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Summary. This paper presents Workspace-based Connectivity Oracle (WCO), a
dynamic sampling strategy for probabilistic roadmap planning. WCO uses both
domain knowledge—specifically, workspace geometry—and sampling history to con-
struct dynamic sampling distributions. It is composed of many component samplers,
each based on a geometric feature of a robot. A component sampler updates its dis-
tribution, using information from the workspace geometry and the current state of
the roadmap being constructed. These component samplers are combined through
the adaptive hybrid sampling approach, based on their sampling histories. In the
tests on rigid and articulated robots in 2-D and 3-D workspaces, WCO showed
strong performance, compared with sampling strategies that use dynamic sampling
or workspace information alone.

1 Introduction

Probabilistic roadmap (PRM) planning [6] is currently the most successful
approach for motion planning of robots with many degrees of freedom (DOFs).
PRM planners sample a robot’s configuration space C according to a suitable
probability distribution and capture the connectivity of C in a graph, called
a roadmap, which is an extremely simplified representation of C.

Despite their successes, PRM planners behave poorly when C contains
narrow passages. A narrow passage is a small region whose removal changes
the connectivity of C. The probability of sampling in narrow passages is low,
because of their small volumes. In such spaces, it is difficult for PRM planners
to build roadmaps with good connectivity. Although many PRM planners have
been proposed (e.g., [4, 9, 12, 16, 17, 18, 21, 22]), narrow passages remain a
bottleneck for PRM planning.

With few exceptions, most PRM planners use static sampling distributions
based on a priori assumed geometric properties of the configuration space
or the workspace. Interestingly, the first PRM planner [16], which consists
of two sampling stages, uses dynamic sampling: the second stage exploits
information gathered in the first stage to update the sampling distribution
and resample C. Recently, with the use of machine learning techniques in PRM
planning [5, 13, 19], dynamic sampling has again gained popularity. Dynamic
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sampling incrementally infers partial knowledge of key geometric properties
of C during the roadmap construction and uses this knowledge to adapt the
sampling distribution. It reveals and exploits the probabilistic foundations of
PRM and is a promising way of speeding up PRM planners [11].

To infer geometric properties of C, existing PRM planners with dynamic
sampling use sampling history. This is, however, inadequate. For example,
to learn the usefulness of sampling a particular region of C, we need many
samples in that region. This is difficult to achieve in narrow passages. One
way of addressing this issue is to use domain knowledge such as the geometry
of robots and obstacles in the workspace WW. Compared with C, W has low
dimensionality and an explicit geometric representation, which make it easy
to find narrow passages. Narrow passages in W often suggest the presence
and the location of narrow passages in C. Furthermore, workspace geometry
provides information complementary to that from sampling history.

In this paper, we present a new PRM planner that combines information
from both workspace geometry and sampling history to construct a dynamic
sampling distribution. Core to our new planner is a new sampling strategy
called Workspace-based Connectivity Oracle (WCO). WCO is an ensemble
sampler composed of many component samplers. They are all based on a key
observation: a collision-free path between a start configuration s and a goal
configuration g in a robot’s configuration space C implies a collision-free path
in W for every point in the robot between the corresponding start and goal
positions of the point. So, if we find a collision-free path in W for every point
in the robot and all these paths correspond to the same path « in C, then ~y
is indeed a collision-free path in C for the robot to move from s to g. Finding
a path for every point is, of course, impractical. Nevertheless, we can use the
paths of a set of geometric features in VW—points, line segments, triangles,
etc.— to predict regions of C that are likely to be useful for connecting dis-
connected components of a roadmap. Each WCO component sampler is based
on a single geometric feature. They are then combined, based on their sam-
pling histories, through the adaptive hybrid sampling (AHS) approach [13],
which is a restricted form of reinforcement learning.

2 Background
2.1 PRM Basics

The standard multi-query PRM approach consists of two phases, roadmap
construction and roadmap query. In the roadmap construction phase, the
planner samples C according to a suitable probability distribution and ap-
proximates the connectivity of C with a roadmap graph R. The nodes of
R represent sampled collision-free configurations, called milestones. An edge
exists between two milestones if they can be connected with a collision-free
straight-line path. In the query phase, the planner is given a start and a goal
configuration. It tries to connect the two query configurations to two corre-
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sponding milestones in R and then searches for a path in R between these
two milestones, using standard graph search algorithms. See [6] for details.

