear-
lier, discretizing the state space with a regular grid often results in an unaccept-
ably large number of states. One idea is to restrict beliefs and value functions to
a particular parametric form, e.g., a Gaussian [3, 16] or a linear combination of
Gaussians [4, 15]. For robots in complex geometric environments with many ob-
stacles, uni-modal distributions, such as the Gaussian, are often inadequate. In the-
ory, a linear combination of Gaussians can partially address this inadequacy. How-
ever, when the environment geometry contains many “discontinuities” due to ob-
stacles, the number of Gaussian components required often grows too fast for the
approach to be effective in practice. Other algorithms, such as MC-POMDP [21]
and Perseus [15], use particle filters to represent beliefs. Perseus still uses a linear
combination of Gaussians for value function representation and thus suffers some
of the same shortcomings mentioned above. MC-POMDP represents a value func-
tion by storing its values at the sampled belief points and interpolating over them
using Gaussians as kernel functions and KL divergence as the distance function.
Interpolation in a belief space is not easy. KL divergence does not satisfy the met-
ric properties, making it difficult to understand the interpolation error. Furthermore,
choosing suitable parameter values for the Gaussian kernels involves some of the
same difficulties as those in choosing an a priori discretization of the state space.

MCVI also uses the particle-based belief representation, but it exploits one key
successful idea of point-based discrete POMDP algorithms: the α-vectors. It cap-
tures the α-functions implicitly as a policy graph [6, 11] and retains their main bene-
fits by paying a computational cost. To construct the policy graph, MCVI makes use
of approximate dynamic programming by sampling the state space and performing
Monte Carlo (MC) simulations. Approximate dynamic programming has also been
used in policy search for Markov decision processes (MDPs) and POMDPs without
exploiting the benefits of α-functions [1].

MCVI takes the approach of offline policy computation. An alternative is to per-
form online search [17, 7]. These two approaches are complementary and can be
combined to deal with challenging planning tasks with long time horizons.

Monte Carlo Value Iteration for Continuous-State POMDPs 5

3 Monte Carlo Value Iteration
In this paper, we focus on the main issue of continuous state spaces and make the
simplifying assumption of discrete action and observation spaces.

3.1 Policy Graphs
One way of representing a policy is a policy graph G, which is a directed graph
with labeled nodes and edges. Each node of G is labeled with an action a ∈ A,
and each edge of G is labeled with an observation o ∈ O. To execute a policy
πG represented this way, we use a finite state controller whose states are the nodes
ofG. The controller starts in a suitable node v ofG, and a robot, with initial belief b,
performs the associated action av . If the robot then receives an observation o, the
controller transitions from v to a new node v′ by following the edge (v, v′) with
label o. The process then repeats. The finite state controller does not maintain the
robot’s belief explicitly, as in (3). It encodes the belief implicitly in the controller
state based on the robot’s initial belief b and the sequence of observations received.

For each node v of G, we may define an α-function αv . Let πG,v denote a partial
policy represented byG, when the controller always starts in node v ofG. The value
αv(s) is the expected total reward of executing πG,v with initial robot state s:

αv(s) = E
(∞∑
t=0

γtR(st, at)
)

= R(s, av) + E
(∞∑
t=1

γtR(st, at)
)

(4)

Putting (4) together with (1) and (2), we define the value of b with respect to πG as

VG(b) = max
v∈G

∫
s∈S

αv(s)b(s)ds. (5)

So VG is completely determined by the α-functions associated with the nodes of G.

3.2 MC-Backup
The optimal POMDP value function V ∗ can be computed with value iteration (VI),
which is based on the idea of dynamic programming [2]. An iteration of VI is com-
monly called a backup. The backup operator H constructs a new value function
Vt+1 from the current value function Vt:

Vt+1(b) = HVt(b) = max
a∈A

{
R(b, a) + γ

∑
o∈O

p(o|b, a)Vt(b′)
}
, (6)

where R(b, a) =
∫
s∈S R(s, a)b(s)ds is the robot’s expected immediate reward and

b′ = τ(b, a, o) is the robot’s next belief after it takes action a and receives observa-
tion o. At every b ∈ B, the backup operator H looks ahead one step and chooses the
action that maximizes the sum of the expected immediate reward and the expected
total reward at the next belief. Under fairly general conditions, Vt converges to the
unique optimal value function V ∗.

