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Abstract. Motion planning under uncertainty is an important problem in robotics. Although
probabilistic sampling is highly successful for motion planning of robots with many degrees
of freedom, sampling-based algorithms typically ignore uncertainty during planning. We in-
troduce the notion of a bounded uncertainty roadmap (BURM) and use it to extend sampling-
based algorithms for planning under uncertainty in environment maps. The key idea of our
approach is to evaluate uncertainty, represented by collision probability bounds, at multiple
resolutions in different regions of the configuration space, depending on their relevance for
finding a best path. Preliminary experimental results show that our approach is highly effec-
tive: our BURM algorithm is at least 40 times faster than an algorithm that tries to evaluate
collision probabilities exactly, and it is not much slower than classic probabilistic roadmap
planning algorithms, which ignore uncertainty in environment maps.

1 Introduction

Probabilistic sampling is a highly successful approach for motion planning of robots
with many degrees of freedom. Sampling-based motion planning algorithms typi-
cally assume that input environments are perfectly known in advance. This assump-
tion is reasonable in carefully engineered settings, such as robot manipulators on
manufacturing assembly lines. As robots venture into new application domains at
homes or in offices, environment maps are often acquired through sensors subject
to substantial noise. It is essential for sampling-based motion planning algorithms
to take into account uncertainty in environment maps during planning so that the
resulting motion plans are relevant and reliable.

In sampling-based motion planning, a robot’s configuration space C is assumed
to be known and represented implicitly by a geometric primitive Free(q), which
returns true if and only if the robot placed at ¢ does not collide with obstacles in the
environment. The main idea is to capture the connectivity of C in a graph, usually
called a roadmap. The nodes of the roadmap correspond to collision-free configura-
tions sampled randomly from C according to a suitable probability distribution. There
is an edge between two nodes if the straight-line path between them is collision-free.
Now suppose that the shapes or poses of obstacles in the environment are not known
exactly, but are modeled as a probability distribution 7, of possible shapes and poses.
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Fig. 1. An uncertainty roadmap. The positions of polygon vertices are uncertain and modeled
as probability distributions. The rectangular boxes around the vertices indicate the regions
of uncertainty. In the insets, for each configuration marked along a roadmap edge, there are
two circles indicating the upper and lower bounds on the probability that the configuration
is collision-free. The size of the circles indicates the probability value. In region 1, the two
circles have similar size, indicating that the probability bounds are tight.

Then Free(q) cannot always determine whether ¢ is collision-free or not: it depends
on the distribution of obstacle poses and shapes. Instead of relying on Free(q), we
need to compute the probability that q is collision-free with respect to 7., and instead
of a usual roadmap, we construct an uncertainty roadmap U by annotating roadmap
edges with probabilities that they are collision-free (Fig. 1). We then process path
planning queries by finding a path in U that is best in the sense of low collision
probability or other suitable criteria that take into account, e.g., path length as well.

Unfortunately, constructing a complete uncertainty roadmap U incurs high com-
putational cost, as computing collision probabilities exactly is very expensive com-
putationally. It effectively requires integrating over a high-dimensional distribution
7. of obstacle shapes and poses. The dimensionality of 7. depends on the geomet-
ric complexity of the environment obstacles. Consider, for example, a simple two-
dimensional environment consisting of 10 line segments. Each line segment is spec-
ified by its endpoints, whose positions are uncertain. We then need to integrate over
a distribution of 10 x 2 x 2 = 40 dimensions!

To overcome this difficulty, we turn the high-dimensional integral into a series of
lower-dimensional ones. More interestingly, observe that a path planning query may
be answered without knowing the complete uncertainty roadmap with exact collision
probabilities. We maintain upper and lower bounds on the probabilities and refine
the bounds incrementally as needed. We call such a roadmap a bounded uncertainty
roadmap (BURM). See the insets in Fig. 1 for an illustration. The key idea of our
approach is to evaluate uncertainty, represented by the collision probability bounds,
at multiple resolutions in different regions of the configuration space, depending on
their relevance for finding a best path in U. Often, the critical decision of favoring one
path over another depends on the uncertainty in localized regions only, for example,
in narrows passages where the robot must operate in close proximity of the obstacles.
It is thus sufficient to evaluate uncertainty accurately only in those regions and only
to the extent necessary to choose a best path. Consider the example in Fig. 1. If we
want to go form A to A’, it is important to evaluate the precise collision probabilities
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in region 1 in order to decide whether to take the risk of going through the narrow
passage or to make a detour. Knowing the precise collision probabilities in regions 2
and 3 is much less relevant for this decision. Thus, evaluating collision probabilities
at different resolutions hierarchically leads to drastic reduction in computation time
by avoiding unnecessarily computing the exact collision probabilities.

