APPEARED IN
The Fourth International Workshop on Algorithmic Foun-
dations of Robotics, 2000

Randomized Kinodynamic Motion Planning

with Moving Obstacles

David Hsu, Stanford University, Stanford, CA, USA

Robert Kindel, Stanford University, Stanford, CA, USA
Jean-Claude Latombe, Stanford University, Stanford, CA, USA
Stephen Rock, Stanford University, Stanford, CA, USA

A randomized motion planner is presented for robots
that must avoid collision with moving obstacles under
kinematic and dynamic constraints. This planner sam-
ples the robot’s statex time space by picking control in-
puts at random and integrating the equations of motion.
The result is a probabilistic roadmap, t.e., a collection
of sampled statextime points, called milestones, con-
nected by short admussible trajectories. The planner
does not precompute the roadmap; instead, for each
planning query, it generates a new roadmap to con-
nect the input initial and goal statextime points. This
paper shows that the probability that the planner fails
to find a trajectory when one exists quickly goes to 0
as the number of milestones grows. The planner has
been tested successfully in both simulated and real en-
vironments. In the latter case, a vision module esti-
mates the obstacle motions just before planning, and
the planner is then allocated a small amount of time to
compute a trajectory. If a change in obstacle motion is
detected while the robot executes the planned trajectory,
the planner re-computes a trajectory on the fly.

1 Introduction

In its most basic form, motion planning is a purely ge-
ometric problem: given the geometry of a robot and
static obstacles, compute a collision-free path of the
robot between two configurations. This formulation
ignores several key aspects of the real world. Robot
motions are subject to kinematic and dynamic con-
straints that, unlike obstacles, cannot be represented
by forbidden regions in the configuration space. The
environment may also contain moving obstacles requir-
ing that computed paths be parametrized by time. In
this paper, we consider motion planning problems with
both kinodynamic constraints and moving obstacles.
We propose an efficient algorithm for this class of prob-
lems.

Our work extends the probabilistic roadmap (PRM)
framework originally developed for planning collision-
free geometric paths [18]. A PRM planner samples the
robot’s configuration space at random and connects the
generated free samples, called mailestones, by simple
local paths, typically straight-line segments in config-
uration space. The result is a undirected graph called
a probabilistic roadmap. Multi-query PRM planners
precompute the roadmap [18], while single-query plan-
ners compute a new roadmap for each query [11]. Tt
has been proven that, under reasonable assumptions, a
small number of milestones picked uniformly at random
are sufficient to capture the free space’s connectivity
with high probability [11, 17]. However, with nonholo-
nomic and/or dynamic constraints, straight local paths
are not feasible. Moreover, allowing obstacles to move
requires indexing milestones by the times when they
are attained.

For each planning query, our algorithm builds a
new roadmap in the collision-free subset of the robot’s
statextime space, where a state typically encodes both
the configuration and velocity of the robot (Section 3).
Each milestone is obtained by selecting a control in-
put at random in the set of admissible controls and
integrating the motion induced by this input over a
short duration of time, from a previously-generated
milestone. The local trajectory thus obtained auto-
matically satisfies the motion constraints, and if it does
not collide with the obstacles, its endpoint is added to
the roadmap as a new milestone. This iterative pro-
cess yields a tree-shaped roadmap rooted at the initial
statextime and oriented along the time axis. It ends
when a milestone falls in an “endgame” region from
which it is known how to reach the goal.

In Section 4, we show that the probability that our
algorithm fails to find a trajectory when one exists con-
verges toward 0 (probabilistic completeness), with a
convergence rate that is exponential in the number of

Randomized Kinodynamic Motion Planning with Moving Obstacles 2

generated milestones. We have also tested the algo-
rithm in both simulated and real environments. In
simulation (Sections 5 and 6), we have verified that
it can solve tricky problems. In the hardware robot
testbed (Section T), we have checked that the plan-
ner operates properly despite various uncertainties and
delays associated with an integrated system. In this
testbed, a vision module measures obstacle motions,
and the planner has a short, predefined amount of time
to compute a trajectory (real-time planning). The vi-
sion module monitors the obstacles while the robot ex-
ecutes the computed trajectory. If an obstacle deviates
from its predicted trajectory, the planner re-computes
the robot’s trajectory on the fly.

2 Previous Work

Motion planning by random sampling This ap-
proach was originally proposed to solve geometric path-
planning problems for robots with many degrees of free-
dom (dofs) [2, 3, 11, 16, 18]. Sampling replaces the
prohibitive computation of an explicit representation
of the free space by collision checking operations. Pro-
posed techniques differ mainly in their sampling strate-
gies. An important distinction is between multi-query
planners that precompute a roadmap (e.g., [18]) and
single-query planners that don’t (e.g., [11]). Single-
query planners build a new roadmap for each query by
constructing trees of sampled milestones from the ini-
tial and goal configurations [11, 21]. Our planner falls
in this second category.

It has been shown in [11, 15, 17, 29] that, under
some assumptions, a multi-query PRM path planner
that samples milestones uniformly from the configura-
tion space is probabilistically complete and converges
quickly. More formally, the probability that it fails to
find a path when one exists converges toward 0 ex-
ponentially with the number of milestones. In [11],
this result is established under the assumption that the
free space verifies a geometric property called ezpan-
sweness. In this paper, we generalize this property to
statextime space and prove that our new randomized
planner for kinodynamic planning is also probabilisti-
cally complete with a convergence rate exponential in
the number of sampled milestones. No formal guaran-
tee of performance had previously been established for
single-query planners.

Kinematic and dynamic constraints Kinodynamic

planning refers to problems in which the robot’s mo-
tion must satisfy nonholonomic and/or dynamic con-
straints. With few exceptions (e.g., [9]), previous work
has considered these two types of constraints sepa-
rately.

Planning for nonholonomic robots has attracted con-
siderable interest [4, 19, 20, 22, 23, 26, 28]. One ap-
proach [19, 20] is to first generate a collision-free path,
ignoring the nonholonomic constraints, and then to
break this path into small pieces and replace them
by feasible canonical paths (e.g., Reeds and Shepp
curves [24]). This approach works well for simple
robots (e.g., car-like robots), but requires the robots
to be locally controllable [4, 23]. A related ap-
proach [26, 28] uses a multi-query PRM algorithm that
connects milestones by canonical path segments such as
the Reeds and Shepp curves. Another approach, pre-
sented in [4], generates a tree of sampled configurations
rooted at the initial configuration. At each iteration, a
chosen sample in the tree is expanded into a few new
samples, by integrating the robot’s equation of motion
over a short duration of time with deterministically
picked controls. A space partitioning scheme limits the
density of samples in any region of the configuration
space. This approach has been shown to be also appli-
cable to robots that are not locally controllable. Our
new planner has many similarities with this approach,
but picks controls at random. It i1s probabilistically
complete whether the robot is locally controllable or
not.