Representing a value function as a set of α-functions has many benefits, but stor-
ing and computing α-functions over high-dimensional, continuous state spaces is

6 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

difficult (Section 2.2). We do not represent a value function explicitly as a set of
α-functions, but instead represent it implicitly as a policy graph. Let VG denote the
value function for the current policy graph G. Substituting (5) into (6), we get

HVG(b) = max
a∈A

{∫
s∈S

R(s, a)b(s)ds+ γ
∑
o∈O

p(o|b, a) max
v∈G

∫
s∈S

αv(s)b′(s)ds
}
.

(7)

a1

a2

o1

o1, o2

o2

G
a1

o1

o2

Fig. 1 Backup a policy graph G. The
dashed lines indicate the new node and
edges.

Let us first evaluate (7) at a particular point b ∈
B and construct the resulting new policy graph
G′, which contains a new node u and a new edge
from u for each o ∈ O (Fig. 1). Since we do
not maintain α-functions explicitly, it seems dif-
ficult to compute the integral

∫
s∈S αv(s)b

′(s)ds.
However, the definition of αv in (4) suggests
computing the integral by MC simulation: re-
peatedly sample a state s with probability b′(s)
and then simulate the policy πG,v . Pushing fur-
ther on this idea, we can in fact evaluate the en-
tire right-hand side of (7) via sampling and MC

simulation, and construct the new policy graph G′. We call this MC-backup of G
at b (Algorithm 1).

Conceptually, Algorithm 1 considers all possible ways of generatingG′. The new
node u inG′ has |A| possible labels, and each outgoing edge from u has |G| possible
end nodes inG, where |G| denotes the number of nodes inG (Fig. 1). Thus, there are
|A||G||O| candidates for G′. Each candidate graph G′ defines a new policy πG′,u.
We drawN samples to estimate the value of bwith respect each candidate πG′,u. For
each sample, we pick s from the state space S with probability b(s) . We run an MC
simulation under πG′,u, starting from s, for L steps and calculate the total reward∑L
t=0 γ

tR(st, at). The simulation length L is selected to be is sufficiently large so
that the error due to the finite simulation steps is small after discounting. We then
choose the candidate graph with the highest average total reward. Unfortunately,
this naive procedure requires an exponential number of samples.

Algorithm 1 computes the same result, but is more efficient, using only N |A||G|
samples. The loop in line 3 matches the maximization over actions a ∈ A in (7).
The loop in line 4 matches the first integral over states s ∈ S and the sum over
observations o ∈ O. The loop in line 8 matches the maximization over nodes v ∈ G.
The three nested loops generate the simulation results and store them in Va,o,v for
a ∈ A, o ∈ O, and v ∈ G. Using Va,o,v , one can compare the values at b with
respect to any candidate policy graphs and choose the best one (lines 11–14).

Interestingly, a relatively small number of samples are sufficient for MC-backup
to be effective. Let ĤbVG denote the value function for the improved policy graph
resulting from MC-backup of G at b. With high probability, ĤbVG approximates
HVG well at b, with error decreasing at the rate O(1/

√
N). For simplicity, we as-

sume in our analysis below that the simulation length L is infinite. Taking the finite

Monte Carlo Value Iteration for Continuous-State POMDPs 7

Algorithm 1 Backup a policy graph G at a belief b with N samples.
MC-BACKUP(G, b,N)

1: For each action a ∈ A, Ra ← 0.
2: For each action a ∈ A, each observation o ∈ O, and each node v ∈ G, Va,o,v ← 0.
3: for each action a ∈ A do
4: for i = 1 to N do
5: Sample a state si with probability distribution b(si).
6: Simulate taking action a in state si. Generate the new state s′i by sampling from the

distribution T (si, a, s
′
i) = p(s′i|si, a). Generate the resulting observation oi by sampling

from the distribution Z(s′i, a, oi) = p(oi|s′i, a).
7: Ra ← Ra +R(si, a).
8: for each node v ∈ G do
9: Set V ′ to be the expected total reward of simulating the policy represented byG, with

initial controller state v and initial robot state s′i.
10: Va,oi,v ← Va,oi,v + V ′.
11: for each observation o ∈ O do
12: Va,o ← maxv∈G Va,o,v , va,o ← arg maxv∈G Va,o,v .
13: Va ← (Ra + γ

P
o∈O Va,o)/N .

14: V ∗ ← maxa∈A Va, a∗ ← arg maxa∈A Va.
15: Create a new policy graph G′ by adding a new node u to G. Label u with a∗. For each o ∈ O,

add the edge (u, va∗,o) and label it with o.
16: return G′.

simulation length into account adds another error term that decreases exponentially
with L.

