
Stealth Tracking of an Unpredictable Target among
Obstacles

Tirthankar Bandyopadhyay1, Yuanping Li1, Marcelo H. Ang Jr.1, and
David Hsu1,2

1 National University of Singapore, Singapore
2 Singapore-MIT Alliance, Singapore

Int. Workshop on the Algorithmic Foundations of Robotics, 2004

Abstract. This papers introduces thestealth trackingproblem, in which a robot, equipped
with visual sensors, tries to track a moving target among obstacles and, at the same time,
remain hidden from the target. Obstacles impede both the tracker’s motion and visibility,
but on the other hand, provide hiding places for the tracker. Our proposed tracking algorithm
uses only local information from the tracker’s visual sensors and assumes no prior knowledge
of target motion or a global map of the environment. It applies a local greedy strategy, and
chooses the best move at each time step by minimizing the target’s escape risk, subject to the
stealth constraint. The algorithm is efficient, takingO(n) time at each step, wheren is the
complexity of the tracker’s visibility region. Simulation experiments show that the algorithm
performs well in difficult environments.

1 Introduction

Target tracking is an important task for mobile robots. In this work, we investigate
motion strategies for an autonomous mobile robot to track a moving target among
obstacles and, at same time, remain hidden from the target. We call this problem
stealth tracking. It has many applications. For example, in surveillance, a tracker
follows a target to observe the target’s action and may fail to acquire useful infor-
mation or endanger itself if exposed. Other examples include observing wildlife and
gaming. Stealth tracking is a common tracking behavior. In all these applications, a
tracker must not only follow the target, but also avoid detection by the target.

More specifically, both the tracker and the target are equipped with visual sen-
sors. The tracker has two objectives:tracking—keeping the target inside the field of
view—andstealth—staying outside the target’s field of view. Obstacles in the en-
vironment complicate tracking, as they introduce two types of constraints. Motion
constraints prevent the tracker and the target from crossing the obstacles. Visibility
constraints prevent the tracker and the target from seeing each other.

We assume that the tracker has no prior knowledge of target motion or a global
map of the environment. This assumption is valid in many real-life situations. The
lack of prior information limits the use of off-line pre-computation to plan the
tracker’s motion. The tracker must rely on its visual sensors to acquire information
on the target and the local environment, and decide the necessary motion on-line.

Ideally the tracker always moves to keep the target in the middle of its visibility
region so that the target cannot escape easily. At the same time, the tracker stays
outside the target’s visibility region to remain hidden. However, this is impossible to



2 T. Bandyopadhyay et al.

achieve, if the target has the same sensing capability as the tracker,i.e., the visibility
relationship is symmetric: if the tracker sees the target, the target sees the tracker.
This apparent dilemma can be resolved by allowing some asymmetry. Although the
tracker and the target have the same visual sensors, the visibility relationship may
not be exactly symmetric. The target is initially unaware of the tracker and may
not detect it even if the line of visibility between the target and the tracker is clear.
So we assume that the tracker can operate safely near the boundary of the target’s
visibility region and quickly run outside if it detects risk of exposure. This provides
the tracker the “slack” needed to achieve the dual objectives of tracking and stealth.

The stealth tracking problem introduced here is related to the more common
tracking problem without the stealth requirement[8]. However, the stealth require-
ment makes the problem more difficult. We have already mentioned the conflict
between the dual objectives of tracking and stealth. In addition, good tracking strate-
gies may not work for stealth tracking at all. For example, in a star-shaped environ-
ment, without the stealth requirement, the tracker can simply stay in the middle of
the environment, but this does not work for stealth tracking. Fortunately, as we will
see, a suitable formulation of the problem translates the stealth requirement as a
constraint on the motion of the tracker’s motion. The resulting algorithm is almost
as efficient as that for tracking without the stealth requirement.

In the following, Section 2 reviews previous work. Section 3 formulates the
stealth tracking problem. Section 4 describes our tracking algorithm. Section 5 gives
an efficient algorithm for computing the target’s visibility region. Section 6 presents
experimental results. Section 7 discusses limitations of our approach and possible
solutions. Section 8 summarizes main results.

2 Previous Work

The objective of tracking is to find the motion for the tracker to keep the target within
the tracker’s field of view. Different aspects and variants of the problem have been
studied in control theory[5], computer vision[10], and robotics[9]. In comparison,
our goal here is to keep the target inside the field of view by moving the tracker
actively to strategic locations under motion and visibility constraints.