In the following, we start by briefly reviewing related work (Section 2). We then
introduce the notion of a BURM (Section 3) and describe our approach for path
planning with BURMs (Section 4). Preliminary experimental results show that our
approach for path planing under uncertainty is highly effective: in our tests, it is at
least 40 times faster than an algorithm that tries to evaluate collision probabilities
exactly, and it is not much slower than classic probabilistic roadmap planning algo-
rithms, which ignore environment uncertainty (Section 5). Finally, we conclude with
directions for future work (Section 6).

2 Related Work

Motion planning under uncertainty is an important problem in robotics and has been
studied widely [13, 14, 22]. In robot motion planning, uncertainty arises from two
main sources: (i) noise in robot control and sensing and (ii) imperfect knowledge
of the environment. In this work, we address the second only. Partially observable
Markov decision processes (POMDPs) is a general and principled approach for plan-
ning under uncertainty [20, 10]. Unfortunately, under standard assumptions, the com-
putational cost of solving a POMDP exactly is exponential the number of states of the
POMDP [18]. An uncertain environment usually generates a large number of states.
Despite the recent advances in approximate POMDP solvers [19, 21, 12], uncertain
environments still pose a significant challenge for POMDP planning. In mobile robot
motion planning, a common representation of an uncertain environment is an occu-
pancy grid. Each cell of an occupancy grid contains the probability that the cell is
occupied by obstacles. Assuming that uncertainty in robot control and sensing is neg-
ligible, one can find a path with minimum expected collision cost by graph search
algorithms, such as Dijkstra’s algorithm or the A* algorithm. In the motion planning
literature, occupancy-grid planning belongs to the class of approximate cell decom-
position algorithms [13], whose main disadvantage is that they do not scale up well
as a robot’s number of degrees of freedom increases.

Probabilistic sampling of the robot’s configuration space is the most success-
ful approach for overcoming this scalability issue [5, 8, 14]. Our work is based on
this approach, but extends it to deal with uncertainty in environment maps. Usually,
sampling-based motion planning algorithm first build a roadmap that approximates
the connectivity of the robot’s configuration space and then search for a collision-
free path in the roadmap. The idea that a path planning query can be answered with-
out constructing the complete roadmap in advance is a form of lazy evaluation and
has appeared before in sampling-based algorithms for single-query path planning,
e.g., Lazy-PRM [2], EST [9], and RRT [15]. However, since classic motion plan-
ning assumes perfect knowledge of the geometry of the robot and the obstacles, lazy
construction of the roadmap is simpler.
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Sampling-based motion planning has been extended to deal various types of un-
certainty, including robot control errors [1], sensing errors [4, 23], and imperfect
environment maps [17]. Our problem is related to that in [17]. To overcome the dif-
ficulty of computing collision probability, the earlier work proposes a nearest-point
approximation technique. Although the approximation is supported by experimental
evidence, its error is difficult to quantify. Also, the technique is restricted to two-
dimensional environments only [17].

3 Bounded Uncertainty Roadmaps

Let us start with two-dimensional environments. The obstacles are modeled as polyg-
onal objects, each consisting of a set of primitive geometric features—line segments
for two-dimensional environments. The endpoints of the line segments are not known
precisely and modeled as probability distributions with finite support, such as trun-
cated Gaussians. See Fig. 1 for an illustration. Environment maps of this kind can be
obtained by, for example, feature-based extended Kalman filtering (EKF) mapping
algorithms [22]. For generality, we model the robot in exactly the same way. In three-
dimensional environments, the representation is similar, but the primitive geometric
feature are triangles rather than line segments.

Given such a representation of the obstacles and the robot, we can construct an
uncertainty roadmap U in the robot’s configuration space C. The nodes of U are
configurations sampled at random from C. For every pair of nodes u and v’ that
are close enough according to some metric, there is an edge in U, representing the
straight-line path between v and u’. Recall that in classic motion planning, sampling-
based algorithms construct a roadmap whose nodes and edges are guaranteed to be
collision-free, and the goal is to find a collision-free path in the roadmap. In our set-
ting, due to the uncertainty, we cannot guarantee that the nodes and edges of U are
collision-free, and there may exist no path that is collision-free with probability 1.
So instead, we want to find a path with minimum cost according to a suitable cost
function. A cost function may incorporate various properties of the desired path. To
be specific, our cost function incorporates two considerations: the collision probabil-
ity and the path length. This allows us to trade off the distance that the robot must
travel against the risk of collision.