Theorem 1. Let Rmax be an upper bound on the magnitude of R(s, a) over s ∈ S
and a ∈ A. Given a policy graph G and a point b ∈ B, MC-BACKUP(G, b,N)
produces an improved policy graph such that for any τ ∈ (0, 1),

∣∣HVG(b)− ĤbVG(b)
∣∣ ≤ 2Rmax

1− γ

√
2
(
|O| ln |G|+ ln(2|A|) + ln(1/τ)

)
N

,

with probability at least 1− τ .

Proof. There are |A||G||O| candidates for the improved policy graph. Effectively
MC-BACKUP uses N samples to estimate the value at b with respect to each candi-
date and chooses the best one.

First, we calculate the probability that all the estimates have small errors. Let
σi be a random variable representing the total reward of the ith simulation under a
candidate policy. Define σ =

∑N

i=1 σi/N . Using Hoeffding’s inequality, we have
p(|σ − E(σ)| ≥ ε) ≤ 2e−Nε

2/2C2
, where C = Rmax/(1 − γ) and ε is a small

positive constant. Let Ei denote the event that the estimate for the ith candidate
policy has error greater than ε. Applying the union bound p(

⋃
iEi) ≤

∑
i p(Ei),

we conclude that the estimate for any of the candidate policy graphs has error
greater than ε with probability at most τ = 2|A||G||O|e−Nε2/2C2

. So we set

ε = C
√

2(|O| ln |G|+ln(2|A|)+ln(1/τ)
N .

Next, letG∗ denote the best candidate policy graph andG∗MC denote the candidate
graph chosen by MC-BACKUP. Let σ∗ and σ∗MC be the corresponding estimates of

8 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

the value at b in MC-BACKUP. Then,

HVG(b)− ĤbVG(b) = E(σ∗)− E(σ∗MC)
= E(σ∗)− σ∗ + σ∗ − E(σ∗MC)
≤ E(σ∗)− σ∗ + σ∗MC − E(σ∗MC),

The inequality in the last line follows, as MC-BACKUP always chooses the candidate
policy graph with the highest estimate. Thus σ∗ ≤ σ∗MC. Finally, the result in the
previous paragraph implies that |σ∗ − E(σ∗)| ≤ ε and |σ∗MC − E(σ∗MC)| ≤ ε, with
probability at least 1 − τ . Hence, |HVG(b) − ĤbVG(b)| ≤ 2ε, and the conclusion
follows. ut

Now we combine MC-backup, which samples the state space S, and point-based
POMDP planning, which samples the belief space B. Point-based POMDP algo-
rithms use a set B of points sampled from B as an approximate representation of
B. Let δB = supb∈Bminb′∈B ‖b − b′‖1 be the maximum L1 distance from any
point in B to the closest point in B. We say that B covers B well if δB is small.
Suppose that we are given such a set B. In contrast to the standard VI backup
operator H , which performs backup at every point in B, the operator ĤB applies
MC-BACKUP(G, b,N) on a policy graph G at every point in B. Each invocation
of MC-BACKUP(G, b,N) returns a policy graph with one additional node added to
G. We take a union of the policy graphs from all the invocations over b ∈ B and
construct a new policy graph G′. Let V0 be value function for some initial policy
graph and Vt+1 = ĤBVt.

The theorem below bounds the approximation error between Vt and the optimal
value function V ∗.

Theorem 2. For every b ∈ B and every τ ∈ (0, 1),

|V ∗(b)− Vt(b)| ≤
2Rmax

(1− γ)2

√
2
(
(|O|+ 1) ln(|B|t) + ln(2|A|) + ln(1/τ)

)
N

+
2Rmax

(1− γ)2
δB +

2γtRmax

(1− γ)
,

with probability at least 1− τ .

To keep the proof simple, the bound is not tight. The objective here is to identify the
main sources of approximation error and quantify their effects. The bound consists
of three terms. The first term depends on how well MC-backup samples S (Algo-
rithm 1, line 5). It decays at the rate O(1/

√
N). We can reduce this error by taking

a suitably large number of samples from S. The second term, which contains δB ,
depends on how wellB covers B. We can reduce δB by sampling a sufficiently large
setB to cover B well. The last term arises from a finite number t of MC-backup iter-
ations and decays exponentially with t. Note that although MC-backup is performed
over points in B, the error bound holds for every b ∈ B.