Algorithms for dealing with dynamic constraints are
comparable to those developed for nonholonomic con-
straints. In [5, 27] a collision-free path is first com-
puted, ignoring the dynamic constraints; a variational
technique then deforms this path into a trajectory that
both conforms the dynamic constraints and optimizes
a criterion such as minimal execution time. No for-
mal guarantee of performance has been established for
these planners. The approach in [7] places a regular
grid over the robot’s state space and searches the grid
for a trajectory using dynamic programming. It offers
provable performance guarantees, but is only applica-
ble to robots with few dofs (typically, 2 or 3), as the
size of the grid grows exponentially with the number of
dofs. Our planner is related to this second approach,
but randomly discretizes the statextime space, instead
of placing a regular grid over it. The planner in [21]
resembles ours, but no guarantee of performance has

Randomized Kinodynamic Motion Planning with Moving Obstacles 3

been established for it.

Moving obstacles When obstacles are moving, the
planner must compute a trajectory parametrized by
time. This problem has been proven to be compu-
tationally hard, even for robots with few dofs [25].
Heuristic algorithms [8, 10, 14] have been proposed, but
they usually do not consider constraints on the robot’s
motion other than an upper bound on its velocity. The
technique in [14] first ignores the moving obstacles and
computes a collision-free path of the robot among the
static obstacles; it then tunes the robot’s velocity along
this path to avoid colliding with moving obstacles. The
resulting planner is clearly incomplete. The planner
in [10] tries to reduce incompleteness by generating a
network of paths. The planner in [9] is a rare example
of planner dealing concurrently with kinodynamic con-
straints and moving obstacles. It extends the approach
of [7] to statextime space and thus is also limited to
robots with few dofs.

3 Planning Framework

Our algorithm builds a probabilistic roadmap in the
collision-free subset F of the statextime space of the
robot [9]. The roadmap is computed in the con-
nected component of F that contains the robot’s initial
statextime point.

3.1 State-space formulation

Motion constraints We consider a robot whose mo-
tion is governed by an equation of the form:

S.Zf(sﬂu)’ (1)

where s € S is the robot’s state, § is its derivative rel-
ative to time, and u € € is a control input. The set
S and 2 are the robot’s state space and control space,
respectively. Given a state at time ¢ and a control
function wu: [t,#] — Q, where [¢,#'] is a time interval,
the solution of Eq. (1) is a function s: [t,#] = & de-
scribing the robot’s state over [t,¢]. We assume that S
and € are bounded manifolds of dimensions n and m
(m < n), respectively. By defining appropriate charts,
we can treat § and €2 as subsets of R™ and R™.

Eq. (1) can represent both nonholonomic and dy-
namic constraints. A nonholonomic robot is con-
strained by k£ independent, non-integrable scalar equa-
tions of the form Fi(q,q) = 0, ¢ = 1,2,...,k, where

ay

Figure 1: Model of a car-like robot

q and ¢ denote the robot’s configuration and velocity,
respectively. Let the robot’s state be s = ¢. It is shown
in [4] that, under appropriate mathematical conditions,
the constraints F;(s,$) = 0 are equivalent to Eq. (1)
in which u is a vector in R™ = R"~* Reciprocally,
Eq. (1) can be rewritten into & = n — m independent
equations of the form F;(s,s) = 0. Furtheremore, in
Lagrangian mechanics, dynamics equations are of the
form G;(q,q,q) = 0, where ¢, ¢, and § are the robot’s
configuration, velocity, and acceleration, respectively.
Defining the robot’s state as s = (g, ¢), we can rewrite
the dynamics equations in the form Fj(s, $) = 0, which,
as in the nonholonomic case, is equivalent to Eq. (1).

Robot motions can also be constrained by inequali-
ties of the forms F;(q,¢) <0 and G;(q,4,¢) < 0. Such
constraints restrict the sets of admissible states and
controls to subsets of R™ and R™.

Examples We illustrate these notions with two exam-
ples that will be useful later in the paper:

Nonholonomuc car-like robot. Consider a car A mod-
eled as shown in Figure 1. Let (z,y) be the posi-
tion of the midpoint R between A’s rear wheels and
f be the orientation of the rear wheels with respect
to the z-coordinate axis. We encode A’s configura-
tion by (z,y,0) € R3. The nonholonomic constraint
tan 6 = y/z is equivalent to the system:
z=wvcosfl, gy =wvsindb, 0= (v/L)tan ¢,

which has the same form as Eq. (1). This reformula-
tion corresponds to defining the state of A to be its
configuration and choosing the vector (v,), where v
and ¢ denote the car’s linear velocity and steering an-
gle, as the input control. Bounds on v and ¢ define Q

Randomized Kinodynamic Motion Planning with Moving Obstacles 4

as a subset of RZ.

Point-mass robot. For a point-mass robot A moving in
a plane, we typically want to control the force applied
to A. So, we define A’s state to be s = (z,y,2,9),
where (z,y) is A’s position. The equations of motion
are:

= ugz/m, g = uy/m,
where m and (ug,u,) denote A’s mass and the force
applied to it. Bounds on the magnitudes of (z,y) and
(ug, uy) define S and Q as subsets of R* and R?, re-
spectively.
Planning query Let 87 denote the statextime space
S x [0,+00). Obstacles in the robot’s workspace are
mapped into this space as forbidden regions. The free
space F C ST is the set of all collision-free points (s,).
A trajectory s: [a,b] — S is admissible if, for all ¢ €
[a,b], s(t) is an admissible state and (s(¢),?) is collision-
free.

A planning query is specified by an initial state x time
(sp,tp) and a goal statextime (s4,ty). A solution to
this query is a function u: [tp, ;] — Q that produces an
admissible trajectory from state s, at time ¢, to state
sy at time ¢,. In the following, we consider piecewise-
constant functions u(t) only.

3.2 The planning algorithm

Like the planner in [11], our algorithm iteratively builds
a tree-shaped roadmap T rooted at my = (sp,%s).
At each iteration, it picks at random a milestone
(s,t) from T, a time t' < t;, and a control function
u: [t,#'] = Q. The trajectory from (s,?) induced by u
is computed by integrating Eq. (1). If this trajectory
is admissible, its endpoint (s',#') is added to T as a
new milestone; an arc is created from (s,t) to (s',t'),
and u is stored with this arc. The kinodynamic con-
straints are thus naturally enforced in all trajectories
represented in T'. The planner exits with success when
the newly generated milestone lies in an “endgame”
region that contains (s4,1,).