To define such a path cost function, we assign a weight to each edge e of U:

W(e) = l(e) + E[C(e)], (D

where /(e) is the length of e and C/(e) is the cost of collision for e. E[C'(e)] denotes
the expected collision cost, and the expectation is taken over 7., the probability dis-
tribution of the obstacle and robot geometry. This cost function assumes that col-
lision is tolerable and we want to trade off the risk of collision against the robot’s
travel distance. Paths that do not conform to this assumption, e.g., those that pene-
trate through the interior of obstacles, must be excluded. To obtain W (e), we need
to calculate E[C(e)]. Doing so directly is extremely difficult, because of the need to
integrate over 7., a high-dimensional distribution whose dimensionality is propor-
tional to the number of geometric features describing the obstacles and the robot, as
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illustrated by the example in Section 1. Furthermore, we must perform this integra-
tion for every edge of U. Instead of this, we break down the integration process into
several steps. First, we integrate over the configurations contained in e:

Cle) = / _Clan

where we slightly abuse the notation and use C(g) to denote the collision cost at q.
Following the usual practice in sampling-based motion planning, we discretize the
edge e into a sequence of of configurations (q1, ¢a, . . ., ¢, ) at a fixed resolution and
approximate the integral by

Cle) = Z C(gqy). )

Next, recall that the obstacles and the robot are each represented as a polygonal
object consisting of a set of primitive geometric features. Denote the two feature sets
by S for the obstacles and S’ for the robot. We define the collision cost of the robot
with the obstacles as the sum of collision costs of all pairs of geometric features
s € S and s’ € S’. This can model, for example, the preference that configurations
with fewer feature pairs in collision are more desirable. In formula, we have

Clg)= > Covla), 3)
s€S,s’eS’

where C; ,(¢) is the collision cost for the feature pair s and s’ when the robot is
placed at configuration ¢g. Combining Eqs. (1-3) and using the linearity of expec-
tation, we get W(e) = £(e) + X1 > s ves ElCs,s(qi)]- Let I, v (g denote
the event that s and s’ intersect when the robot is placed at ¢. Then E[C; o (g;)] =
aP(I, s ), where a is the cost of collision when a pair of features intersect. The
value of « is usually constant for two-dimensional environments, but may vary ac-
cording to s and s’ for three-dimensional environments. In practice, « is adjusted
to reflect our willingness to take the risk of collision in order to shorten the robot’s
travel distance. To summarize, the weight of an edge e is given by

Wie)=te)+> > aPUiv)): 4)
i=1 s€S,s’eS’
and the cost of a path y in U is the sum of the weights of all edges contained in ~y.
To compute the cost of a path, each edge of an uncertainty roadmap U must
carry a set of probabilities P(I; ;(4,)). Although s and s’ are primitive geometric
features of constant size, computing P(I; y(,,)) exactly is still expensive. If s and s’
are both uncertain, then the computation requires integration over a distribution of
8 dimensions for two-dimensional features and 18 dimensions for three-dimensional
features. To reduce the computational cost, we maintain upper and lower bounds on
P(I 4 (q,)) rather than calculate the exact probability. Thus each edge e of U carries
a set of probability bounds on P(I; . (,,)) for each configuration ¢; € e resulting
from the discretization of e and for each pair of features s € S and s’ € S’. We call
such a roadmap a bounded uncertainty roadmap or BURM for short. The probability
bounds are refined incrementally by subdividing the integration domain hierarchi-
cally during the path finding.
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4 Path Planning with BURMs

4.1 Overview

Suppose that we are given the (uncertain) geometry of the obstacles and the robot in
the representation described in the previous section. Our goal is to find a minimum-
cost path between a start configuration g5 and a goal configuration g,. Conceptually,
there are two steps, First, we construct a BURM U with trivial probability bounds
by sampling the robot’s configuration space C. Next, we tighten up the probability
bounds incrementally while searching for a minimum-cost path in U.

The first step is similar to that in the usual sampling-based motion planning algo-
rithms. We sample a set of configurations from C according to a suitable probability
distribution and insert the sampled configurations along with ¢ and g as nodes of U.
We then create an edge for every pair of nodes that are sufficiently close according to
some metric. We filter out those nodes and edges that are in collision. Here collision
is defined with respect to the mean geometry of the obstacles and the robot, which
means that the primitive geometric features representing the obstacles and the robot
are all at their mean positions. The purpose of filtering is to exclude those paths
that cause the robot to pass through the interior of the obstacles. It is well known
that the probability distribution for sampling C is crucial, and there is a lot of work
on effective sampling strategies for motion planning. See [5, 8, 14] for comprehen-
sive surveys. There is also recent work on how to adapt the sampling distribution
when the environment map is uncertain. In this paper, we do not address the issue
of sampling strategies. BURMs can be used in combination with any of the existing
sampling strategies.