The stealth tracking problem is related the work in[2,6,8,13,15,16], which studies
tracking without the stealth requirement. The earlier work is based on two main
approaches. The off-line approach assumes that the target’s trajectory or behavior
is known in advance. This allows one to derive stronger theoretical guarantees of
the tracking algorithm[2,6,13]. The on-line approach assumes very little knowledge
about the target’s behavior. This is more realistic in many applications. Our work
takes the second approach.

3 Problem Formulation

We assume that the robot tracker and the target operate in a planar environmentW
cluttered with obstacles (Figure 1a). The free spaceF is the subset ofW not occu-



Stealth Tracking of an Unpredictable Target among Obstacles 3

gap edge
obstacle edge

x

(a) (b)

Fig. 1. A robot tracker operating in a planar environment. (a) A robot mounted with a laser
range finder tracks another robot. Courtesy of H.H. González-Bãnos. (b) The visibility region
from a sensor atx.

pied by obstacles. To simplify the presentation, assume for now that the each robot
is a point inW. The extension to the usual cylindrical robots is straightforward.

Both the robot tracker and the target have visual sensors. The sensor’s field of
view depends on the robot’s position. LetV(x) ⊂ W denote the visibility region
of a robot located atx. The setV(x) contains all the points inW that have a direct
line of sight to the sensor, unobstructed by the obstacles inW. The visibility region
can be modeled in various ways, depending on sensor capability. Here we assume
that the sensor has an omni-directional field of view. Constraints, such as limited
viewing angle and range, can be added if necessary. On real robots, the visibility
region is obtained by processing sensor data. In simulation, the visibility region
can be computed with a rotational plane sweep algorithm[3]. Either way, after the
processing, we represent the visibility region as a polygon. The boundary of the
visibility polygon consists of two types of edges:obstacleedges andgap edges
(Figure 1b). Obstacle edges are part of obstacle boundaries. They directly block the
sensor’s line of sight. Gap edges result from occlusion of the line of sight elsewhere.

The tracker has two objectives, tracking and stealth. Letxs andxt denote the
positions of the tracker and the target, and letVs andVt be the visibility regions
of the tracker atxs and the target atxt, respectively. To track the target, the tracker
must keep the target inside the field of view, meaningxt ∈ Vs. To maintain stealth,
the tracker must stay outside the target’s field of view, meaningxs 6∈ Vt. If the
visual sensor of the tracker is stronger than that of the target,e.g., by having a
longer range, then the tracker’s task becomes easier. It can stay at a distance from
the target to remain outsideVt while keeping the target insideVs at the same time.
We assume, however, that the tracker and the target have similar sensors. In this
case, the visibility relationship seems symmetric:xt ∈ Vs if and only if xs ∈ Vt.
Our two objectives are then contradictory and cannot be achieved simultaneously.

The visibility relationship, however, is not exactly symmetric. The target is ini-
tially unaware of the tracker and may not detect the tracker even if the tracker
is inside the visibility regionVt. So we allow the tracker to operate in a region
within a distanceL of some gap edge ofVt (Figure 2). Since there is an upper



4 T. Bandyopadhyay et al.

L

target

tracker

L

Fig. 2. The lookout regionL.

bound on the tracker’s maxi-
mum velocity, the thresholdL
reflects the tracker’s estimate on
the amount of time during which
it can remain safely inVt with-
out detection, and quickly run
out ofVt via a gap edge if it de-
tects risk of exposure.

More precisely, let the dis-
tance from a pointp ∈ Vt to a
gap edgeg be the minimum Eu-
clidean distance betweenp and
all points ing that are visible to

p via an unobstructed line of sight. We define thelookoutregion of a gap edgeg as

Lg = {p ∈ Vt | The distance betweenp andg is less thanL}.
The total lookout regionL is then the union ofLg over all gap edges ofVt.

Now the objective of the tracker is to move inL so that the target remains in
the field of view. The motion of the robot tracker and the target is described with
a simple discretized model. Letx(t) denote the position of a robot at timet. If it
chooses a velocityv(t) at timet, its new positionx(t+1) after a fixed time interval
∆t is given by

x(t + 1) = x(t) + v(t)∆t.

Here we implicitly assume that sensing occurs every∆t time. This discretized
model is effective as long as∆t remains small. As we will see, our tracking al-
gorithm is very efficient. Based on the experience of previous work[8], we expect it
to run at the rate of 10 Hz, sufficient for keeping∆t small in many common tasks.