Milestone selection The planner assigns a weight
w(m) to each milestone m in T. The weight of m is
the number of other milestones contained in a neigh-
borhood of m. So w(m) represents how densely the
neighborhood of m has already been sampled. At each
iteration, the planner picks an existing milestone m in
T at random with probability 7, (m) inversely propor-
tional to w(m). Hence, a milestone lying in a sparsely

sampled region has a greater chance of being selected
than a milestone lying in an already densely sampled
region. This technique avoids oversampling any partic-
ular region of F.

Control selection Let U, be the set of all piecewise-
constant control functions with at most ¢ constant
pieces. Hence, for any u € Uy, there exist tg < 1 <
... < tg_q1 <ty such that u(t) is a constant ¢; € Q over
the time interval (t;_1,%;), for i = 1,...,£. We also
require t; —t;_1 < dmax, Wwhere dmax 1s a constant. Our
algorithm picks a control u € U,, for some prespeci-
fied £ and dpax, by sampling each constant piece of u
independently. For each piece, ¢; and §; = t; — t;_1
are selected uniformly at random from Q and [0, dmax],
respectively. The choices of the parameters £ and §pax
will be discussed in Subsection 4.4.

Endgame connection The above “control-based”
sampling technique does not allow us to reach the goal
(sg,tg) exactly. We need to “expand” the goal into an
endgame region that the sampling algorithm will even-
tually attain with high probability. There are several
ways of creating such an endgame region.

For some robots, it is possible to analytically com-
pute one or several canonical control functions that ex-
actly connect two given points while obeying the kino-
dynamic constraints. The Reeds and Shepp curves de-
veloped for nonholonomic car-like robots are an exam-
ple of such functions [24]. If such control functions are
available, one can test if a milestone m belongs to the
engame region by checking that a canonical function
generates an admissible trajectory from m to (sg4,%,).

A more general technique is to build a secondary tree
T’ of milestones rooted at the goal, in the same way
as that for the primary tree 7', except that Eq. (1) is
integrated backwards in time. The endgame region is
then the union of small neighborhoods of the milestones
in T": the planner exits with success when a milestone
m € T falls in the neighborhood of a milestone m’ € T".
The trajectory following the appropriate arcs of T and
T’ contains a small gap between m and m’, but this
gap can often be dealt with in practice. For example,
beyond m, one can use a PD controller to track the
trajectory extracted from T".

Algorithm in pseudo-code The planning algorithm
is formalized in the following pseudo-code. We will
refer to it as KDP.

Randomized Kinodynamic Motion Planning with Moving Obstacles)

Algorithm 1

—_

Initialize T with mp; 2 < 1
repeat
3. Pick a milestone m from T with probability
mp(m)
4. Pick a control function u from U, uniformly at
random
m’ + PROPAGATE(m, u)
if m’ # nil then
Add m to T i i+ 1
Create an arc e from m to m’; store u with e
if m’ € ENDGAME then exit with SUCCESS
0. if i = N then exit with FAILURE

[\

= O 0o =] O Ot

In line 5, PROPAGATE(m, u) integrates the equations
of motion from m with control u. It returns a new
milestone m’ if the computed trajectory is admissible;
otherwise it returns n:l. If there exists no admissible
trajectory from mp = (sp,1) to (sq,14), the algorithm
cannot detect it. Therefore, in line 10, we bound the
total number of milestones by a constant N.

4 Analysis of the Planner

The experiments that will be described in Sections 5-7
demonstrate that KDP provides an effective approach
for solving difficult kinodynamic motion planning prob-
lems. Nevertheless some important questions cannot
be answered by experiments alone: what is the proba-
bility v that the planner fails to find a trajectory when
one exists? Does v converge toward 0 as the number
of milestones increases? In this section we show that
the failure probability + decreases exponentially with
the number of sampled milestones. Hence, with high
probability, a relatively small number of milestones are
sufficient to capture the connectivity of the free space
and answer the query correctly. Our analysis is based
on a generalization of the notion of expansiveness pro-
posed in [11].

4.1 Expansive statextime space

Expansiveness characterizes the difficulty of finding a
path between two points in a given space by random
sampling. To be concrete, let us first consider the sim-
ple example in Figure 2. The free space F consists of
two subsets S; and S5 connected by a narrow passage.

Si Sa

Figure 2: A free space with a narrow passage

Let us say that two points in F see each other (or are
mutually visible) if the straight line segment between
them lies entirely in F (no kinodynamic constraint is
considered in this example). A classical PRM plan-
ner samples F uniformly at random and connects any
two milestones that see each other. Let the lookout of
S1 be the subset of all points in S; that sees a large
fraction of Sy. If the lookout of S; were large, the plan-
ner would easily pick a milestone in S; and another in
Sy that see each other. However, due to the narrow
passage between S; and S5, S7 has a small lookout.
Consequently, it is difficult for the planner to generate
a connection between S; and Sy. In [11], F is said to
be expansive if every subset S C F has a large lookout.
It is shown that in an expansive space, the convergence
rate of a classical PRM planner is exponential in the
number of milestones.

KDP generates a different kind of roadmap, in
which trajectories between milestones may neither be
straight, nor reversible. This leads us to generalize the
notion of visibility to that of reachability. Given two
points (s,%) and (s',#') in F C 8T, (s,1') is said to be
reachable from (s,t) if there exists a control function
u: [t,t'] = Q that induces an admissible trajectory
from (s,t) to (s',t'). If (s',') remains reachable from
(s,t) by using u € Uy, a piecewise-constant control
with at most £ segments, then we say that (s',#')
is locally reachable, or (-reachable, from (s,t). Let
R(p) and Re(p) denote the set of points reachable
and f-reachable from p, respectively; we call them the
reachability and the f-reachability set of p. For any
subset S C F, we define:

R(S) = U R(p) and R.(S) = U Re(p).

pES peS

We define the lookout of a subset S of F as the sub-

Randomized Kinodynamic Motion Planning with Moving Obstacles 6

set of all points in S whose f-reachability sets overlap
significantly with their reachability sets outside S:

Definition 1 Let § be a constant in (0,1]. The g-
lookout of S C F is:

B-LooKouT(S) =
{PeS[uRe(P)\S) 2 Bp(R(S)\5)},

where u(Y') denote the volume of any subset Y C R(SS)
relative to R(S).