To prove the theorem, we need a Lipschitz condition on value functions:

Monte Carlo Value Iteration for Continuous-State POMDPs 9

Lemma 1. Suppose that a POMDP value function V can be represented as or
approximated arbitrarily closely by a set of α-functions. For any b, b′ ∈ B, if
‖b− b′‖1 ≤ δ, then |V (b)− V (b′)| ≤ Rmax

1−γ δ.

We omit the proof of Lemma 1, as it is similar to an earlier proof [9] for the special
case V = V ∗. We are now ready to prove Theorem 2.

Proof (Theorem 2). Let εt = maxb∈B |V ∗(b) − Vt(b)| be the maximum error of
Vt(b) over b ∈ B. First, we bound the maximum error of Vt(b) over any b ∈ B in
terms of εt. For any point b ∈ B, let b′ be the closest point in B to b. Then

|V ∗(b)− Vt(b)| ≤ |V ∗(b)− V ∗(b′)|+ |V ∗(b′)− Vt(b′)|+ |Vt(b′)− Vt(b)|

Applying Lemma 1 twice to V ∗ and Vt, respectively, and using |V ∗(b′)− Vt(b′)| ≤
εt, we get

|V ∗(b)− Vt(b)| ≤
2Rmax

1− γ
δB + εt. (8)

Next, we bound the error εt. For any b′ ∈ B,

|V ∗(b′)− Vt(b′)| ≤ |HV ∗(b′)− Ĥb′Vt−1(b′)|
≤ |HV ∗(b′)−HVt−1(b′)|+ |HVt−1(b′)− Ĥb′Vt−1(b′)|, (9)

The inequality in the first line holds, because by definition, V ∗(b′) = HV ∗(b′),
V ∗(b′) ≥ Vt(b′), and Vt(b′) ≥ Ĥb′Vt−1(b′). It is well known that the operator H is
a contraction: ‖HV −HV ′‖∞ ≤ γ‖V − V ′‖∞ for any value functions V and V ′,
where ‖ · ‖∞ denotes the L∞ norm. The contraction property and (8) imply

|HV ∗(b′)−HVt−1(b′)| ≤ γ
(2Rmax

1− γ
δB + εt−1

)
. (10)

Theorem 1 guarantees small approximation error with high probability for a sin-
gle MC-backup operation. To obtain Vt, we apply ĤB for t times and thus have
|B|t MC-backup operations in total. Suppose that each MC-backup fails to achieve
small error with probability at most τ/|B|t. Applying the union bound together with
Theorem 1, every backup operation Ĥb′ achieves

|HVt−1(b′)− Ĥb′Vt−1(b′)| ≤
2Rmax

1− γ

√
2
(
|O| ln(|B|t) + ln(2|A|) + ln(|B|t/τ)

)
N

.

(11)
with probability at least 1 − τ . We then substitute the inequalities (9–11) into the
definition of εt and derive a recurrence relation for εt. For any initial policy graph,
the error ε0 can be bounded by 2Rmax/(1− γ). Solving the recurrence relation for
εt and substituting it into (8) gives us the final result. ut

3.3 Algorithm
Theorem 2 suggests that by performing MC-backup over a set B of suitably sam-
pled beliefs, we can approximate the optimal value function with a bounded error.
To complete the algorithm, we need to resolve a few remaining issues. First, we

10 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

need a method for sampling from the belief space and obtaining B. Next, ĤB per-
forms backup at every point in B, but for computational efficiency, we want to
perform backup only at beliefs that lead to significant improvement in the value
function approximation. Both issues occur in discrete POMDP algorithms as well
and have been addressed in earlier work. Finally, we use particle filters [22] to repre-
sent beliefs over continuous state spaces. Particle filtering can be implemented very
efficiently and has been used with great success in important robotic tasks, such as
localization and SLAM [22].

We now give a short description of the algorithm. It shares the same basic struc-
ture with our SARSOP algorithm [12] for discrete POMDPs; however, it uses MC-
backup and particle filtering to handle continuous state spaces.
Overview. The algorithm computes an approximation to an optimal policy by up-
dating a policy graph G. To improve G, it samples beliefs incrementally and per-
forms backup at selected sampled beliefs.

Let R ⊆ B be a subset of points reachable from a given initial belief b0 ∈ B
under arbitrary sequences of actions and observations. Following the recent point-
based POMDP planning approach, our algorithm samples a set of beliefs from this
reachable space R rather than B for computational efficiency, as R is often much
smaller than B. The sampled beliefs form a tree TR. Each node of TR represents a
sampled belief b ∈ R, and the root of TR is the initial belief b0. If b is a node of
TR and b′ is a child of b in TR, then b′ = τ(b, a, o) for some a ∈ A and o ∈ O. By
definition, the belief associated with every node in TR lies inR.