There is a maximum boundV on the robot’s velocity, but no other constraint.
So the robot can reach anywhere inside a circle with radius centerx(t) andV ∆t,
unless it is obstructed by obstacles. LetVs andVt be the maximum velocity bounds
of the tracker and the target, respectively. The bounds may be different, but we must
haveVs ≥ Vt. Otherwise, the target can easily escape by simply running straight
ahead with maximum velocity, and the tracking problem is uninteresting.

We are now ready to state the problem formally:

Problem 1.A stealth tracking algorithm must compute a sequence of actions—in
this case, the velocitiesv(t), t = 0, 1, . . . , T—for the tracker so that at any timet,
xt ∈ Vs andxs ∈ L(xt), whereL(xt) is the lookout region for a target atxt.

For some environments, losing the target is unavoidable. We may then try to keep
the target in sight for as long as possible and maximize the target’s escape time. In
addition, it may be advantageous to choose actions to optimize certain criteria, for
example, minimizing the distance travelled by the tracker or minimizing the distance
between the tracker and the target.



Stealth Tracking of an Unpredictable Target among Obstacles 5

Our formulation assumes that the target is unpredictable. The tracker does not
know the target motion in advance, and does not have a prior map of the envi-
ronment. It knows onlyVs, the part of the environment visible to its sensor. It also
knows the position of the target inVs and thus can compute the subset of the target’s
visibility region withinVs. These assumptions certainly limit the tracker’s ability to
make the best decisions. It must rely on purely local information and choose the nec-
essary motion in an on-line fashion. However, the assumptions are realistic in many
applications. They may also simplify the problem in some respects: if the tracker
does not rely on a global map, it does not need to localize with respect to the map,
a difficult problem in itself[17].

Our formulation also assumes that the tracker can estimate the risk of exposure
and take evasive action if necessary. In some applications, the target has directional
sensors and must turn to look in the direction of the tracker. Upon observing this, the
tracker can then take evasive action. If the target has omni-directional sensors, the
best action for the tracker is nevertheless to stay close the boundary of the target’s
visibility region, but it is more difficult to decide when to take the evasive action.
One possible solution is to learn a model of the target’s typical movement patterns.
Deviation from the model may indicate that the target is trying to look for the tracker.
This is an interesting problem in itself, but is beyond the scope of this paper.

4 The Stealth Tracking Algorithm

Our stealth tracking algorithm uses a local greedy strategy. It defines a function
that measures the risk for the target to escape. At each step, the tracker moves to a
location that minimizes the risk function, subject to the stealth constraint.

4.1 The Risk Function

w

target

tracker

g

n̂

t̂xs

Fig. 3. The tracker’s best move in one time step.

In our visibility model, the
target can only escape from
the tracker’s visibility region
through one of its gap edges. Let
us focus on a single gap edgeg
for now (see Figure 3). If the tar-
get plans to escape throughg, the
best action is to move towards
g along a straight-line path per-
pendicular tog. The length of
this path gives the minimum dis-
tancedesc that the target must
travel to escape throughg. Since
the target’s velocity is bounded,
this also gives an estimate on the
minimum time to escape. To prevent the target from exitingg, the tracker should
move to maximizedesc. If ` is the occlusion line containingg andw is the obstacle



6 T. Bandyopadhyay et al.

vertex abuttingg, we can think of such a move as rotating` aboutw so that theg is
as far away from the target as possible. During a time step of length∆t, the tracker
can only move inside a circle of radiusV ∆t, whereV is the tracker’s maximum
velocity bound. Clearly the best move for the tracker is to go until` is tangent to
this circle (Figure 3). This move can be decomposed into two orthogonal directions
n̂ andt̂, wheren̂ is a unit vector pointing fromxs to w andt̂ is a unit vector orthog-
onal to n̂. Both directions contribute to increaseddesc. Moving alongt̂ gives the
maximum instantaneous increase ofdesc. Moving alongn̂ brings the tracker much
closer to the pivot vertexw so that a future step alonĝt gives even larger increase of
desc. Intuitively t̂ gives the direction to reduce current escape risk of the target, and
n̂ gives the direction to reduce future escape risk. These considerations lead to the
risk function

f = (1/2)(r/e)2 (1)

wherer is the distance betweenw and the tracker positionxs, ande is the target’s
minimum escape distance with respect tog. The riskf grows, asr increases and the
tracker is further away fromw, or ase decreases and the target is closer to the gap
edgeg. The gradient off with respect to the tracker positionxs gives the direction
to increasef at the maximum rate:

∇f = (r/e2)∇r − (r2/e3)∇e. (2)

The vectors∇r and∇e are oriented alonĝn and t̂, respectively. So the combined
direction∇f balances the current and the future escape risk. There are certainly
alternative ways of combiningr and e to form the risk function. They basically
change the relative weight of∇r and∇e in ∇f . It is not clear which choice is the
best. So we have decided to use the simplest one.