The performance of PRM planners depends critically on the quality of
roadmaps constructed. A good roadmap has two important properties: cov-
erage and connectivity. Denote by F. the collision-free subset of C. Good
coverage means that for any configuration ¢ € F., there is a collision-free
straight-line path between ¢ and a milestone in R with high probability. Good
connectivity means that any two milestones in the same connected component
of F. are also connected by a path in R. Good coverage is relatively easy to
achieve through uniform sampling [15]. Good connectivity is more difficult to
achieve, especially when F. contains narrow passages.

2.2 PRM Planners that Generate Dynamic Sampling Distributions
In addition to the early PRM planner in [16], the planner in [19] also uses
a two-stage sampling strategy, but employs more sophisticated techniques
to generate the distribution for resampling C in the second stage. Instead
of breaking sampling into two stages, some recent planners use on-line ma-
chine learning to update sampling distributions incrementally. In adaptive
hybrid sampling [13], the sample distribution is constructed as a linearly
weighted combination of component distributions. To adapt the distribution,
the weights are updated after each sampling operation during roadmap con-
struction to favor component distributions having the most promising results.
In entropy-guided planning [5], an approximate model of C is built and used
to sample C so that the expected value of a utility function is maximized.

2.3 PRM Planners that Use Workspace Information

Several PRM planners use workspace geometry as a guide for sampling C. Let
Fy denote the subset of W that is not occupied by obstacles. Some planners
bias sampling by focusing a fixed set of workspace paths, e.g., paths on the
medial axis of F,y [9, 10, 22]. Other planners bias sampling by identifying im-
portant regions in W. For instance, the watershed algorithm focuses on small
regions connecting large open regions [21]. Workspace importance sampling
(WIS) focuses on regions with small local feature size [17]. These planners all
use static sampling distributions.

In summary, workspace geometry has been used in earlier work to con-
struct static sampling distributions for PRM planners. Sampling history has
been used to update sampling distributions dynamically. Our new sampling
strategy combines the information from both workspace geometry and sam-
pling history to construct a dynamic sampling distribution.

3 Overview
3.1 The WCO Planner

Our planner adopts the standard multi-query PRM approach described in
Section 2.1 and uses WCO for sampling C. Since there is no confusion, we use
WCO to refer to both the sampling strategy and the planner.
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Before describing WCO, let us first consider the relationship between C
and W. For a point f in the robot, let Py(¢) be the position in W of f when
the robot is placed at configuration ¢ € C. We call the mapping Ps:C — W
a projection, as C has higher dimensionality than V. Similarly, we define the
lift mapping Ly: W — 2€. For any 2 € W, L¢(z) is the subset of C such that
each configuration in Ly(x) places f at x. For convenience, we extend the
definitions of Py and Lf to subsets of C and W, respectively, by taking set
union. Using this notation, we can state the observation in Section 1 formally:

Proposition 1. If two configurations q,q' € C are connected by a path in Fe,
then for any point f in a robot, Ps(q) and Ps(q'), the projections of g and ¢’
in W, are connected by a path in F,y,.

During the roadmap construction, WCO maintains a partially constructed
roadmap R. Distinct connected components of R may in fact lie in the same
connected component of F., due to inadequate sampling of certain critical
regions. To sample such regions, WCO examines the workspace paths of a
set of feature points in the robot and constructs a sampler for each feature
point f. To connect two components R; and Ry of R, we use Py to project
the milestones of R into W and search for “channels” in W that connect the
projected milestones of R; and Ro. These channels suggest the regions of C
that may connect R; and Ra. So, we use Ly to lift the channels into C and
adapt the distribution to sample more densely in the regions covered by the
lifted channels. To be sensitive to the changes in R, WCO adapts its sampling
distribution incrementally whenever a new milestone is added to R.