To sample new beliefs, our algorithm updates TR by performing a search in R.
At each node b of TR, it maintains both upper and lower bounds on V ∗(b). We start
from the root of TR and traverse a single path down until reaching a leaf of TR. At
a node b along the path, we choose action a that leads to the child node with the
highest upper bound and choose observation o that leads to the child node making
the largest contribution to the gap between the upper and lower bounds at the root of
TR. These heuristics are designed to bias sampling towards regions that likely lead
to improvement in value function approximation. If b is a leaf node, then we use the
same criteria to choose a belief b′ among all beliefs reachable from b with an action
a ∈ A and an observation o ∈ O. We compute b′ = τ(b, a, o) using particle filtering
and create a new node for b′ in TR as a child of b. The sampling path terminates
when it reaches a sufficient depth to improve the bounds at the root of TR. We then
go back up this path to the root and perform backup at each node along the way to
update the policy graph as well as to improve the upper and lower bound estimates.
We repeat the sampling and backup procedures until the gap between the upper and
lower bounds at the root of TR is smaller than a pre-specified value.
Policy and lower bound backup. The lower bound at a tree node b is computed
from the policy graph G. As G always represents a valid policy, VG(b) is a lower
bound of V ∗(b). We initialize G with a simple default policy, e.g., always perform-
ing a single fixed action. To update the lower bound at b, we perform MC-backup
on G at b. As a result, we obtain an updated policy graph G′ and an MC estimate of
the value at b with respect to G′ as an improved lower bound.

Monte Carlo Value Iteration for Continuous-State POMDPs 11

Upper bound backup. To obtain the initial upper bound at a node b, one general
approach is to apply standard relaxation techniques. Assuming that a robot’s state
variables are all fully observable, we can solve a corresponding MDP, whose value
function provides an upper bound on the POMDP value function. By assuming that
a robot’s actions are deterministic, we can further relax to a deterministic planning
problem. To update the upper bound at b, we use the standard backup operator.

The upper and lower bounds in our algorithm are obtained via sampling and MC
simulations, and are thus approximate. The approximation errors decrease with the
number of samples and simulations. Since the bounds are only used to guide belief
space sampling, the approximation errors do not pose serious difficulties.

For lack of space, our algorithm description is quite brief. Some additional details
that improve computational efficiency are available in [12], but they are independent
of the use of MC-backup and particle filtering to deal with continuous state spaces.

4 Experiments
We implemented MCVI in C++ and evaluated it on three distinct robot motion plan-
ning tasks: navigation, grasping, and exploration. In each test, we used MCVI to
compute a policy. We estimated the expected total reward of a policy by running a
sufficiently large number of simulations and averaging the total rewards, and used
the estimate as a measure of the quality of the computed policy. As MCVI is a ran-
domized algorithm, we repeated each test 10 times and recorded the average results.
All the computation was performed on a computer with a 2.66 GHz Intel processor
under the Linux operating system.

4.1 Navigation
This 1-D navigation problem first appeared in the work on Perseus [15], an earlier
algorithm for continuous POMDPs. A robot travels along a corridor with four doors
(Fig. 2a). The robot’s goal is to enter the third door from the left. The robot has
three actions: MOVE-LEFT, MOVE-RIGHT, and ENTER. The robot does not know
its exact location, but can gather information from four observations: LEFT-END,
RIGHT-END, DOOR, and CORRIDOR, which indicate different locations along the
corridor. Both the actions and observations are noisy. The robot receives a positive
reward if it enters the correct door, and a negative reward otherwise.

For comparison with Perseus, we use the same model as that in [15]. Perseus re-
quires that all the transition functions, observation functions, and reward functions
are modeled as a combination of Gaussians. See Fig. 2b for an illustration of the
observation function for the observation CORRIDOR. Details of the model are avail-
able in [15]. It is important to note that representing the entire model with Gaussians
imposes a severe restriction. Doing so for more complex tasks, such as grasping and
obstructed rock sample in the following subsections, is impractical.