Given the tracker position and a gap edge,∇f can be computed in constant time.
To minimizef , the tracker follows the negated gradient−∇f .

So far, we have considered the risk with respect to a particular gap edge. In the
worst case, the target would run towards the nearest gap edgeĝ. We must find̂g and
minimize the risk with respect tôg.

To find ĝ, we compute the shortest path inVs that goes fromxt to each of
the gap edges. In general, this can be done inO(n2 lg n) time using the visibility
graph method[12], wheren is the number of vertices inVs. However, sinceVs is
a visibility region and thus star-shaped, a better algorithm is available and achieves
theO(n) time [8]. Hence the following lemma.

Lemma 1. The direction for minimizing the worst-case risk can be computed in
O(n) time, wheren is the number of vertices in the tracker’s visibility regionVs.

4.2 Feasible Regions

Having determined the direction of the tracker’s motion−∇f , we now consider
how much the tracker should move along−∇f . Suppose that the tracker’s current
position isxs. The tracker’s new positionxs

′ in one time step must satisfy three
conditions:



Stealth Tracking of an Unpredictable Target among Obstacles 7

• xs
′ ∈ R, whereR is a disc with radiusV ∆t and centerxs, because of the

maximum velocity bound.
• xs

′ ∈ Vs. The new position must lie inside the tracker’s current visibility re-
gion Vs, because the tracker has only a local map from the sensor and has no
information outsideVs. This condition also guarantees thatxs

′ is collision-free,
xs
′ ∈ F .

• xs
′ ∈ L(xt), wherext is the target’s current position. The tracker’s new position

must remain in the lookout region to maintain stealth.

Soxs
′ lies in the intersectionR ∩ Vs ∩ L(xt), which we call thefeasible region.

To obtain the feasible region, we first compute the intersectionI = Vs ∩ R.
Let pi, i = 1, 2, . . . , n be the vertices ofVs in counter-clockwise order. SinceVs is
star-shaped, we represent it as a list of triangles∆xspipi+1 for i = 1, 2, n − 1. We
then intersect each triangle withR and obtain a new convex shape in constant time.
SoI can be computed inO(n) time.

target

g

Fig. 4.ComparingLg andL′g.
The obstacle in the middle
right is ignored inL′g.

The setI is basically the visibility regionVs

clipped by the boundary circle ofR. Usually the
time step∆t is small. ThusR is also small and
contains only a small constant number of obstacle
vertices and edges, if any. By merging consecutive
convex shapes inI whenever possible, the resulting
I has only constant size.

Next, we compute the target’s visibility region
in order to getL(xt). The tracker has no informa-
tion outside of its own visibility regionVs. It can
only compute the subset of the target’s visibility
region withinVs. Since there is no confusion, we
useVt to denote this subset from now on. Given
xt, there is a simple algorithm that computesVt in
in O(n) time, becauseVs is star-shaped. We defer
the discussion of this algorithm until Section 5.

For each gap edgeg of Vt, there is a lookout
regionLg, which may be quite complex if many
obstacles are close together. We compute a simpler setL′g, which consists of a pos-
sibly clipped rectangle adjacent tog and two circular sectors that cap the rectangle
(Figure 4). The width of the rectangle and the radius of the circular sectors are both
L, which is the distance threshold for satisfying the stealth requirement. Compared
with Lg, the setL′g ignores all the obstacles except the two at the end points ofg.
The setL′g is sufficient for computing the feasible region, becauseLg ∩ I = L′g ∩ I.
A point in the obstacle is certainly outsideVs ⊃ I.

It is important to observe thatL′g can be represented as a union of at most three
convex shapes, each of which has constant size. AssumingI has constant size, we
can intersect every convex shape inI with L′g in constant time. There are at most
O(n) gap edges, and thus we can compute the feasible region inO(n) time. The
feasible region is represented as a list of convex shapes approximated by convex



8 T. Bandyopadhyay et al.

polygons, all having constant sizes. Again, if we assume thatR is small enough,
thenR intersects only a constant number of lookout regions, and the feasible region
has a constant size. We summarize the result in the lemma below.