In the second step, we search for a minimum-cost path in U using a variant
of Dijkstra’s algorithm. While Dijkstra’s algorithm deals with path cost, a BURM
contains only bounds on path cost. When there are two alternative paths, we may not
be able to decide which one is better, as their bounds may “overlap”. To resolve this,
we need to refine the probability bounds in a suitable way. The details are described
in the next three subsections.

4.2 Searching for a Minimum-Cost Path

Given a BURM U, we search for a minimum-cost path in U using a variant
of Dijkstra’s algorithm. A sketch of the algorithm is shown in Algorithm 1. For
each node v in U, we maintain the lower bound K (u) and upper bound K (u) on
the minimum-cost path from ¢ to u. Recall that every edge e of U carries a set of
probability bounds on I ¢ (q,), for every ¢; € e resulting from the discretization of
e and every feature pair s € S and s’ € S’. Let P(I; y/(4,)) and P(I o (q,)) denote
the lower and upper bounds on the probability of I, (4,), respectively. Using these
bounds, we can calculate the lower bound W (e) and upper bound W (e) on the edge
weight for each edge e € U. By the definition, K (u) and K (u) can then be obtained
by summing up the bounds on the edge weights. Like Dijkstra’s algorithm, we insert
each node u of U into a priority queue @,,, which is implemented as a heap, and then
dequeue them one by one until a minimum-cost path to g, is found. However, instead
of using the path cost from g5 to u as the priority value, we use the path cost bounds
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Algorithm 1 Searching for a minimum-cost path in a BURM.

1: For every node v of a BURM U, initialize the lower and upper bounds on the cost of
the minimum-cost path from gs to u: K(u) = 0, K(u) = 0if u = g¢s, and K(u) =
+00, K (u) = 400 otherwise.

: Insert all nodes of U into a priority queue Q..

: while ., is not empty do

Find in Q,, a node u such that K (u) < K (v) for all v € Q.. Remove u from Q..

if u = ¢, then return.

for every node v incident to u do

Discretize the edge between u and v at a given resolution into a sequence of config-
urations ¢;,7 = 1,2,....
8: For every ¢;, invoke FindColEvents(qi, S,.S’) to find feature pairs s € S and
s’ € S’ that are likely to have P(I y/(4;)) > 0. For each such feature pair, set
P(I,,s1(q;)) = 0and P(I o/ (q,y) = 1, and insert I g/ (q,) into Q.

AR A o

9: Set K, (v) = K(u) + W(u,v) and K, (v) = K (u) + W (u,v).

10: while the two intervals (K, (v), K (v)) and (K (v), K (v)) overlap do

11: RefineProbBounds(Qe, U, gs, u, v).

12: if K.(v) < K(v) then

13: Set K(v) = K, (v) and K (v) = K, (v).

14: Update .., using the new bounds on the cost of the minimum-cost path to v.

Call RefineProbBounds if needed.

(K (u), K(u)). For two nodes v and v in U, We say that u has higher priority than v,
if K(u) < K(v). In our implementation of Q,, if the bound intervals (K (u), K (u))
and (K (v), K (v)) overlap, we refine the probability bounds until we can establish
which node has higher priority in Q,,.

As we have mentioned in Section 3, computing collision probabilities requires
integration over a high-dimensional distribution and is very expensive computation-
ally. We use two techniques for efficient computation of the probability bounds. In
line 8 of Algorithm 1, FindColEvents find feature pairs s € S and s’ € S’ such
that s and s’ are likely to intersect with non-zero probability, when the robot is placed
at ¢;. For each such feature pair, we attach an initial probability bound of [0, 1] to the
event I, .4,y and insert [, o (4, into a set Q). as a candidate for probability bound
refinement in the future. Observe that usually, at each configuration, only a small
number of feature pairs are in close proximity and likely to intersect with non-zero
probability. Therefore, this step drastically reduce the number of collision probabil-
ity bounds that need to be calculated. To search for the intersecting feature pairs
efficiently, we exploit a hierarchical representation of the geometry of the obstacles
and the robot (see Section 4.3) and quickly eliminate most of the feature pairs that
are guaranteed to have zero collision probability.

In lines 11 and 14 of Algorithm 1, RefineProbBounds refines probability
bounds. While searching for a minimum-cost path in U, we may encounter two paths
~ and ~" and must decide which one has lower cost. If the bound intervals on the cost
of v and ' overlap, refinement of the probability bounds becomes necessary. To do
so, we find all events I, o (4) in Q. such that ¢ lies in an edge along v or . We
then refine the probability bounds on these events (see Section 4.4), until we can
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determine the path with lower cost. For efficiency, we order the events found with a
heuristic and process those more likely to help separate the bound intervals first.