The free space F is expansive if every subset S C F
has a large lookout:

Definition 2 Let a and § be two constants in (0, 1].
For any p € F, R(p) is («, B)-expansive if for every con-
nected subset S C R(p), p(B-LookouT(S)) > a u(S).
The free space F is («, f)-expansive if for every p € F,
R(p) is (a, B)-expansive.

Think of p in Definition 2 as the initial milestone my
and S as the f-reachability set of a set of milestones
produced by KDP after some iterations. If o and g are
both reasonably large, then KDP has a good chance to
sample a new milestone whose f-reachability set adds
significantly to the size of S. In fact, we show below
that with high probability, the ¢-reachability set of the
milestones sampled by KDP expands quickly to cover
most of R(mp); hence, if the goal (s4,14) lies in R (my),
then with high probability, the planner will quickly find
an admissible trajectory.

4.2 Probabilistic convergence of the planner

Let X = R(mp) be the reachability set of my. Sup-
pose that X' is («a, §)-expansive. We establish below an
upper bound on the number of milestones needed to
guarantee that a milestone lies in the endgame region
E with high probability, if £ N X has non-zero volume
relative to X'. For convenience, we scale all volumes so
that pu(X) = 1.

Let us assume for now that there is an ideal sam-
pler IDEAL-SAMPLE that picks a point uniformly at
random from the f-reachability set R,(M) of any set
of milestones M. The procedure IDEAL-SAMPLE re-
places lines 3-5 in KDP. We will discuss how to ap-
proximate IDEAL-SAMPLE in Subsection 4.3.

Let M = (mg, my,ma,...) be a sequence of mile-
stones generated by KDP with IDEAL-SAMPLE (mg =
mp), and let M; denote the first ¢ milestones in M.
The milestone m; is called a lookout point if it lies in
the p-lookout of R,(M;_1). Lemma 3 states that the
f-reachability set of M spans a large volume if it con-
tains enough lookout points, and Lemma 4 estimates
the probability that this happens. Together, they im-
ply that with high probability, the ¢-reachability set of
a relatively small number of milestones spans a large
volume in .

Lemma 3 If a sequence of milestones M contains k
lookout points, then p(Ry(M)) > 1 — e=PF.

Proof: Let (m;,, m;,,...,m;,) be the subsequence of
lookout points in M. For any ¢ = 1,2, ..., we have:

1(Re(M;)) = p(Re(Mi—1)) + p(Re(mi) \Re(Mi—l)(?Z-)

Thus p(Re(M;)) > p(Re(M;)), for any ¢ < j. In par-
ticular:

P(Re(M)) > p(Re(My,)). (3)

Using (2) with ¢ = i in combination with the fact that
m;, 18 a lookout point, we get:

H(Re(Mi,)) > p(Re(Mi,—1)) + B p(X \ Re(Mi,-1)).
Let v; = u(R4(M;)). We observe:
X\ R (Mi,—1)) = p(X) = p(Re(Mi—1)) = 1—vi, 1.

Hence, v;, > vi,—1+ (1 —v;,—1), which can be rewrit-
ten as:

Vi, 2 Vip_y T ﬂ(l - vik—l) + (1 - ﬂ)(vik—l - vik—1)'

Since i — 1 > ig_1, it follows that v;, —1 — v;,_, > 0.
Therefore, the previous inequality yields:

Vi 2 Vi, + 6 (1 - Uik—1)'

Setting wg = v;, leads to the recurrence wy > wr_1 +
B (1 —wg—_1), with the solution:

k-1

wy > (1= wo+p Y _(1—p) = 1—(1—p)*(1—wo).

7j=0

Randomized Kinodynamic Motion Planning with Moving Obstacles 7

As wo > 0and 1 -8 < e, we get wy > 1 — e PF,
Combined with (3), it yields:

H(Ro(M)) > 1— =0k,

O

Lemma 4 A sequence of r milestones contains k look-
out points with probability at least 1 — ke=L7/k].

Proof: Let M be the sequence of r milestones and L
be the event that M contains k lookout points. Assume
that » is an integer multiple of k. We divide M into
k subsequences of r/k consecutive milestones. Denote
by L; the event that the ith subsequence contains at
least one lookout point. Since the probability of M
having k lookout points is greater than the probability
of every subsequence having at least one lookout point,
we have:

Pr(L) > Pr(Li N Ly...0 L),

which implies:

Pr(L) < Pr(LiULy...ULg) < Zk:Pr(fi).

=0

Since each milestone picked by IDEAL-SAMPLE has
probability a of being a lookout point, the probability

Pr(L;) of having no lookout point in the ith subse-
quence is at most (1 — oz)’"/k. Hence:

Pr(L)=1—-Pr(L) > 1— k(1 —a)'*

If r is not an integer multiple of &, we divide M into k—
1 subsequences of length |r/k| and a kth subsequence
of length r — k|r/k|. We get:

Pr(L) > 1 — ke~elr/kl
O

We are now ready to state our main result which es-
tablishes an upper bound on the number of milestones
needed to guarantee that the planner finds a trajectory
with high probability, if one exists.

Theorem 5 Let g > 0 be the volume of the endgame
region E in X and vy be a constant in (0,1]. A se-
quence M of r milestones contains a milestone in F
with probability at least 1 — ~, if r > (k/a) In(2k/7) +
(2/9)In(2/4), where k = (1/8) In(2/g).

Proof: Divide M = (mg,mi,ma,...,m,) into two
subsequences M’ and M" such that M’ contains the
first 7’ milestones and M’ contains the next 7/ mile-
stones with 7/ + 7" = r. By Lemma 4, M’ contains k
lookout points with probability at least 1 —&(1 —a)rl/k.
If there are k lookout points in M’ then by Lemma 3,
Re(M') has volume at least 1 — g/2, provided that
k > 1/8In(2/g). As a result, R,(M’') has a non-
empty intersection I with F of volume at least g/2,
and so does the f-reachability set of every subsequence
M; D M.