Lemma 2. The feasible region for the tracker’s new position can be computed in
O(n) time, wheren is the number of vertices in the tracker’s visibility regionVs.
Assuming that the time step∆t is small enough, the feasible region hasO(1) size.

4.3 Locally Optimal Action

To choose the best move, the tracker should minimize the riskf over the feasible
region. Consider the linear approximation off atxs:

f(xs + ∆x) ≈ f(xs) +∇f(xs) ·∆x. (3)

Minimizing function (3) is equivalent to

min
∆x

∇f(xs) ·∆x subject to∆x lying in the feasible region.

As the feasible region consists of a list of convex polygons, the problem reduces
to linear programming[3]. The minimum solution∆x̂ must lie at the vertex of one
of the convex polygons. By projecting all the vertices in the feasible region along
∇f(xs), we can find the minimum inO(c) time, wherec is the number of vertices
describing the feasible region. We now set the tracker’s new positionxs

′ = xs+∆x̂.
Combining the above result with Lemmas 1 and 2 gives the following theorem.

Theorem 1. Let n be the number of vertices in the tracker’s visibility regionVs.
The best action for the tracker to minimize the risk functionf within the feasible
region can be computed inO(n) time at each time step.

Without preprocessing, we cannot hope to achieve running time better thanO(n).
However, as the tracker’s visibility region changes at each time step, there is little
opportunity for preprocessing.

4.4 Emergency Actions

w

target

tracker

g

∇e

Fig. 5. Emergency action.

Our tracking algorithm also handles two emergency
situations. In the first case, the tracker loses the tar-
get. Suppose that the target exits a gap edgeg and
that the obstacle vertexw abutsg (Figure 5). When
the tracker detects that the target has exitedg, it tries
to rotate the occlusion linèthat containsg as fast as
possible by moving along∇e for a fixed number of
steps, and hopes to regain the target quickly. If this
fails, the tracker then goes directly towardsw in or-
der to eliminate the occlusion linè. In the second

case, the tracker is exposed. It computes a shortest path to each of the lookout re-
gions and goes towards the nearest one.



Stealth Tracking of an Unpredictable Target among Obstacles 9

5 Computing the Target’s Visibility Region

In this section, we describe how to computeVt, the subset of the target’s visibility
region inside the tracker’s visibility regionVs. SinceVs is a simple polygon,Vt

can be computed in optimalO(n) time [7,14,11]. However, a simpler algorithm is
possible here, becauseVs is star-shaped.

Our basic idea is to walk along the boundary ofVs and compute the vertices of
Vt incrementally. To initialize, we use the line that goes throughxs andxt to divide
Vs into two halves,P andP ′ (see Figure 6). We now describe the algorithm forP ,
the left half.

xs

xt

pi

pj

p0

pj−1

Fig. 6. Computing the target’s visi-
bility region.

Let p0 the point where the ray−−→xsxt inter-
sects the boundary ofVs. We number the ver-
ticesp0, p1, p2, . . . of P in counter-clockwise
order, starting fromp0. Every vertex ofP is
visible toxs, becauseP is a subset of the vis-
ibility region of xs. The first vertex of the tar-
get’s visibility regionVt is p0, which is visi-
ble toxt becausext lies on the line segment
xsp0. Now we walk along the boundary ofP
and visit the verticesp1, p2, . . . in this order.
Let pi be the latest vertex ofP that is visible
to xt. For every new vertexpj encountered,
wherej > i, if the ray−−→xtpj lies to the right
of −−→xtpi, we simply move topj+1, becausepj

must be blocked by edges adjacent topi. If
−−→xtpj lies to the left of−−→xtpi, we claim thatpj

is visible toxt. To see this, we have to show that no boundary edge ofVs intersects
xtpj . Suppose, for the purpose of contradiction, that some edges ofP intersectxtpj .
Let e be the intersecting edge closest toxt alongxtpj . If e belongs to the polygonal
chain betweenp0 andpi, the chain must crossxtpi. This is impossible, becausepi

is visible toxt. If e belongs to the polygonal chain betweenpi andpj , then some
vertex on the chain (excludingpi andpj) must be visible toxt. This contradicts
the fact thatpi is the latest vertex visible toxt. If e belongs to the polygonal chain
after pj , the chain must crossxspj . This is also impossible, becausepj is visible
to xs. Of course, none of the edges inP ′ can intersectxtpi. Otherwise, they would
block the visibility line throughxs andxt. Hence,pj is visible toxt. We compute
the intersection of the ray−−→xtpi and the edgepj−1pj and add both the intersection
point andpj to Vt as new vertices ofVt. We then move topj+1 and continue until
all vertices are visited.