To focus on the main issue and keep the presentation simple, Algorithm 1 uses
Dijkstra’s algorithm for graph search. Informed search, such as the A* algorithm
with an admissible heuristic function, is likely to give better results. In our case, one
possible heuristic function is the Euclidean distance between two configurations.

4.3 Bounding Volume Hierarchies

In this and next subsections, we describe our computation of probability bounds.

We restrict ourselves to the two-dimensional case. The basic idea generalizes to the

three-dimensional case in a straightforward way, but the details are more involved.
) For the two-dimensional case, FindColEvents

H(i) (Algorithm 1, line 8) tries to find line segment pairs
s € Sand s’ € S’ that are likely to have intersection
probability P(/, s(q)) > 0, when s’ is placed at con-

s' figuration q. It does so by quickly eliminating most of

the line segment pairs with P(/, . (4)) = 0. Recall that

we model the endpoints of these line segments as prob-

. ability distributions with finite support. Without loss of

. generality, assume that the support regions are rectan-

gular. Let R(s) denote the endpoint regions for a line

. | segment s and H(s) denote the convex hull of R(s).

5 Using the result below, we can check whether a line

segment pair s and s’ has P(I, y(4)) = 0 in constant

Fig. 2. The line segment pair s 0Me, as the convex hulls and the endpoint regions of

and s’ intersect with (a) prob- $ and s’ are all polygons with a constant number of
ability 0 and (b) probability 1. edges. See Fig. 2 for an illustration.

(@)

(

Theorem 1. Let s and s’ denote two line segments with uncertain endpoint positions
in two dimensions.

(1) If H(s) N H(s') = 0, then s and s’ intersect with probability 0.
Q) IfH(s)NH(s") £ 0, R(s)NH(s") =0, and R(s") N H(s) = (), then s and s’
intersect with probability 1.

If S and S’ contain m and n line segments, respectively, it takes O(mn) time to
check all line segment pairs s € S and s’ € S’. This is very time-consuming, as we
need to invoke FindColEvents repeatedly at many configurations. To improve
efficiency, we apply a well-known technique from the collision detection literature
and build bounding volume hierarchies over the geometry of the obstacles and the
robot. There are many different types of bounding volume hierarchies. See [16] for a
survey. We have chosen the sphere tree hierarchy, though other hierarchies, such as
the oriented bounding box (OBB) tree, can be used as well. Specifically, we build two
sphere trees for S’ and S, respectively. Each leaf of a sphere tree contains the convex
hull H (s) for a line segment s, and each internal node v contains a sphere that en-
closes the geometric objects in the children of v (Fig. 3). Clearly H (s) and H (s") can
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intersect only if their enclosing sphere intersect. It then H(s")
follows from Theorem 1 that s and s’ intersect with non-
zero probability only if the spheres enclosing H (s) and
H(s') intersect. By traversing the sphere trees hierarchi-
cally, we can quickly eliminate most of the line segment
pairs that have zero intersection probability and reduce
the cost of checking a quadratic number of line segment
pairs to a much smaller number. We omit the details of
constructing sphere tree hierarchies and traversing them
for collision detection, as they are well documented else-
where (see, e.g., [16]).

In summary, by exploiting a hierarchical representation, FindColEvents ef-
ficiently identifies most line segment pairs with intersection probability 0 and reduce
the trivial probability bound of [0, 1] to [0, 0] for all of them together. For the remain-
ing line segment pairs, which are usually small in number, their probability bounds
are further refined when necessary (see next subsection).

H(s)

Fig. 3. A sphere tree over
two uncertain line segments.

4.4 Hierarchical Refinement of Collision Probability Bounds

We now consider the problem of refining the bounds on the intersection probability
P(I; s (q)) for some line segment pair s € S and s” € S’. To simplify the notation,
we will omit the parameter ¢ and assume that s’ is translated and rotated suitably.

Computing P(I; ) is in essence an integration problem. Let 2 and z3 be the
endpoints of s, and let x3 and x4 be the endpoints of s’. Suppose that x; has proba-
bility density function f;(z;) with rectangular support regions R;. We can calculate
the probability that s and s’ intersect by integrating over Ry X - -+ X Ry:

P(Is,s) :/R m Ay, ... xq) fi(z)day - - fa(xa)dy, )

where A(x1,...,24) is an index function that is 1 if and only if s and s’ intersect. In
two-dimensional environments, this integral is 8-dimensional.