Although workspace-based PRM planners often consider only a single fea-
ture point, this is inadequate. By Proposition 1, a collision-free path in C
implies a collision-free path in W for every point in the robot. So, we use
a set of pre-selected feature points and construct an independent sampler s;
for each feature point f;, « = 1,2,.... We make two simplifying assumptions.
First, a finite number of feature points are sufficient to indicate the important
regions of C for sampling. Second, we can treat the feature points indepen-
dently. These two assumptions reduce the computational cost and are shown
to be effective in identifying important regions of C (see Section 6). Despite the
independence assumption, the kinematic constraints of a robot are not entirely
ignored. Implicitly, WCO assigns higher sampling density to regions obeying
such constraints. To provide roadmap coverage, we add a uniform sampler sg
to the WCO samplers s, S2,... and form the set S = {sg, s1,52,...}. The
component samplers in S are combined through the AHS approach to form
an ensemble sampler: each component sampler has an associated weight pro-
portional to the probability of it being used, and the weights are adjusted to
reflect the success of the sampler according to the sampling history.

3.2 When is Workspace Connectivity Information Useful?

To represent F,,, the collision-free subset of W, WCO computes a decompo-
sition 7 of F,, into non-overlapping cells. It represents the connectivity of
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Fig. 1. A partition of W induces a partition of C. Obstacles are shaded in dark color.
A workspace channel and its lifted version are shaded in light color. In general, Ly
is a one to many mapping. It maps a region of W to several regions of C.

Fw as an adjacency graph G for the cell decomposition 7. Each node of
G represents a cell in 7, and two nodes are connected by an edge if the
corresponding cells are adjacent. By Proposition 1, if two cells ¢,t' € 7 are
disconnected in F,,, then Ls(¢t) and L(t') are disconnected in F. for any
feature point f. Thus, the connectivity information encoded in G can help
in capturing the connectivity of 7. during the roadmap construction.

Although we often think of YW and C as two distinct spaces, they are closely
related. For a fixed feature point f, 7 induces a partition of the collision-free
subset of C into equivalent classes: Fo = (J,c7(Ls(t)NFe) and for all ¢, ¢ € T
and t # t', Ly(t) N Ly(t') = 0 (Fig. 1). Two configurations are in the same
equivalent class if they project to the same cell in 7. WCO exploits this
connection extensively to integrate the information from both W and C.

To connect two milestones m and m’ of a roadmap, consider their projec-
tions. Suppose that Py(m) € t and Py(m') € ¢/, where t,t' € T. A workspace
channel X is the set of cells corresponding to the nodes on a path in G be-
tween ¢ and . The lifted channel L;()) suggests a region of F, for sampling
in order to connect m and m/'. Of course, no particular L¢(\) guarantees that
a path between m and m’ can be found within it, as the converse of Proposi-
tion 1 is not true in general. Nevertheless, a channel helps to improve sampling
efficiency by narrowing down the sampling domain to a relevant subset of F.

The usefulness of a workspace channel can be defined formally:

Definition 1. Let m and m’ be two milestones of a roadmap and X be a
workspace channel between the cells containing Pr(m) and Pr(m’) for some
feature point f. The channel A has the (n,p)-property if n samples drawn from
L¢(N) are sufficient to find a path in F. between m and m’ with probability at
least p, provided such a path exists.

A channel L;(A) has good (n,p)-property if n is small and p is large. It is
known that L ¢(\) has good (n, p)-property under various conditions, e.g., path
clearance [14], e-complexity [20], and expansiveness [12]. The effectiveness in
finding useful workspace channels depends on the cell decomposition and the
method of searching for channels. These issues are detailed in the next section.



6 Hanna Kurniawati and David Hsu

4 Constructing a WCO Component Sampler

We now describe the construction of a component sampler of WCO for a fixed
feature point, specifically, how to extract workspace connectivity (Section 4.1),
how to adapt the sampling distribution (Section 4.2), and how to take a sample
for rigid and articulated robots (Section 4.3).

4.1 Extracting Workspace Connectivity

WCO computes a cell decomposition 7 of F,, and represents the connec-
tivity of F, in the adjacency graph of 7. This decomposition is computed
only once and used by all WCO component samplers. Many spatial decom-
position methods can be used here, e.g., triangulations and quadtrees for 2-D
workspaces and their counterparts for 3-D workspaces.