The right half ofVs can be processed similarly, except that now, we walk along
the boundary in clockwise order. We then merger the two halves ofVt.

Our initialization step takesO(n) time, wheren is the number of vertices inVs.
When walking along the boundary ofVs, we encounter each vertex exactly once
and process it in constant time. Hence the following theorem.



10 T. Bandyopadhyay et al.

Theorem 2. Let n be the number of vertices of the tracker’s visibility regionVs.
Given a target positionxt, the visibility region ofxt within Vs can be computed in
O(n) time.

6 Experimental Results

To test the effectiveness of our tracking algorithm, we implemented it and ran it
with different environments in simulation. In Figures 7–11, we show five represen-
tative experiments to illustrate the behavior of the algorithm. In these figures, dark
blue regions indicate obstacles. Red crosses mark the target’s trajectory. Blue boxes
mark the tracker’s trajectory. Two circles mark the target’s and the tracker’s current
positions. The tracker’s visibility region is marked with thick blue lines. The target’s
visibility region is shaded in light red. The lookout region is marked with thin black
lines.

Corridor (Figure 7) This example shows the tracker’s behavior when the target
turns round a corner in a corridor. Initially the tracker stays near the lower right
corner of the obstacle inside a lookout region to maintain stealth (Figure 7a). When
the target makes a turn, a new lookout region develops, and the line of sight pivots
about the upper right corner of the obstacle. The tracker follows the gradient of
the risk function to take advantage of this. It swings out to improve its visibility
(Figure 7b). Finally the tracker goes towards the upper right corner and stays there
to maintain stealth (Figure 7c).

The tracker’s success in this environment depends on the target’s turning radius.
If the target makes a sharp turn, the line of sight may pivot too fast for the tracker to
follow, and the tracker loses the target. In this case, the tracker executes the emer-
gency action (Section 4.4) to try regaining the target.

target

tracker

(a) (b) (c)

Fig. 7. The target turns around a corner.

Forest (Figure 8) Imagine a target going straight along a road passing through
dense forests. If the tracker follows behind the target on the road, it risks exposure.
The figures show the path that the tracker chooses when faced with such a situation.
In general, the tracker stays on side of the road near the obstacles to avoid the risk
of exposure. It tries to trail the target as closely as possible, given the constraint
that it must stay inside the lookout region of some gap edge (Figure 8a). When the



Stealth Tracking of an Unpredictable Target among Obstacles 11

(a) (b)

Fig. 8. The tracker switches lookout regions.

large lookout:

target path tracker path

(a) (b) (c)

small lookout:
target path

tracker path

(d) (e) (f )

Fig. 9. The tracker’s behavior changes due to different sizes of lookout regions.

lookout regions of two gap edges merge, the tracker immediately switches to the
new lookout region to further reduce the risk function (Figure 8b).

Zigzag Pathway (Figure 9) The tracker’s behavior and success may change dras-
tically, depending on how much risk of exposure that it is willing to take. Recall
that the distance thresholdL controls the size of lookout regions and reflects the
tracker’s estimate or willingness to take risk of exposure. IfL is large, the tracker
has more room to maneuver, usually resulting in more successful tracking.



12 T. Bandyopadhyay et al.

(a) (b)

(c) (d)

Fig. 10.Losing and regaining the target.

Consider the environment shown in Figure 9. The target moves roughly along
a straight path through the zigzag pathway. WhenL is large, lookout regions from
two sides of the pathway often merge and the tracker can jump from one side to
the other, using obstacles on both sides for cover (Figures 9a–c). It thus follows the
target very closely.

For the same environment and target motion, the tracker’s performance worsens
whenL is small. It is unable to move from one side to the other, because the lookout
regions are small and do not merge. It is stuck in one lookout region and has to wait
for another lookout region to come close as a result of target motion (Figures 9d–e).
However, by then, it falls behind the target by a large distance (Figure 9f ). Although
the tracker does not lose the target here, the target can escape easily by making a
turn at the end of its straight-line motion. No simple emergency action can recover
the target, because the distance between the target and the tracker is too large.