We ran MCVI with 600 particles for belief representation and N = 400 for
MC-BACKUP. We also ran Perseus using the original authors’ Matlab program,
with parameter settings suggested in [15]. There are two versions of Perseus using

12 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

0.0

1.0

0.5

s

p

(a)

0 200 400 600 800 1000 1200
−14

−12

−10

−8

−6

−4

−2

0

2

time (seconds)

av
er

ag
ed

 to
ta

l r
ew

ar
d

Perseus Particle Filter

Perseus Gaussian Mixture

MCVI

(b) (c)
Fig. 2 Navigation in a corridor. (a) The environment. (b) The observation function for the obser-
vation CORRIDOR. (c) Estimated expected total rewards of computed policies.

different belief representations. One version uses Gaussian mixture, and the other
one uses particle filtering. The results are plotted in Fig. 2c. The horizontal axis
indicates the time required for policy computation. The vertical axis indicates the
average total reward of a computed policy. Each data point is the average over 10
runs of each algorithm. The error bars indicate the 95% confidence intervals.

Since MCVI is implemented in C++ and Perseus is implemented in Matlab, the
running times are not directly comparable. However, the plot indicates that MCVI
reaches the same performance level as Perseus, even though MCVI does not require
a Gaussian model and does not take advantage of it. Also, the smaller error bars for
MCVI indicate that it is more robust, especially when the planning time is short.

The main purpose of this test is to compare with Perseus, a well-known earlier al-
gorithm for continuous POMDPs. As one would expect, the task is relatively simple.
We can construct a discrete POMDP model for it and compute a policy efficiently
using discrete POMDP algorithms.

4.2 Grasping
In this simplified grasping problem [8], a robot hand with two fingers tries to grasp a
rectangular block on a table and lift it up (Fig. 3). The fingers have contact sensors at
the tip and on each side. Thus, each observation consists of outputs from all the con-
tact sensors. The observations are noisy. Each contact sensor has a 20% probability
of failing to detect contact, when there is contact, but 0% probability of mistakenly
detecting contact, when there is none. Initially, the robot is positioned randomly
above the block. Its movement is restricted to a 2-D vertical plane containing both
the hand and the block. The robot’s actions include four compliant guarded moves:
MOVE-LEFT, MOVE-RIGHT, MOVE-UP, and MOVE-DOWN. Each action moves the
robot hand until a contact change is detected. The robot also has OPEN and CLOSE
actions to open and close the fingers as well as a LIFT action to lift up the block. If
the robot performs LIFT with the block correctly grasped, it is considered a success,
and the robot receives a positive reward. Otherwise, the robot receives a negative
reward. In this problem, uncertainty comes from the unknown initial position of the
robot hand and noisy observations.

We ran MCVI with 150 particles for belief representation and N = 500 for
MC-BACKUP. On the average, the planning time is 160 seconds, and the computed

Monte Carlo Value Iteration for Continuous-State POMDPs 13

(a) initial state (b) MOVE-DOWN (c) MOVE-RIGHT (d) MOVE-LEFT

(e) MOVE-UP (f) MOVE-LEFT (g) MOVE-LEFT (h) MOVE-LEFT
sensor failure

(i) MOVE-RIGHT (j) MOVE-DOWN (k) CLOSE (l) LIFT

Fig. 3 A simulation run of the simplified grasping task. The spheres at the tip and the sides of the
fingers indicate contact sensors. They turn white when contact is detected.

policy has a success rate of 99.7%. For comparison, we manually constructed a
open-loop policy: MOVE-LEFT→ MOVE-DOWN→ MOVE-RIGHT→ MOVE-UP→
MOVE-RIGHT → MOVE-DOWN → CLOSE → LIFT. The success rate of this policy
is only 77.2%. Many of the failures occur because the manually constructed policy
does not adequately reason about noisy observations.

Fig. 3 shows a simulation run of the computed policy. In one MOVE-LEFT action
(Fig. 3f), the tip contact sensor of the left finger fails to detect the top surface of
the block. At a result, the robot does not end the MOVE-LEFT action in the proper
position, but it recovers from the failure when the tip contact sensor of the right
finger correctly detects contact (Fig. 3h).

The grasping problem can also be modeled as a discrete POMDP [8]. However,
this requires considerable efforts in analyzing the transition, observation, and reward
functions. Although the resulting discrete POMDP model is typically more compact
than the corresponding continuous POMDP model, the discretization process may
be difficult to carry out, especially in complex geometric environments. In contrast,
MCVI operates on continuous state spaces directly and is much easier to use.