Since IDEAL-SAMPLE picks a milestone uniformly at
random from the f-reachability set of the existing mile-
stones, every milestone m; in M” falls in I with proba-
bility (¢/2)/u(Re(M;—1)). Since u(R,(M;—1)) < 1 for
all 7, and the milestones are sampled independently,

M" contains a milestone in I with probability at least
1—(1—=g/2)" >1—eT 92

If M fails to have a milestone in F, then either the
£-reachability set of M’ does not have a large enough
intersection I with E (event A), or no milestone of M"
landsin I (event B). We know that Pr(A4) < v/2ifr' >
(k/@)In(2k/y) and Pr(B) < /2 if " > (2/g)In(2/7).
Choosing r > (k/a)In(2k/v) + (2/g) In(2/4) guaran-
tees that Pr(AUB) < Pr(A)+Pr(B) < +. Substituting
k = (1/8)In(2/g) into the inequality bounding r, we
get:

> In(2/g), 2In(2/g) 2, 2
ap By 9 7
O

If KDP returns FAILURE, either the query admits no
solution, i.e., (sq4,14) € X, or the algorithm has failed
to find one. The latter event, which corresponds to re-
turning an incorrect answer to the query, has probabil-
ity less than 5. Since the bound in Theorem 5 contains
only logarithmic terms of v, the probability of an in-
correct answer converges toward 0 exponentially in the
number of milestones.

The bound given by Theorem 5 also depends on the
expansiveness parameters «, # and the volume g of the
endgame region. The greater «, 8, and g, the smaller
the bound. In practice, it is often possible to establish
a lower bound for g. However, a and § are difficult or
impossible to estimate, except for trivial cases. This
prevents us from determining the parameter N (max-
imal number of milestones) for KDP a priori. This

Randomized Kinodynamic Motion Planning with Moving Obstacles 8

is not different from previous analyses of PRM path
planners [11, 15, 17, 29].

4.3 Approximating IDEAL-SAMPLE

One way of implementing IDEAL-SAMPLE would be
to use rejection sampling [13]: generate many samples
and throw away a fraction of them in the more densely
sampled regions. However, this would lead KDP to
generate and then discard many potential milestones.

KDP seeks to approximate IDEAL-SAMPLE in a
more efficient way. Note that every new milestone m/
created in line 5 of Algorithm 1 tends to be relatively
close to m, because long trajectories induced by con-
trols picked at random are often in collision. Therefore,
if we selected milestones uniformly in line 3, the result-
ing distribution would be very uneven; indeed, with
high probability, at line 3, the planner would pick a
milestone in an already densely sampled region, which
would yield a new milestone in that same region in
line 5. The distribution 7, (m) ~ 1/w(m) used at line 3
contributes to the diffusion of milestones over R (my)
and avoids oversampling. In general, maintaining the
weights w(m) as the roadmap is being built has a much
smaller computational cost than performing rejection
sampling.

There is a slightly greater chance of generating a
new milestone in an area where the f-reachability sets
of several milestones already in T overlap. However,
milestones in T with overlapping f-reachability sets are
more likely to be close to one another than milestones
with no such overlapping. Therefore, the use of m; at
line 3 keeps the problem under control by preventing
it from worsening as the number of milestones grows.

There is yet another issue to consider. Though line 4
selects u uniformly at random from #,, the distribution
of m' in Ry(m) is not uniform in general, because the
mapping from U, to R, (m) may not be linear. In many
cases, one may precompute a distribution 7 such that
picking u from U, with probability m, (u) yields a uni-
form distribution of m’ in R¢(m). In other cases, rejec-
tion sampling can be used locally as follows: in line 4,
pick several control functions u;; in line 5, compute the
corresponding m}, throw away some of them to achieve
a uniform distribution among the remaining m}, and
pick a remaining m} at random.

4.4 Choice of ¢ and J.x

In theory, the parameter £ must be chosen such that
for any p € R(myp), Re(p) has the same dimension as
R(mp). Otherwise, Ry(p) has zero volume relative to
R(myp), and R(my) cannot be expansive even for ar-
bitrarily small values of a and 8. This can only hap-
pen when some dimensions of R(my) are not directly
spanned by constant controls in €. But these dimen-
sions can then be generated by combining several con-
trols in using Lie-brackets [4]. The mathematical
definition of a Lie bracket can be interpreted as an in-
finitesimal “maneuver” involving two controls. Span-
ning all the dimensions of R(mj) may require combin-
ing more than two controls of Q, by imbricating multi-
ple Lie brackets. At most n—2 Lie brackets are needed,
where n is the dimension of 8. Hence, it is sufficient in
all cases to choose { = n — 2.

To simplify the implementation, however, one may
choose £ = 1, since a path passing through several con-
secutive milestones in 7' corresponds to applying a se-
quence of constant controls. In general, the larger £,
the greater a and 3, hence the smaller the number of
milestones needed according to our analysis, but also
the more costly the generation of each milestone. The
choice of pax is somewhat related. A larger dpax re-
sults in greater a and g, but also leads the planner to
integrate longer trajectories that are more likely to be
non-admissible. Experiments show that £ and §,,,x can
be selected in rather wide intervals without significant
impact on the performance of the planner. However, if
the values for £ dax are too large, it may be difficult
to approximate IDEAL-SAMPLE well.

5 Nonholonomic Robots

5.1 Robot description

We implemented KDP for two different robot sys-
tems. One consists of two nonholonomic carts con-
nected by a telescopic link and moving among station-
ary obstacles. The other system is an air-cushioned
robot that i1s actuated by air thrusters and operates
among moving obstacles on a flat table. It is subject
to strict dynamic constraints. In this section, we dis-
cuss the implementation of KDP for the nonholonomic
robot. In the next two sections, we will do the same
for the air-cushioned robot.

Randomized Kinodynamic Motion Planning with Moving Obstacles 9

Figure 3: Two-cart nonholonomic robots

Wheeled vehicles are a classical example for nonholo-
nomic motion planning. The robot considered here
is a new variation on this theme. It consists of two
independently-actuated carts moving on a flat surface
(Figure 3). Each cart obeys a nonholonomic constraint
and has non-zero minimum turning radius. In addition,
the two carts are connected by a telescopic link whose
length is lower and upper bounded. This system has
been inspired by two scenarios. One is the mobile ma-
nipulation project in the GRASP Laboratory at the
University of Pennsylvania [6]; the two carts are each
mounted with a manipulator arm and must remain
within a certain distance range so that the two arms
can cooperatively manipulate an object (Figure 3(a)).
The manipulation area between the two carts must be
clear of obstacles. In the other scenario, two carts pa-
trolling an indoor environment must remain in a direct
line of sight of each other (Figure 3(b)), within some
distance range, in order to allow visual contact or sim-
ple directional wireless communication.