Maze (Figure 10) The geometry of this environment is more complex than the
others. The target also takes along a long and winding path. The tracker is able to
follow the target till the end, with the help of emergency actions. In Figure 10a–
10b, the tracker moves almost entirely in the direction∇e, because the target is



Stealth Tracking of an Unpredictable Target among Obstacles 13

Table 1.Tracking performance.

Environment Total No.
Steps

No. Steps
Visible

No. Times Lost
& Regained

Corridor 102 102 0
Forest 214 214 0
Zigzag (largeL) 130 130 0
Zigzag (smallL) 130 130 0
Maze 730 663 8
City Blocks 468 466 2

very close to the gap edge and the current escape risk is high. At this moment, the
tracker does not have the luxury to move along∇r to reduce the future escape risk.
Unfortunately the tracker still loses the target (Figure 10c). Taking the emergency
action (see Section 4.4), the tracker runs to the vertex that abuts the gap edge from
which that the target has escaped and regains the target (Figure 10d). The tracker
loses the target eight times during the tracking, but every time it regains the target
after taking the emergency action.

Fig. 11. Tracking a target among many
obstacles.

City Blocks (Figure 11) This environ-
ment resembles urban areas with roads
and housing blocks and gives another ex-
ample with many obstacles. The target
takes a long path, but the tracker success-
fully follows the target till the end, with a
little help from emergency actions.

Table 1 shows the performance statis-
tics of the tracker in the above envi-
ronments. Column 2 lists the total time
length of target motion. Column 3 lists the
length for which the target is visible to the
tracker. Column 4 shows how many times
that the target is lost and regained. From
the table, we see that the tracker loses the target in the two environments where
there are many obstacles. In the City Blocks environment, the tracker loses the tar-
get two times, for a duration of one step each. Every time that the tracker loses the
target, it recovers it in the next step by taking the emergency action. In the Maze
environment, which is more complex, the tracker loses the target eight times. It al-
ways recovers the target, but it takes more time than that needed in City Block.
When there are many obstacles causing occlusions, the tracker is more likely to lose
the target. The emergency action, despite it simplicity, seems quite effective in such
environments.



14 T. Bandyopadhyay et al.

7 Discussion

We now discuss some limitations of our approach and possible solutions.

target

tracker

g
′

g

Fig. 12.Changes in the escape edge
causing the robot tracker to follow
an oscillatory path.

Discontinuity in the risk function.Our track-
ing algorithm currently minimizes the worst-
case risk. The risk functionf is defined with
respect to the gap edge closest to the target,
which we call theescape edge. The escape
edge may suddenly change, leading to a dis-
continuity inf . Figure 12 shows an example.
The target is moving forward about equally
distant to two gap edgesg andg′. Initially g
is the escape edge. To minimize the escape
risk with respect tog, the tracker takes a step
to the left. This step increases the target’s dis-
tance tog, but reduces the target’s distance
to g′. As the result,g′ becomes the escape
edge. Now the tracker takes a step to the right,

which reduces the distance tog′, but increases the distance tog. The escape edge
switches back tog. This causes the robot tracker to oscillate and is undesirable. To
deal with this issue, we can define the overall risk as the average of all gap edges’
risks [8], instead of the worst-case risk.

“Discontinuity” in the lookout regions. Sometimes a lookout region may suddenly
disappear. Consider the example shown in Figure 13. Initially the tracker is atxs,
safely inside the lookout region of a gap edgeg. As it moves to the new position,
Vs is reduced. Although the target has not moved at all,g now lies outsideVs.
The tracker can no longer ascertain the existence ofg and the associated lookout
region, and assumes that it is exposed. This happens, because the tracker uses only
local information from the sensor and knows only the environment withinVs. If
the tracker had fused sensor data through history to produce a global map, it would
know that it is inside the lookout region ofg. The use of only local information is
clearly a limitation here.

This situation occurs only if the tracker is close to the obstacle vertexw that
supports the linè containing the gap edgeg (Figure 13). If the tracker crosses`, the
gap edge disappears fromVs. To avoid this situation, we truncate the lookout region
Lg so that the tracker does not cross`.

Nonholonomic constraints.Our current model of the tracker’s motion is very sim-
ple. Often the tracker robot is wheeled and is subject to nonholonomic or dynamic
constraints. To deal with these additional constraints, we can use a control system
to describe the robot’s motion[1,4]. We no longer use the discR for computing
the feasible region, but replace it with a reachable set, the set of points reachable
from the tracker’s current position within time∆t according to the motion model.
In fact, the discR is simply the reachable set for our simple motion model. We



Stealth Tracking of an Unpredictable Target among Obstacles 15

target

tracker

g

w

target

tracker

g

w

before after

Fig. 13.The target’s visibility regions before and after the tracker’s move. The dashed lines
indicateVs. The shaded region indicatesVt.

can pre-compute the reachable set and approximate it using convex polygons. The
computation of the feasible region can then proceed as before.