4.3 Obstructed Rock Sample
The original Rock Sample problem [19] is a benchmark for new discrete POMDP
algorithms. In this problem, a planetary rover explores an area and searches for rocks
with scientific value. The rover always knows its own position exactly, as well as
those of the rocks. However, it does not know which rocks are valuable. It uses the

14 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

(a) (b) (c)
Fig. 4 Simulations runs for three ORS models: (a) low noise in sensing and movements, (b) higher
sensor noise, and (c) higher movement noise. Shaded polygons indicate obstructed regions. Shaded
and white discs indicate the regions in which the rover may perform the SAMPLE action. The
rocks are located at the center of the discs. Shaded discs represent valuable rocks, and white discs
represent bad rocks. Solid black curves indicates the rover’s trajectories. Each “�” marks a location
where the rover performs a SAMPLE action. Each “4” marks a location where the rover performs
a SENSE action, and the corresponding dashed line indicates the rock being sensed.

SENSE action to take noisy long-range sensor readings on the rocks. The accuracy
of the readings depends on the distance between the rover and the rocks. The rover
can also apply the SAMPLE action on a rock in the immediate vicinity and receive
a positive or negative reward, depending on whether the sampled rock is actually
valuable. The robot’s goal is to find as many valuable rocks as possible quickly and
then move to the right boundary of the environment to report the results.

We extended Rock Sample in several ways to make it more realistic. We intro-
duced obstructed regions, which the rover cannot travel through. Furthermore, the
rover’s movement is now noisy. In each time step, the rover can choose to move
in any of eight equally spaced directions with two speed settings. Finally, the rover
does not always know its own location exactly. It can only localize in the imme-
diate vicinity of a rock, which serves as a landmark. We call this extended version
Obstructed Rock Sample (ORS).

We created three models of ORS by varying the noise levels for the rover’s move-
ments and long-range rock sensor. We ran MCVI on each model. The average plan-
ning time ranges from 5 minutes for the low-noise model to a maximum of 2 hours.

Fig. 4 shows a simulation run for each computed policy. For the low-noise model
(Fig. 4a), the rover first moves towards the top-left rock. It senses the rock and
decides to sample it. It also senses the lower-left rock, but cannot determine whether
the rock is valuable, because the rock is far away and the sensor reading is too noisy.
The rover then approaches the lower-left rock and senses it again. Together the two
sensor readings indicate that the rock is likely bad. So the rover does not sample
it. Along the way, the rover also senses the top-right rock twice and decides that
the rock is likely valuable. As the movement noise is low, the rover chooses to go
through the narrow space between two obstacles to reach the rock and sample it.
It then takes a shortest path to the right boundary. We do not have a good way of
determining how well the computed policy approximates an optimal one. In this
simulation run, the jaggedness in the rover’s path indicates some amount of sub-
optimality. However, the rover’s overall behavior is reasonable. When the sensor
noise in the model is increased (Fig. 4b), the rover maintains roughly the same

Monte Carlo Value Iteration for Continuous-State POMDPs 15

behavior, but it must perform many more sensing actions to determine whether a
rock is valuable. When the movement noise is increased (Fig. 4c), the rover decides
that it is too risky to pass through the narrow space between obstacles and takes an
alternative safer path.

A standard discrete POMDP model of Rock Sample uses a grid map of the en-
vironment. Typically discrete POMDP algorithms can handle a 10× 10 grid in rea-
sonable time. This is inadequate for complex geometric environments. The envi-
ronment shown in Fig. 4, which consists of relatively simple geometry, requires a
grid of roughly 50× 50, due to closely spaced obstacles. A discrete POMDP model
of this size requires about 4 GB of memory before any computation is performed.
MCVI avoids this difficulty completely.

4.4 Discussion
While the experimental results are preliminary, the three different examples indi-
cate that MCVI is flexible and relatively easy to use. It does not require artificial
discretization of a continuous state space as a grid. It also does not impose restric-
tion on the parametric form of the model.

Our current implementation of MCVI uses fixed values for the number of par-
ticles, M , for belief representation and the parameter N in MC-BACKUP. Our ex-
perimental results show that MC-BACKUP typically takes around 99% of the total
running time and is the dominating factor. To improve efficiency, we may use the
sample variance of the simulations to set N adaptively and stop the simulations as
soon as the variance becomes sufficiently small. We may over-estimate M , as this
does not affect the total running time significantly.