We project the geometry of the carts and the ob-
stacles onto the horizontal plane. For i = 1,2,
let R; be the midpoint between the rear wheels of
the ith cart and F; be the midpoint between the
front wheels. Let L; be the distance between R;
and F;. We define the state of the system by s =
(z1,y1,01,22,y2,02), where (z;, ;) are the coordinates
of R;, and #; 1s the orientation of the rear wheels
of cart i relative to the z-axis (Figure 1). The dis-
tance constraint between the two carts is expressed as
dmin S \/(Il - I2)2 + (yl - y2)2 S dmax~

Each cart has two scalar controls: the magnitude
u; of the velocity of R; and the steering angle ¢; (the

orientation of F;’s velocity relative to the rear wheels).
The equations of motion for the system are:

1 = wujcost Ty = ugcosfs
yl = Uz sin 91 yz = Uz sin 92
61 = (ul/Ll)tan (]51 92 = (UQ/LQ) tan (]52

The control space is restricted by |u;| < U; and |¢]| <
®;, which bound the carts’ velocities and steering an-
gles.

5.2 Implementation details

Since all obstacles are stationary, the planner builds
a roadmap T in the robot’s 6-D state space.

Computing the weights To compute the weight
w(m) of a milestone m, we define the neighborhood
of m to be a ball of radius p centered at m. Our imple-
mentation uses a naive method that checks every new
milestone m’ against all the milestones currently in 7.
Thus, for every new milestone, updating w takes linear
time in the size of T'. More efficient range search tech-
niques [1] would improve the planner’s running time
for problems requiring very large roadmaps.

Implementing PROPAGATE Given a milestone m
and a control function u, PROPAGATE (m, u) uses the
Euler method with a fixed step size to integrate the
trajectory 7 of the robot. It then discretizes 7 into
a sequence of states and returns nil if any of these
states is in collision. For each cart, a 3-D bitmap that
represents the collision-free configurations of the cart
is precomputed prior to planning. PROPAGATE then
takes constant time to check whether a configuration

Randomized Kinodynamic Motion Planning with Moving Obstacles 10

Figure 4: Fzamples of nonholonomic paths computed by the planner

is in collision, or not. In our experiments, we used a
128 x 128 x 64 bitmap.

Endgame region We obtain the endgame region by
generating a secondary tree 7" of milestones rooted at
Sq.

5.3 Experimental results

We experimented with the planner in many
workspaces. Each is a 10 m x 10 m square re-
gion with static obstacles. The two carts are identical,
each represented by a polygon contained in a circle of
radius 0.4 m. L; = Ly = 0.5 m. Each cart’s speed
ranges from —3 m/s to 3 m/s, and its steering angle
¢ varies between —30° and 30° The distance between

Ry and R, ranges between 1.4 m and 3.3 m.

Figure 4 shows three computed examples.
Workspace (a) is a maze; the robot must navi-
gate from one side of it to the other. Workspace (b)
contains two large obstacles separated by a narrow
passage. The two carts, which are initially parallel to
one another, change formation and proceed in a single
file through the passage, before becoming parallel
again. Workspace (¢) consists of two rooms cluttered
with obstacles and connected by a hallway. The carts
need to move from the bottom one to the the top
one. The maximum steering angles and the size of the
circular obstacles conspire to increase the number of
required maneuvers.

We have run the planner for several different queries
in each workspace shown in Figure 4. For every query,

E | Q time (sec) coll. mil. prop.
mean | std

(a) 1 1.39 | 0.91 62,400 | 2473 21316
2 0.74 | 0.65 43,600 | 1630 15315
3 0.54 | 0.41 36,000 | 1318 12815
4 0.55 | 0.44 38,400 | 1310 14066

(b) 1 4.45 | 3.92 | 126,100 | 4473 45690

(C) 1 14.09 | 7.42 | 287,800 | 9123 | 107393
2 0.92 | 0.51 56,400 | 1894 20250

Table 1: Planning statistics for the nonholonomic robot

we ran the planner 30 times independently with dif-
ferent random seeds. The results are collected in Ta-
ble 1. Every row of the table corresponds to a par-
ticular query. Columns 3-7 list the average running
time, its standard deviation, the average number of col-
lision checks, the average number of milestones gener-
ated, and the average number of calls to PROPAGATE.
The running times range from less than a second to a
few seconds. The first query in environment (c) takes
longer because the carts must perform several maneu-
vers in the hallway before reaching the goal (see Fig-
ure 4(c)). The planner was written in C++, and the
running times were collected on a 195 Mhz SGI Indigo?2
with an R10000 processor.

The standard deviations in Table 1 are larger than
we would like. Figure 5 plots a histogram of more than
100 independent runs for a given query. In most runs,
planning time is well under the mean or slightly above.
This indicates that our planner performs well most of
the time. The large deviation is caused by a few runs
that take as long as four times the mean. The long and

Randomized Kinodynamic Motion Planning with Moving Obstacles 11

running time (seconds)

Figure 5: Histogram of planning times for more than 100
runs on a particular query. The average time is 1.4 sec,
and the four quartiles are 0.6, 1.1, 1.9, and 4.9 sec.

thin tail of the distribution is typical of the tests that
we have performed.

6 Air-Cushioned Robots

6.1 Robot description

The second robot system used to evaluate our al-
gorithm was developed in the Stanford Aerospace
Robotics Laboratory for testing space robotic tech-
nologies. This robot (Figure 6) moves frictionlessly on
an air bearing on a flat granite table. Air thrusters
provides omni-directional motion capability, but the
thrust available is small compared to the robot’s mass,
resulting in tight acceleration limits. We represent the
workspace by a 3 m X 4 m rectangle, the robot by
a disc of radius 0.25 m, and the obstacles by discs of
radii between 0.1 and 0.15 cm. Each obstacle moves
along a straight path at constant velocity ranging be-
tween 0 and 0.2 m/s (more complex trajectories will
be considered in Subsection 7.4). In the simulation en-
vironment, collisions among obstacles are ignored. So
two obstacles may temporarily overlap without chang-
ing courses. When an obstacle reaches the workspace’s
boundary, it leaves the workspace and is no longer con-
sidered a threat to the robot.

We define the robot’s state to be (z,y, #,y), where
(z,y) are the coordinate of the robot’s center. The
equations of motion are:

1
r = —ucosf

S
and y = —usind,
m m

Figure 6: The air-cushioned robot

where m is for the robot’s mass, and u and € denote
the magnitude and direction of the force generated by
the thrusters. We have u/m < 0.025 m/s?, and ¢ varies
freely between 0° and 360°. We also bound the robot’s
velocity by 0.18 m/s.

6.2 Implementation details

The planner builds a roadmap 7" in the robot’s 5-D
statextime space, The initial state xtime is of the form
(s, 0) and the goal is of the form (sg4,t,) where t; can
be any time less than a given ¢,,,x. The planner is given
the obstacle trajectories, and unlike in the experiments
with the real robot in the next section, planning time
is not limited. This is equivalent to assuming that the
world is frozen until the planner returns a trajectory.