Building on our earlier work [17], we have chosen to sample the boundary
of obstacles in W and construct a Delaunay triangulation [8] over the sam-
pled points. Under reasonable assumptions, the constructed triangulation is
conforming [1], meaning that every triangle in the resulting triangulation lies
either entirely in F,, or its complement. Although helpful, this property is not
required for our purposes. Throughout the rest of the paper, triangles refer to
triangles in 2-D workspaces and tetrahedra in 3-D workspaces.

4.2 Adapting the Sampling Distribution

A skeleton of a WCO component sampler is shown in Algorithm 1. Let us
now look at how it represents and updates the sampling distribution based
on workspace channels. During the roadmap construction, WCO maintains
a partially constructed roadmap R. To sample a new milestone, each com-
ponent sampler maintains a separate sampling distribution 7 defined over
7. The distribution 7, assigns equal probabilities to all triangles of 7 inside
workspace channels and zero probabilities to all other triangles.

To find workspace channels, we first project milestones of R to W (Algo-
rithm 1, line 8). Suppose that a milestone m belongs to a roadmap component
R; of R. We associate R; with the triangle ¢ € 7 that contains Py(m). Thus,
each triangle ¢ contains a set of labels that indicates the roadmap components
which ¢ is associated with. A triangle ¢ is a terminal if its label set is non-
empty, meaning that ¢ contains at least one projected milestone. See Fig. 2a
for an example.

Next, we find channels that connect terminals with different label sets by
considering the adjacency graph Gr. We compute a subgraph of G, called
a channel graph G', that spans all the terminals and connect them together.
The workspace channels are then the triangles corresponding to the vertices
of G'. The intuition behind the channel graph is very much like that of a
roadmap in the configuration space: it uses simple paths, in this case, the
shortest paths to connect every pair of two terminals that are close to each
other and have different label sets. See Fig. 2 for an example.
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Algorithm 1 A WCO component sampler.

1: Given a feature point f, sample a configuration ¢, based on the sampling distri-
bution defined over the decomposition 7.
2: if ¢ is collision-free then
3:  Insert q into the roadmap R as a new milestone m.
4:  Np,«< the set of at most M milestones closest to m among all existing mile-
stones of R within a distance of Dpax from m. M and Dmax are fixed con-

stants.
5. for each m' € N,, do
6: if m’ and m lie in different connected components of R then
T Check whether there is a collision-free straight-line path between m and

m/'. If so, insert an edge between m and m’ into R,
8:  Project m to W.
9:  Update the label sets for all affected triangles in 7.
10:  Delete paths in G’ that connect terminals with the same label set.
11:  Let t € 7 be the triangle that contains Py(m). Perform a breadth-first search
from ¢ and stop when reaching the first terminal ¢’ other than ¢.
12:  Add the path between t and t’ to G’ if t and ¢’ hold different label sets.
13:  Update the sampling distribution.

<)\

Ry

(a)

Fig. 2. (a) Milestones projected to the triangulated workspace. The labels indicate
the roadmap components to which the milestones belong. The feature point of the
rigid robot is marked by a black dot. (b) The adjacency graph Gr. Terminals are
marked by crosses. (¢) The channel graph G’ . Paths that connect terminals with
the same label set (e.g., the path between the two terminals labelled {Rs}) are not
in G’, as they connect terminals corresponding to milestones in the same connected
components of R and hence unlikely to help in improving the connectivity of R.

The channel graph is computed incrementally, as new milestones are added
(Algorithm 1, lines 10-12). The incremental construction allows WCO to re-
spond to changes in R and simplifies computation. To see that G’ indeed
“connects” all the terminals together, note that the channel graph G’ clearly
contains all the terminals. Furthermore, it is weakly connected in the sense
that between every pair of terminals ¢ and ', there is a sequence of terminals
ti,i=1,2,...,n with t; =t and ¢,, = ¢’ such that every adjacent pair ¢; and
t;+1 either have exactly the same label set or have a path between them in
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G’. In the example shown in Fig. 2¢, the two terminals {R3} and {R4} are
weakly connected.

The incremental construction of the channel graph is quite efficient. Using
the union-find data structure [7], we can project a milestone and update the
label sets (Algorithm 1, lines 8-9) in O(|R|) worst-case time, where |R] is the
number of different labels and is equal to the number of roadmap components.
A loose upper bound for updating G’ (Algorithm 1, lines 10-12) is O(|7|),
where |7 is the number of triangles in 7. In practice, the upper bound is
rarely reached. The entire update takes little time, compared with other parts
of the planner (see Section 6.1).