5 Conclusion
POMDPs have been successfully applied to various robot motion planning tasks
under uncertainty. However, most existing POMDP algorithms assume a discrete
state space, while the natural state space of a robot is often continuous. This paper
presents Monte Carlo Value Iteration for continuous-state POMDPs. MCVI sam-
ples both a robot’s state space and the corresponding belief space, and computes a
POMDP policy represented as a finite state controller. The use of Monte Carlo sam-
pling enables MCVI to avoid the difficulty of artificially discretizing a continuous
state space and make it much easier to model robot motion planning tasks under
uncertainty using POMDPs. Both theoretical and experimental results indicate that
MCVI is a promising new approach for robot motion planning under uncertainty.

We are currently exploring several issues to improve MCVI. First, the running
time of MCVI is dominated by MC simulations in MC-backup. We may group sim-
ilar states together and avoid repeated MC simulations from similar states. We may
also parallelize the simulations. Parallelization is easy here, because all the simu-
lations are independent. Second, the size of a policy graph in MCVI grows over
time. We plan to prune the policy graph to make it more compact [6]. Finally, an

16 Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

important issue is to deal with not only continuous state spaces, but also continuous
observation and action spaces.

Acknowledgments. This work is supported in part by MoE AcRF grant R-252-000-327-112 and
MDA GAMBIT grant R-252-000-398-490.

References
1. J.A. Bagnell, S. Kakade, A. Ng, and J. Schneider. Policy search by dynamic programming. In

Advances in Neural Information Processing Systems (NIPS), volume 16. 2003.
2. R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, New Jersey,

1957.
3. A. Brooks, A. Makarendo, S. Williams, and H. Durrant-Whyte. Parametric POMDPs for

planning in continuous state spaces. Robotics & Autonomous Systems, 54(11):887–897, 2006.
4. E. Brunskill, L. Kaelbling, T. Lozano-Perez, and N. Roy. Continuous-state POMDPs with

hybrid dynamics. In Int. Symp. on Artificial Intelligence & Mathematics, 2008.
5. H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, and S. Thrun.

Principles of Robot Motion : Theory, Algorithms, and Implementations, chapter 7. The MIT
Press, 2005.

6. E.A. Hansen. Solving POMDPs by searching in policy space. In Proc. AAAI Conf. on Artificial
Intelligence, pages 211–219, 1998.

7. R. He, E. Brunskill, and N. Roy. PUMA: Planning under uncertainty with macro-actions. In
Proc. AAAI Conf. on Artificial Intelligence, 2010.

8. K. Hsiao, L.P. Kaelbling, and T. Lozano-Pérez. Grasping POMDPs. In Proc. IEEE Int. Conf.
on Robotics & Automation, pages 4485–4692, 2007.

9. D. Hsu, W.S. Lee, and N. Rong. What makes some POMDP problems easy to approximate?
In Advances in Neural Information Processing Systems (NIPS), 2007.

10. D. Hsu, W.S. Lee, and N. Rong. A point-based POMDP planner for target tracking. In Proc.
IEEE Int. Conf. on Robotics & Automation, pages 2644–2650, 2008.

11. L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1–2):99–134, 1998.

12. H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In Proc. Robotics: Science and Systems,
2008.

13. C. Papadimitriou and J.N. Tsisiklis. The complexity of Markov decision processes. Mathe-
matics of Operations Research, 12(3):441–450, 1987.

14. J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In Proc. Int. Jnt. Conf. on Artificial Intelligence, pages 477–484, 2003.

15. J.M. Porta, N. Vlassis, M.T.J. Spaan, and P. Poupart. Point-based value iteration for continuous
POMDPs. J. Machine Learning Research, 7:2329–2367, 2006.

16. S. Prentice and N. Roy. The belief roadmap: Efficient planning in linear pomdps by factoring
the covariance. In Proc. Int. Symp. on Robotics Research, 2007.

17. S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online planning algorithms for POMDPs.
J. Artificial Intelligence Research, 32(1):663–704, 2008.

18. N. Roy and S. Thrun. Coastal navigation with mobile robots. In Advances in Neural Informa-
tion Processing Systems (NIPS), volume 12, pages 1043–1049. 1999.

19. T. Smith and R. Simmons. Point-based POMDP algorithms: Improved analysis and imple-
mentation. In Proc. Uncertainty in Artificial Intelligence, 2005.

20. M.T.J. Spaan and N. Vlassis. A point-based POMDP algorithm for robot planning. In Proc.
IEEE Int. Conf. on Robotics & Automation, 2004.

21. S. Thrun. Monte carlo POMDPs. In Advances in Neural Information Processing Systems
(NIPS). The MIT Press, 2000.

22. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, 2005.
23. J.F. Traub and A.G. Werschulz. Complexity and Information. Cambridge University Press,

1998.