Computing the weights The 3-D configuration-
x time space of the robot is partitioned into an 8x11x10
array of identically sized rectangles called bins. When
a milestone 1s inserted in 7', the planner adds it to
a list of milestones associated with the bin in which
it falls. In line 3 of KDP, the planner picks at ran-
dom a bin containing at least one milestone and then
a milestone from within this bin. Both choices are
made uniformly at random. This corresponds to pick-
ing a milestone with a probability approximately pro-
portional to the inverse of the density of samples in
the robot’s configurationxtime space (rather than its
statextime space). We did some experiments with
higher-dimensional bin arrays, but the results were not
improved significantly.

Implementing PROPAGATE The simple equations

Randomized Kinodynamic Motion Planning with Moving Obstacles 12

T=11.2secs

T=22.4secs

T =33.7 secs T =449 secs

T=9.0secs

T =20.0 secs

T =30.0 secs T =39.2 secs

T=28.0secs

T=16.1 secs

T =24.1secs T=32.1secs

(c)

Figure 7: Trajectories produced by the planner for the air-cushioned robot

of motion make is possible to compute trajectories an-
alytically. Trajectories are discretized and at each dis-
cretized statextime the robot disc is checked for col-
This naive technique
works reasonably well when the number of obstacles is
small. Tt could easily be improved.

lision with each obstacle disc.

Endgame region When a milestone m is added to T
it is checked for a connection to k goal points (s4,1,).
Each of the k values of ¢, is picked uniformly at random
in the interval [tmin, tmax], Where ¢min is an estimate of
the earliest time when the robot may reach s; given
its maximal velocity and assuming no obstacles. For
each value of £,, the planner computes the third-order
spline connecting m to (sq,t,). It then verifies that
the spline is collision free and satisfies the velocity and
acceleration bounds. If all the tests succeed, then m lies
in the endgame region. In all the experiments below,
k is set to 10.

6.3 Experimental results

We performed numerous experiments in more than one
hundred simulated environments. In each case, plan-
ning time was limited to five minutes. For a small
number of queries, the planner failed to return a tra-
Jectory, but for none of them were we able to show that
an admissible trajectory exists. On the other hand, the
planner successfully solved several queries for which we
initially thought there were no solution.

Three trajectories computed by the planner are
shown in Figure 7. For every example, we display
five snapshots labeled by time. The large disc is the
robot; the smaller discs are the obstacles. The solid
and dotted lines mark the trajectories of the robot and
the obstacles, respectively. For each query, we ran the
planner 100 times independently with different random
seeds. The planner successfully returned a trajectory

Randomized Kinodynamic Motion Planning with Moving Obstacles 13

E time (sec) milestones

mean | std mean | std
(a) 0.249 | 0.264 2008 | 2229
(b) 0.270 | 0.285 1946 | 2134
(¢) | 0.002 | 0.005 22| 25

Table 2: Planning statistics for the air-cushioned robot

Figure 8: Configurationxspace for Ezample (b)

in all runs. In Example (a), the duration of the trajec-
tory varied from 40 to 70 sec. Table 2 lists the means
and standard deviations of the planning time and num-
ber of milestones for each example. The reported times
are based on a planner written in C and running on a
Pentium-III PC with a 550 Mhz processor and 128M
of memory.

In the first two examples, the moving obstacles cre-
ate narrow passages through which the robot must
pass to reach the goal. Yet planning time remains
much under 1 second. The fact that the planner
never failed in 100 runs indicates its reliability. The
configuration xtime space for Example (b) is shown
in Figure 8. The robot maps to a point (z,y,t), and
the obstacles to cylinders. The velocity and accelera-
tion constraints force any solution trajectory to pass
through a small gap between cylinders. Example (c) is
much simpler. There are two stationary obstacles ob-
structing the middle of the workspace and three mov-
ing obstacles. Planning time is well below 0.01 sec-
ond, with an average of 0.002 second. The number of
milestones is also small, confirming the result of The-
orem 5 that in the absence of narrow passages, KDP
is very efficient. As in the experiments on nonholo-
nomic robot carts, the running time distribution of the

planner tends to have a long and thin tail.

7 Experiments with the Real Robot

We connected the planner of the previous section to
the air-cushioned robot of Figure 6 in order to ver-
ify that KDP remains useful in a system integrating
control and sensing modules over a distributed archi-
tecture and operating in a physical environment with
uncertainties, time delays, and real-time constraints.

7.1 Testbed description

The robot in Figure 6 moves frictionlessly on an air
bearing within the limits of a 3 mx4 m table. Obsta-
cles, also on air-bearings, translate without friction on
the table. The positions of the robot and the obstacles
are measured at 60 Hz by an overhead vision system
thanks to LEDs placed on each moving object. The
measurement is accurate to 5 mm. Velocity estimates
are derived from position data.

The robot is untethered. Gas tanks provide com-
pressed air for both the air-bearing and thrusters. An
onboard Motorola ppc2604 computer performs motion
control at 60 Hz. The planner runs on on a 333 Mhz
Sun Sparc 10. The robot communicates with the plan-
ner and the vision module over the radio Ethernet.

The obstacles have no thrusters. They are initially
propelled by hand from various locations, and then
move at constant speed until they reach the bound-
ary of the table, where they stop due to the lack of air
bearing.

7.2 System integration

Implementing the planner on the hardware testbed
raises a number of new challenges:

Delays Various computations and data exchanges pro-
duce delays between the instant when the vision mod-
ule measures the trajectories of the robot and the ob-
stacles and the instant when the robot starts executing
the planned trajectory. Ignoring these delays would
lead the robot to begin executing the planned trajec-
tory behind the start time assumed by the planner. It
then may not be able to catch up with the planned tra-
Jectory before collision occurs. To deal with this issue,
the planner computes a trajectory assuming that the
robot will start executing it 0.4 second into the future.

Randomized Kinodynamic Motion Planning with Moving Obstacles 14

It extrapolates the positions of the obstacles accord-
ingly, as well as that of the robot if its initial velocity
is non-zero. The 0.4 second contains all the delays in
the system (not just the time needed for planning). Tt
could be further reduced by running the planner on a
machine faster than the Sun Sparc 10 that we are using
currently.

Path optimization Because robot starts executing
the trajectory 0.4 second after planning begins, the
planner exploits any extra time after obtaining a first
trajectory to generate additional milestones and keeps
track of the best trajectory generated. The cost func-
tion used to compare trajectories is Zzzlf(ul + b)d;,
where k is the number of segments in the trajectory, u;
is the magnitude of the force exerted by the thrusters
along the ith segment, J; is the duration of the ith
segment, and b is a constant. This cost combines fuel
consumption with execution time. A larger b yields a
faster motion, while a smaller b yields less fuel con-
sumption. In our experiments, the cost of trajectories
was reduced, on average, by 14% with this simple im-
provement.