4.3 Sampling a Configuration

To generate a sample from C (Algorithm 1, line 1), we perform two simple
steps. First, we sample a point x € F,, by picking a triangle ¢t € 7 according to
the distribution 7, and then picking a point x € t uniformly at random. Next,
we sample a configuration from Ly(z). The details depend on the specifics
of the robot’s kinematics and are described below separately for rigid and
articulated robots.

The configuration ¢ of a rigid robot consists of a positional component ¢,
which specifies the position of the robot’s reference point in the workspace, and
an orientational component ¢, which specifies the orientation of the robot.
To sample a configuration, we first pick gp uniformly at random. We then pick
a point € F,, as described above, and compute g, so that at ¢ = (¢, qo),
the robot’s feature point f lies at x and the robot has orientation gg.

For an articulated robot, the configuration ¢ specifies its joints parameters
q1, 93, - - .- Suppose that the feature point f lies in the ¢th link of the robot.
To sample a configuration, we again pick a point x € F,, and then find the
joint parameters q1,qa, . .., q¢ that place f at = by solving the robot’s inverse
kinematics (IK) equations. If IK has no solution, we must pick another x. If
IK has more than one solution, we pick one at random. We then sample the
other joint parameters qgy1, ge+2, ... uniformly at random. Various improve-
ments can be made to speed-up this process. For instance, we may restrict
the sampling domain according to the reachability of each feature point.

5 Constructing the Ensemble Sampler

WCO is an ensemble sampler composed of many component samplers, which
all have different distributions due to the different feature points used. If WCO
uses a single feature point, i.e., a single component sampler, then to perform
well, this component sampler must generate a good distribution everywhere
in C. In general, such a sampler is difficult to construct. Using multiple feature
points simplifies the task. It is sufficient for a component sampler to work well
in only part of C, provided that several component samplers can be combined
effectively to generate a distribution good in entire C.
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Algorithm 2 Workspace-based Connectivity Oracle.

1: Let p; be the probability of picking a component sampler s;. Initialize p; = 1/K
fori=0,1,..., K — 1.

:fort=1,2,...do

Pick a component sampler s; from S = {so, s1, ..., Sx—1} with probability p;.

Sample a new configuration g using the component sampler picked.

if a new milestone m is added to the roadmap R then
Update the distributions for each component sampler s;,¢ =1,..., K — 1.
Update the probabilities p;,i =0,1,..., K — 1.

5.1 Combining Samplers through AHS

Recall from Section 3.1 that WCO uses a set of component samplers,
S = {s0,51,...,8Kk-1}, where sg is a special, uniform sampler and each
st = 1,2,..., K — 1 is based on a feature point of the robot. We combine
the component samplers through AHS. Each sampler s; has an associated
weight w;, which reflects the success of s; according to its sampling history.
The sampler s; is chosen to run with probability p; that depends on w;. To
adapt the ensemble distribution, we adjust the weights so that the component
samplers with better performance have higher weights. See Algorithm 2 for
an outline of the algorithm.
In iteration ¢ of Algorithm 2, we choose s; with probability
—q g )
pi ( n) Zfigl wi(t) K ( )
where w;(t) is the weight of s; in iteration ¢ and n € (0,1] is a small fixed
constant. We use the chosen s; to sample a new milestone m and assign to s;
a reward r that depends on the effect of m on the roadmap R:

e The milestone m reduces the number of connected components of R. In
this case, m merges two or more connected components and improves its
connectivity. We set r = 1.

e The milestone m increases the number of connected components of R. In
this case, m creates a new connected component and potentially improves
the coverage of R. We also set r = 1.

e Otherwise, r = 0.

We then update the weight of s;:
wi(t +1) = wi(t) exp ((r/pi)n/K) . (2)

Note that the exponent depends on the received reward r weighted by the
probability p; of choosing s;. If a sampler is not chosen, then its weight remains
the same as before: w; (t+1) = w;(t). More details on AHS are available in [13].