8 Conclusion and Future Work

We have introduced the stealth tracking problem, in which a robot tries to track
a moving target among obstacles and remain hidden from the target at the same
time. Our tracking algorithm uses only local information from the tracker’s visual
sensors and assumes no prior knowledge of target motion or a global map of the
environment. It defines a function that measures the target’s escape risk and tries
to minimize the risk function, subject to the stealth constraint, in order to achieve
the dual objectives of tracking and stealth. The algorithm is efficient, takingO(n)
time at each time step, wheren is the complexity of the tracker’s visibility region.
Experiments in simulation show that the algorithm performs well in difficult envi-
ronments.

For future work, we plan to test our algorithm on real robots to further validate
the approach. We also plan to introduce a limited amount of global information to
improve tracking performance, due to the limitations of purely local information,
as we have discussed in Section 7. With global information, more sophisticated
tracking strategies can be applied. For example, instead of following a target in a
long corridor, which leads to high risk of exposure, the tracker can simply move to
the other end of the corridor and wait there for the target. Global information also
allows us to use multiple trackers to further improve performance.

Acknowledgements We thank Ho-Lun Cheng and Jean-Claude Latombe for helpful dis-
cussions and thank Hector González-Bãnos for providing the image in Figure 1.



16 T. Bandyopadhyay et al.

References

1. J. Barraquand and J.C. Latombe. Nonholonomic multibody mobile robots: Controllabil-
ity and motion planning in the presence of obstacles.Algorithmica, 10(2-4):121–155,
1993.

2. C. Becker, H.H. Gonźalez-Bãnos, J.C. Latombe, and C. Tomasi. An intelligent observer.
In Int. Symp. on Experimental Robotics, pages 153–160, 1995.

3. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geom-
etry: Algorithms and Applications. Springer, Berlin, 2nd edition, 2000.

4. B.R. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning.Journal of
the ACM, 40(5):1048–1066, 1993.

5. K. Donald.Optimal Control Theory: An Introduction. Prentice Hall, Englewood Cliffs,
NJ, 1970.

6. A. Efrat, H.H. Gonźalez-Bãnos, S.G. Kobourov, and L. Palaniappan. Optimal strate-
gies to track and capture a predictable target. InProc. IEEE Int. Conf. on Robotics &
Automation, pages 3789–3796, 2003.

7. H. ElGindy and D. Avis. A linear algorithm for computing the visibility of polygon from
a point.J. Algorithms, 2:186–197, 1981.

8. H.H. Gonźalez-Bãnos, C.Y. Lee, and J.C. Latombe. Real-time combinatorial tracking of
a target moving unpredictably among obstacles. InProc. IEEE Int. Conf. on Robotics &
Automation, pages 1683–1690, 2002.

9. S.A. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual servo control.IEEE
Trans. on Robotics & Automation, 12(5):651–670, 1996.

10. M. Isard and A. Blake. Condensation—conditional density propagation for visual track-
ing. Int. J. Computer Vision, 29(1):5–28, 1998.

11. B. Joe and R.B. Simposon. Corrections to Lee’s visibility polygon algorithm.BIT,
27:458–473, 1987.

12. J.C. Latombe.Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

13. S.M. LaValle, H.H. Gonźalez-Bãnos, C. Becker, and J.C. Latombe. Motion strategies
for maintaining visibility of a moving target. InProc. IEEE Int. Conf. on Robotics &
Automation, pages 731–736, 1997.

14. D.T. Lee. Visibility of a simple polygon.Computer Vision, Graphics, & Image Process-
ing, 22:207–221, 1983.

15. T.Y. Li and T.H. Yu. Planning tracking motions for an intelligent virtual camera. InProc.
IEEE Int. Conf. on Robotics & Automation, pages 1353–1358, 1999.

16. R. Murrieta-Cid, Gonźalez-Bãnos, and B. Tovar. A reactive motion planner to maintain
visibility of unpredictable targets. InProc. IEEE Int. Conf. on Robotics & Automation,
pages 4242–4248, 2002.

17. S. Thrun. Probabilistic algorithms in robotics.AI Magazine, 21(4):93–109, 2000.