To evaluate this integral, we decompose the integration domain Ry X --- X Ry
hierarchically into a set of subdomains such that in each subdomain, the index func-
tion A is constant. By summing up the probability mass associated with all the sub-
domains where A is 1, we get the value for P(/; /). During the hierarchical decom-
position process, we maintain three lists of subdomains: (i) subdomains where A is
always 1, (ii) subdomains where A is always 0, and (iii) subdomains where A has
mixed values (0 or 1). Interestingly, these three lists provide an upper bound and a
lower bound on P(I; s ) at any moment during the decomposition process. Let p;
and po be the probability mass associated with subdomains in list (i) and (ii), respec-
tively. Clearly, we have p; < P(Is ) < 1 — po. The probability mass associated
with subdomains in list (iii) is 1 — p; — po. It represents the gap between the upper
and lower bounds. To refine the bounds, we simply take a subdomain from list (iii)
and decompose it further until some of the refined subdomains can be assigned to
either list (i) or list (ii).
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m O
B B

(@) )

Fig. 4. Decomposing the integration domain for intersection probability calculation. (a) The
quadtree-based procedure. (b) Our procedure that takes into account the geometry of intersect-
ing line segments. The example shows that after roughly a same number of cuts, our procedure
identifies a large part of the domain for which no further decomposition is needed.

To decompose an integration domain R; X --- X R4, we take a horizontal or
vertical cut on one or more of the endpoint regions R; and obtain a set of subdomains
R} x --- x R} such that R} is rectangular and R, C R; for i = 1,2,3,4. Using
Theorem 1, we can easily determine whether the index function A has constant value
over a subdomain and assign the subdomain to the appropriate list.

There are various strategies to decompose a rectangular integration domain. The
main goal is to assign each subdomain to list (i) or (ii) and avoid unnecessarily de-
composing into a large number of tiny subdomains. One possible decomposition
procedure, based on the quadtree [6], always cuts an endpoint region in the middle
either horizontally or vertically (Fig. 4a). This is simple to implement, but does not
always results in the best decomposition, as it may unnecessarily cut a domain into
small pieces. Our decomposition procedure uses the geometry of the two intersecting
line segments s and s’ to decide where to cut. This results in better decomposition,
but the trade-off is that each decomposition step is slightly more expensive. To deter-
mine how to cut, our procedure enumerates several cases that depend on the relative
positions of the endpoint regions and convex hulls for s and s’. The details are not
particularly important. An example decomposition is shown in Fig. 45 for illustra-
tion. In the experiments, our decomposition procedure usually gives slightly better
performance than the quadtree-based procedure.

An alternative way of evaluating the integral in (5) is to perform Monte Carlo
integration [11] by sampling from the integration domain 2y X - - - X R4. Each sample
consists of four points x1, ..., x4 with ; € R;. Let A; be the value of the index
function A for the ith sample, and p be the value of the integral in (5). Then an
estimate of p is given by

LN
MZN;&- 6)
The values A;,7 = 1,2,..., N are in fact a set of independent and identically dis-

tributed (i.i.d.) random variables. Under a wide range of sampling distributions, the
mean of A; is equal to p. Let V4 be the variance of A;. By (6), py is a random vari-
able with mean p and variance V4 /N. We can then apply Chebychev’s inequality

and obtain
P(Ipv —p)| = (1/8)(Va/N) V) <, ™
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which implies that p, converges to p at the rate O(N ~'/2). More precisely, for any §
arbitrarily small, we can determine the number of samples, /V, needed to ensure that
the estimate py does not deviate too much from p. So instead of maintaining upper
and lower bounds on the collision probabilities, we can choose N large enough to get
sufficiently accurate estimates for all the collision probabilities and find a minimum-
cost path with high probability. Unfortunately, using Monte Carlo integration this
way is not efficient (see Section 5), as it uses the same number of samples for esti-
mation everywhere over the entire environment.

An interesting method is to combine probability bound refinement and Monte
Carlo integration. We start by decomposing the integration domain as described ear-
lier. When the probability mass associated with a subdomain is small enough, we
apply the Monte Carlo method with a small number of samples to get an estimate
and close the gap between the upper and lower bounds. Strictly speaking, if we do
this, we cannot guarantee that the algorithm finds a minimum-cost path in U. How-
ever, if we use a sufficient number of samples for Monte Carlo integration, we can
provide the guarantee with high probability. Furthermore, even when the algorithm
fails to find a minimum-cost path, the cost of the resulting path is still a good ap-
proximation to the minimum cost. The reason is that due to the bound in (7), we
make a mistake only when two paths have very similar cost. We use this combined
method in our implementation of the algorithm, and it achieves better performance
better than one that uses pure probability bound refinement.

5 Experiments

We made a preliminary implementation of our algorithm and compared it with two
alternatives. One algorithm, which we developed for the purpose of comparison, is
similar to BURM. It also builds an uncertainty roadmap. However, instead of re-
fining the probability bounds incrementally when necessary, it estimates the exact
probabilities using Monte Carlo integration. We call this algorithm MCURM. In our
tests, MCURM uses 100 samples to evaluate each intersection probability P( 4(4))-
The other algorithm that we compared is Lazy-PRM [2], which does not take into
account uncertainty during planning.