Although there are many possible schemes for updating the weights, AHS
has an important advantage. It can be shown that under suitable assump-
tions, the ensemble sampler generated by AHS is competitive against the best
component sampler [13]. More precisely, the following competitive ratio holds:
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Rmax - R S (e - 1)77Rmax + KI"I;K; (3)
where R is the expected total reward received by the ensemble sampler and
Riax is the total reward received by the best component sampler if it is always
chosen to run. This result can be interpreted as saying that the ensemble
sampler performs almost as well as the best component sampler, without
knowing in advance which component sampler is the best. With some small
variations on the scheme for updating the weights, one can also show that
the modified ensemble sampler is competitive against any linearly weighted
combination of component samplers, an even stronger result theoretically [2].
This is one reason why we choose AHS for combining component samplers.

The ensemble sampling distribution 7 is a linearly weighted combination
of component distributions: 7 = Zfigl p;.m;, where p; is the probability for
choosing s; and m; is the distribution for s;. Each WCO component sampler
maintains its own workspace channels and only samples in the lifted channels
in C. Since the component sampling distributions are combined linearly, the
intersections of lifted channels from different component samplers have higher
probability of being sampled. These intersections contain the configurations
that simultaneously place multiple feature points in their respective workspace
channels. Thus, although each component sampler operates independently,
the ensemble sampler automatically takes into account a robot’s kinematic
constraints on the feature points.

5.2 Choosing Feature Points

We must still choose a set of feature points. By Proposition 1, a collision-free
path in C implies a collision-free path in W for every point in the robot. So,
to infer the configuration-space path from the workspace paths of a finite set
of feature points, these workspace paths must be representative. Ideally, the
feature set is small, because we construct a component sampler for each feature
point. A large number of component samplers increase both the difficulty of
identifying the good ones through AHS and the computational cost.

Since small feature sets are preferred, we choose feature points to be spaced
far apart. The reason is that feature points close together generate similar
sampling distributions. Below we give specific choices for rigid and articulated
robots. These heuristics worked well in our experiments, but more research is
needed to develop a principled method for selecting feature points.

For a rigid robot, the feature set is the union of two point sets, CH and
MP. CH consists of the vertices on the convex hull of the robot. MP contains
a single point in the middle of the robot, e.g., the centroid. For an articulated
robot, we take CH and MP with respect to each rigid link of the robot and
take their union.

6 Implementation & Experimental Results

We implemented the new planner in C++, using the Qhull [3] library for
workspace triangulation. We tested the planner and compared it with other
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PRM planners. For each planner, we set the required parameters by perform-
ing 10 trial runs and choosing the values that gave good results. We ran the
planner 30 times independently on each test environment. Each run was ter-
minated once the query was solved. Note that we did not insert the query
configurations into the roadmap as milestones or used any information from
the query configurations to bias sampling. The experiments were conducted
on a PC with a 3 GHz processor and 1 GB memory. The results reported
below are the averages of 30 runs.

6.1 Comparison with other PRM planners

Since WCO uses workspace information and generates a dynamic sampling
distribution, we compared it with PRM planners of these two classes. For
the former, we compared with workspace importance sampling (WIS) [17].
For the latter, we compared with the original AHS [13], whose component
samplers consist of a uniform sampler, several Gaussian samplers, and several
bridge tests. These two planners were chosen because they are closely related
to our work, and both have shown strong performance in narrow passages
sampling. We also ran a PRM planner with uniform sampling to benchmark
the difficulty of test environments.

We tested our planner on Tests 1-4. In all tests, WCO uses CH U MP as
the feature set. However, since Test 4 uses a common articulated robot with a
fixed base and all rotational joints, the workspace displacement of the robot’s
links near the base is very limited. To improve computational efficiency, we
consider only the feature points in the furthest link, which contains the end-
effector and the large plate.

WIS uses a single feature point. In our tests, it used MP for a rigid robot
(Tests 1-3) and MP of the furthest link for an articulated robot (Test 4).

Overall, WCO performed much better than the original AHS and WIS
(see Table 1). Although WCO incurs the additional costs of processing the
workspace geometry and updating the sampling distribution, it uses fewer
milestones and places them in strategic locations. It improves the overall per-
formance by reducing the total number of collision checks needed for sampling
new milestones and connecting milestones in the roadmap. See Fig. 4 for an
illustration of the differences between WCO and the other planners.

For comparison between WCO and the original AHS, it is especially inter-
esting to consider Test 2. The start configuration s and the goal configuration
g, when projected to W, are very close; however, to go from s to g, the robot
must go out of the narrow tunnel, reorient, and then go back to the tunnel
again. Regardless of which feature point f is chosen, it may potentially mis-
lead the planner, because all short paths in W between Py (s) and Pr(g) give
little information on the correct configuration-space path that connects s and
g. Nevertheless, WCO performed well here, because it combines information
from both W and C. It dynamically updates the workspace channels, which
provide information for connecting distinct roadmap components. By doing
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Fig. 3. Test 1: A 3-DOFs rigid-body robot moves from the lower left corner to the
lower right corner by passing through five narrow openings. Test 2: A 3-DOFs rigid-
body robot turns 180 degrees in a narrow deadend. Test 3: A 6-DOF's rigid-body
robot must pass through 6 out of 7 narrow openings in order to answer the given
query. Test 4: A 6-DOF's robot manipulator with its end-effector holding a large
plate maneuvers through a narrow slot. Test 5: The robot is a planar articulated
arm with a free-flying base. The dimensionality of C is increased by adding up to
8 links to the robot, resulting in a maximum of 10 DOFs. The robot must move
through the narrow passage in the middle. Test 6: A 3-DOFs rigid-body robot
moves from the left to the right wide-open space. It only fits through the passage in
the middle. The number of false passages increases from 2 to 10.

so, as soon as JF. is covered adequately by R, WCO can potentially identify
the correct regions of C to sample.

Compared with WIS, WCO performed significantly better except for
Test 2. This is expected, because WIS uses a single feature point (MP) and
a static sampling distribution, which does not respond to changes in R and
wastes lots of effort in sampling regions of C already well covered. In Test 3
and 4, WIS performed as badly as uniform sampling. The reason is that in
both cases, the solution path requires the robot to rotate and translate in
a coordinated fashion. A single feature, used by WIS, is incapable of repre-
senting such complex motion and generates a suitable sampling distribution
for solving the problem. Furthermore, WIS does not update the distribution
dynamically to improve the performance. In Test 2, to solve the query, the
entire F, must be adequately covered, whether a static or a dynamic sam-
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Uniform Original AHS

Fig. 4. 700 milestones generated by different planners. The pictures show that
WCO increases the number of milestones in important regions that improve the
connectivity of the roadmap, without generating too many unnecessary milestones
in unimportant regions.

Table 1. Performance comparison of several PRM planners. All times are measured
in seconds.

Sampler Test 1 Test 2

Tore Tupd Ttol Nmit  Nsam | Tpre  Tupa  Trol  Nmil Nsam
Uniform 75.9 13,540 52,687 4.1 601 53,616
Original AHS 23.0 3,477 164,776 3.3 163 76,742
WIS 0.034 6.6 1,660 7,024 | 0.007 0.7 154 11,521
WCO 0.045 0.072 2.7 650 2,448 10.008 0.012 0.8 170 5,531
Sampler Test 3 Test 4

Tpre Tupd Ttol Nmil Nsam Tpre Tupd Ttol Nmil Nsam
Uniform 94.6 9,011 36,594 69.8 9,246 35,878
Original AHS 56.7 1,669 198,313 56.0 2,672 168,013
WIS 0.607 80.3 5,723 160,686 |0.071 200.7 14,423 961,613
WCO 0.942 2.408 25.9 2,080 22,811 |0.244 0.993 31.1 3,211 62,405

Tpre: time for triangulating Fyy. Typa: time for updating component sampling distributions
(Algorithm 1, lines 8-13). Tiot: total running time. Npj: number of milestones required for

answering the query. Ngam: number of configurations sampled.

Table 2. The effect of feature points on the running times of WCO. All times are
measured in seconds. |CH| denotes the number of feature points in CH.

Test Env. |CH] MP CH CH UMP
Test 1 6 2.2 4.7 2.7
Test 2 5 1.3 0.7 0.8
Test 3 13 40.8  28.9 25.9
Test 4 8 154.3 62.0 31.1

pling distribution is used. WIS has an advantage, because it is simpler and
does not incur the cost of updating the sampling distribution. Even so, the
performance of WCO is comparable.