In our tests, all three algorithms use the same sampling strategy, which is a hy-
brid strategy consisting of the bridge test and the uniform sampler [7]. We ran the
algorithms on each test case and repeated 30 times independently. The performance
statistics reported here are the averages of 30 runs. In each run, the three algorithms
used the same set of sampled configurations. So the performance difference results
from the way they find a minimum-cost path in an (uncertainty) roadmap rather than
random variations in sampling the configuration space.

The test results are shown in Fig. 5 and Table 1. In tests 1-3, the robot has a rect-
angular shape and only translates. In these three tests, the environments are similar.
The robot essentially chooses between two corridors to go from the start to the goal
position. The main differences among the tests are (i) the level of uncertainty in the
obstacle geometry and (ii) the robot start position. In test 1 (Fig. Sa), the uncertainty
is low and roughly the same everywhere. So the robot chooses the upper corridor,
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(c) Test 3. (d) Test 4

Fig. 5. Test environments and results. The boxes around the vertices mark the support regions
of the probability distributions modeling the endpoint positions of line segments forming the
obstacle boundaries.

based mainly on the path length consideration. However, it is interesting to observe
that although a shortest path with respect to the path length normally touches obsta-
cle boundaries, our minimal-cost path stays roughly in the middle of the corridor. It
does so to avoid collision due to the uncertainty in obstacle geometry. In test 2, the
upper corridor has substantially higher uncertainty than the lower corridor. On bal-
ance, it is better for the robot to choose the slightly longer, but safer lower corridor
(Fig. 5b). In test 3, the uncertainty in obstacle geometry remains the same as that in
test 2, but the start position for the robot moves higher. The robot again decides to
go through the upper corridor, because despite the higher collision risk of the upper
corridor, it is much shorter than the lower corridor (Fig. 5¢).

In test 4, the robot can both translate and rotate. To reach its goal, the robot can
either take the risk of collision and squeeze through the narrow passage or make a
long detour. It is not obvious which choice is better. The answer depends, of course,
on the cost of collision. In this case, the robot decides to take the riskier, but shorter
path (Fig. 5d). Interestingly, our algorithm finds two paths of similar cost, depending
on the set of sampled configurations. One path veers to the right (Fig. 5d) when it
approaches the obstacle near the lower entrance to the narrow passage, and the other
veers to the left. This is in fact not surprising, because regardless of whether the path
veers to the the left or right, the uncertainty that the path encounters remains similar
and the path length does not differ by much.
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Table 1. Performance statistics.

Test Env.  No. Nodes Cost Time (s)
BURM MCURM Lazy-PRM BURM MCURM Lazy-PRM
1 300 699 699 789 59 3,119 42
2 300 741 741 1,059 72 2,871 42
3 300 761 760 891 74 2,994 35
4 500 526 526 668 61 2,534 36

Now let us look at the performance statistics. For each test case, Table 1 lists
the number of nodes in the (uncertainty) roadmap, the running times, and the cost
of the paths found by the three algorithms. Note that the absolute running times
reported in Table 1 are a little slow, as our implementation is still preliminary and
does not optimize the speed of important primitive geometric operations such as the
intersection test. We plan to improve the implementation in the future. However, this
does not significantly affect the comparison of the three algorithms based on their
relative performance, as they use the same implementation of primitive operations.

BURM and MCURM find paths with almost the same cost. BURM is, however,
40-50 times faster. This clearly demonstrates the advantage of the approach of eval-
uating uncertainty hierarchically at multiple resolutions.

The comparison between BURM and Lazy-PRM is even more interesting. As
expected, BURM finds paths with lower cost, as it takes uncertainty into account
during planning. However, it is somewhat surprising that BURM is not much slower
than Lazy-PRM: BURM is only 2 times slower than Lazy-PRM, while it is at least 40
faster than MCURM. The reason is that uncertainty comes into play in deciding the
best path when the robot operates in close proximity of the obstacles. This usually
happens in localized regions of the configuration space only. BURM takes advantage
of this by maintaining bounds on collision probabilities rather than calculating the
exact probabilities. It refines these bounds incrementally by exploiting bounding vol-
ume hierarchies on the geometry of the obstacles and the robot and by hierarchically
decomposing the integration domain for collision probability calculation. The run-
ning time comparison with Lazy-PRM provides further evidence on the advantage
of our approach.