6.2 The Choice of Feature Points

Different feature points are good for sampling different regions of C. To assess
the benefits of multiple feature points, we ran WCO on Tests 1-4 with different
feature sets. The experimental results show that although the performance of
CH and MP varies across the test environments, the combined feature set CH
UMP has consistently good performance (see Table 2). This corroborates the
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theoretical result that the ensemble sampler is almost as good as the best
component sampler and demonstrates the effectiveness of the AHS approach.

6.3 Other Experiments

600 , / 7 One concern of using workspace informa-
—+ Uniform 7 K A A X X

500 s Original AHS / ; tion to guide sampling in C is that as the
__ 400 =~ WIS / . . . .
s WG // dimensionality of C increases, workspace
£ 3001 ; - information becomes less useful. For this,

2007 T we constructed a test environment with

4 P . . . . . .
100 S increasing dimensionality of C (Test 5).
o .

The results indicate that workspace in-
formation still has its merit (Fig. 5). The
usefulness of workspace information does
not directly depend on the dimensional-
ity of C [11]. Instead, it depends more on
whether there are workspace channels with good (n, p)-property.

One drawback of WCO is that it may find false workspace passages as
channels, i.e., workspace passages that the robot can not pass through. It
seems plausible that as the number of false passages grows, the performance
of WCO will keep on worsening. So, we performed a test with an increasing
number of false workspace passages (Test 6). The results indicate that this
trend happens, but only to a limited extent (Fig. 6). The reason is that by
construction, the number of channels in a channel graph G’ is linear in the
number of terminals in G’. Hence, after a certain limit, increasing the number
of invalid workspace passages does not increase the number of channels or
affect WCQO'’s performance.

Number of DOFs

Fig. 5. The performance of WCO,
as dim(C) increases (Test 5).
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Fig. 6. The performance of WCO, as the number of false passages increases (Test 6).

7 Discussion

The WCO component samplers treat the feature points independently. Only
the ensemble sampler implicitly accounts for the robot’s kinematic constraints
on the feature points. To further improve sampling efficiency, we may explicitly
incorporate such constraints. We start with the simplest type, namely, the
distance between a pair of feature points, as the distance between two feature
points of a rigid robot or a rigid link of an articulated robot is fixed. One
way of imposing such a constraint is to find the workspace channels for all
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feature points, as explained in Section 4.2. However, instead of immediately
updating the sampling distribution, we check whether two channels violate
the distance constraint for the corresponding feature points and ignore the
channels if they do. One way to check distance constraint is by enlarging
each channel according to the given distance constraint and check whether
the enlarged channels intersect. There are also many other types of kinematic
constraints, which can possibly be incorporated through more sophisticated
geometric features, such as line segments and surface triangles.

Although the above idea is simple and intuitively should improve WCQO'’s
performance, more thoughts and experiments are needed for finding good
methods to incorporate and combine the information from multiple kinematic
constraints. Treating each geometric feature as a “robot” and viewing WCO as
multi-robot planning give us a spectrum of options. One extreme is decoupled
planning with no coordination among robots. This approach is computation-
ally efficient, because it ignores all constraints, but is not complete. WCO
is somewhat similar to this approach, though it actually handles kinematic
constraints implicitly. The other extreme is centralized configuration-space
planning, which accounts for all the constraints, but is slower. Between the
extremes, there are decoupled planning with pairwise coordination, global
coordination, and prioritized planning. Each can translate to a method for
incorporating kinematic constraints. For instance, the idea in the previous
paragraph is similar to pairwise coordination.

8 Conclusion

This paper presents WCO, an adaptive sampling strategy for PRM planning.
WCO is composed of many component samplers, each based on a geometric
feature of a robot. Using the adaptive hybrid sampling approach, it combines
information from both workspace geometry and sampling history to construct
a dynamic sampling distribution. In our experiments, WCO significantly out-
performed two recently proposed sampling strategies, which use, respectively,
workspace information and dynamic sampling alone.

For future work, it would be interesting to extend WCO by relaxing the
independence assumption on the component samplers and developing good
methods to incorporate a robot’s kinematic constraints explicitly. Viewing
WCO as multi-robot planning is a promising direction. Another interesting
extension is to use sampling history to improve the search for workspace chan-
nels, instead of just relying on the channel graph.
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