To better understand the behavior of BURM, we applied it to an environment
similar to that in tests 1-3 and varied the uncertainty level in the obstacle geome-
try. The resulting bounded uncertainty roadmaps are shown in Fig. 6. The edges of
the roadmaps are colored to indicate how tight the associated collision probability
bounds are. The roadmap in Fig. 6a serves as a reference point for comparison. The
uncertainty is low in both the upper and lower corridors, and the collision probability
bounds are refined to various degrees. As the uncertainty gets higher in the upper cor-
ridor, the collision probability bounds there are tightened to differentiate the quality
of the paths (Fig. 6b). It is also interesting to observe that the upper corridor is not
explored as much, because the paths in the lower corridor are far better. Finally, as
the uncertainty in the lower corridor also increases, both corridors must be explored,



14 Leonidas J. Guibas, David Hsu, Hanna Kurniawati, and Ehsan Rehman

(@) (b (©)

Fig. 6. Color-coded BURMs. Red, gray, and blue-green marks edges with tight, intermediate,
and loose collision probability bounds, respectively. Bright green marks edges with collision
probability 0.

and the collision probability bounds carefully tightened in order to determine the best
path (Fig. 6¢).

Bounded uncertainty roadmaps can be used with any existing sampling strate-
gies. To demonstrate this, we performed additional tests by varying the sampling
strategy used and the number of nodes in the uncertainty roadmap. We tried two addi-
tional strategies: the uniform sampler and the Gaussian sampler [3]. For all sampling
strategies, as the roadmap size increases, the running time increases correspondingly.
Two plots of representative results are shown in Fig. 7. They indicate that the cost of
the minimum-cost path found decreases with the roadmap size up to a certain point
and then stabilizes. So one way of minimizing the path cost is to run our algorithm
in an “anytime” fashion by gradually adding more nodes to the roadmap. The effect
of different sampling strategies is more pronounced in complex environments. In the
simpler environment (see Fig. 5b), when the number of roadmap nodes is sufficiently
large, the results obtained by the different sampling strategies are comparable. When
the number of nodes is small, the Gaussian sampler does not behave very well, as
it biases sampling towards the obstacle boundaries, resulting in high collision cost.
In the more complex environment (see Fig. 5d), which contains several narrow pas-
sages, the hybrid bridge test and the Gaussian sampler have clear advantages over the
uniform sampler. Just as in classic motion planning, effective sampling strategies for
constructing uncertainty roadmaps are important and require further investigation.

6 Conclusion

We have introduced the notion of a bounded uncertainty roadmap and used it to ex-
tend sampling-based algorithms for planning under uncertainty in environment maps.
By evaluating uncertainty hierarchically at multiple resolutions in different regions
of a robot’s configuration space, our approach greatly improves planning efficiency.
Experimental results, based on a preliminary implementation of our planning algo-
rithm, demonstrate that it is highly effective.

There are many interesting directions for future work. The main idea of our ap-
proach, evaluating uncertainty hierarchically at multiple resolutions, is not restricted
to the particular path cost function used here. For example, our current path cost
function sums up the collision costs for the configurations along a path. Sometimes
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Fig. 7. The change in the cost of the minimum-cost path found as a function of the sampling
strategy and the number of nodes in the uncertainty roadmap.

it may be more suitable to take the maximum of rather than sum up the collision
costs. Our idea can be applied to this new path cost function with small modifi-
cations. We would also like to understand the effect of sampling strategies on the
running time and the quality of the result for our algorithm with respect to particular
classes of path cost functions. One idea is to sample a robot’s configuration space
adaptively and adjust the sampling distribution based on the collision probabilities
of previously sampled configurations. Finally, we will implement our algorithm and
test it in three-dimensional environments.
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A Proof of Theorem 1

Proof. To prove part (1), observe that since H(s) N H(s') = 0, line segments s and
s’ has no intersection for all pairs s and s’ whose endpoints lie in R(s) and R(s'),
respectively. This immediately implies that the intersection probability is O.

Now consider part (2). We start with a simple observation. Let o be a fixed line
segment such that the endpoints of o lie outside H(o’) for some line segment o’
with uncertain endpoint positions and o does not intersect with R(c”). Then either o
intersects with o’ for all ¢’ whose endpoints lie in R(o”), or o intersects with none
of them. Since R(s) N H(s') = (), the endpoints of s must lie outside of H(s").
Furthermore, s does not intersect with R(s’), as R(s") N H(s) = ). From our ob-
servation, it follows that s intersects with all s’ with endpoints in R(s’) or intersects
with none of them at all, and this is true for all s with endpoints lying in R(s). Now,
since H (s) N H(s") # 0, there exists at least one pair of intersecting line segments s
and s’ with endpoints in R(s) and R(s’). By the convexity of R(s), R(s"), H(s) and
H(s'), we conclude that all line segment pairs s and s’ intersect. Thus the probability
of intersection is 1.