Sensing errors The obstacle trajectories are assumed
to be straight lines at constant velocities. However,
inaccuracy in the measurements by the vision module
and assymmetry in air-bearings cause actual trajecto-
ries to be slightly different. The planner deals with
these errors by increasing the radius of each moving
obstacle by an amount &Vi,.xt, where ¢ denotes time,
Vinax 18 the measured velocity of the obstacle, and ¢ 1s
a constant.

Safe-mode planning If the planner does not find a
trajectory to the goal within the allocated time, we
find it useful to compute an escape trajectory. The
endgame region Fes. for the escape trajectory consists
of all the reachable, collision-free states (s.,t.) with
te > Tuge for some Tos.. An escape trajectory corre-
sponds to any acceleration-bounded, collision-free mo-
tion in the workspace for a small duration of time. In
general, Feg 1s very large, and so generating an escape
trajectory often takes little time. To ensure collision-
free motion beyond Tie., a new escape trajectory must
also be computed long before the end of the current
escape trajectory so that the robot can escape collision
despite the acceleration constraints. We modified the
planner to compute concurrently both a normal and an
escape trajectory. In our experiments, the modification

slowed down the planner by about 2%.

Trajectory tracking The trajectory received by the
robot specifies the position, velocity, and acceleration
of the robot at all times. A PD-controller with feedfor-
ward is used to track this trajectory. Maximum track-
ing errors are 0.05 m and 0.02 m/s. The size of the
disc modeling the robot is increased by 0.05 m to en-
sure safe collision checking by the planner.

7.3 Experimental results

The planner successfully produced complex maneuvers
of the robot among static and moving obstacles in var-
ious situations, including obstacles moving directly to-
ward the robot, as well as perpendicular to the line
connecting its initial and goal positions. The tests also
demonstrated the ability of the system to wait for an
opening to occur when confronted with moving obsta-
cles in the robot’s desired direction of movement and to
pass through openings that are less than 10 cm larger
than the robot. In almost every trial, a trajectory was
computed within the allocated time. Figure 9 shows
snapshots of the robot during one test.

Several constraints limited the complexity of the
planning problems which we could test. Two are re-
lated to the testbed itself: the size of the table relative
to the robot and the obstacles, and the robot’s small
acceleration. The other two constraints result from the
design of our system: the requirement that obstacles
move along straight lines and hence do not collide with
each other, and the relatively high uncertainty on their
movements, which forces the planner to grow the obsta-
cles and thus reduce free space. To eliminate the last
two constraints, we introduced on-the-fly replanning.

7.4 On-the-fly replanning

Whenever an obstacle leaves the disc in which the plan-
ner believes it lies (because either the error on the pre-
dicted motion is larger than expected, or the obstacle’s
direction of motion has changed), the vision module
alerts the planner. The planner recomputes a trajec-
tory on the fly as if it were a normal planning operation
within the same time limit, by projecting the state of
the world 0.4 second into the future. On-the-fly replan-
ning makes 1t possible to perform much more complex
experiments in the testbed. We show two examples
below.

Randomized Kinodynamic Motion Planning with Moving Obstacles

Figure 9: Snapshots of the robot executing a trajectory

T=21secs T =14.6 secs T=19.8 secs
15 . 15 15
1 1 1
? o5 ? 05 [) ? 05
@ © T
E o0 E o0 E o0
~ ~ ~
*-05 ® *-05 *-05
-1 . -1 -1
-15 -15 -15
-1 0 1 -1 0 1 -1 0 1
X, [meters] X, [meters] X, [meters]
T =33.2secs T =50.2 secs T=75.0secs
15 15 15
1 1 1
? 05 ° ? 05 ? 05
@ °© T
E 0 o E O E O
~ ~ ~
05| @ <05 *0s
-1 -1 -1
-15 -15 -15
-1 0 1 -1 0 1 -1 0
x, [meters] x, [meters] x, [meters]

Figure 10: Simulation example with replanning

In the example in Figure 10, eight replanning oper-
ations are performed over the 75 seconds taken by the
robot’s motion. Initially the robot moves to the left
to reach the goal at the bottom middle. At 14 second,
the upper-left obstacle changes course, forcing a replan
(snapshot 2). Soon after, the motion of the upper-right
obstacle changes, forcing the robot to reverse direc-
tion and approach the goal from the other side of the
workspace (snapshot 3). In the remaining time, new
changes in obstacle motion cause the robot to pause
(tight angle in snapshot 5) before a straight trajectory
to the goal is possible (snapshot 6).

The efficacy of the replanning procedure in the
testbed is demonstrated by the example in Figure 11.
In snapshot 1, the middle obstacle is stationary, while
the two outer obstacles are moving towards the robot.
The robot attempts to move from the back middle to
the front middle of the workspace. In snapshot 2, the
robot dodges the faster-moving obstacle from the left,
in order to let it pass by and then proceeds toward the
goal. In snapshot 3, that obstacle is redirected to block
the trajectory of the robot, causing it to slow down and
stay behind the obstacle to avoid collision. Snapshot
5 shows the leftmost obstacle being redirected again,
this time towards the robot’s goal. The robot follows
this obstacle and move slowly towards the goal. Before
snapshot 7, however, the rightmost obstacle is directed
back towards the robot, forcing the robot to wait and
let it pass (snapshot 8). Finally, in the last snapshot,

Randomized Kinodynamic Motion Planning with Moving Obstacles 16

Figure 11: An example with the real robot using replanning

the robot attains the goal. The entire motion lasted
40 seconds. Throughout this example, other replan-
ning operations were performed due to errors in the
measurement of the obstacle trajectories (We set € such
that sensing errors caused replanning to occur, on av-
erage, every 5 seconds). However, none resulted in a
major redirection of the robot.

8 Conclusion

We have presented a simple, efficient randomized plan-
ner for kinodynamic motion planning problems in the
presence of moving obstacles. Under the expansiveness
assumption, we have formally proven that the plan-
ner is probabilistically complete and converges quickly

when a solution exists. This proof also applies to
robots that are not locally controllable. The planner
was tested successfully with simulated and real robots.
The experiments in the hardware robot testbed demon-
strate that the planner remains effective despite vari-
ous delays and uncertainties inherent to an integrated
system interacting with the physical world. They also
show that the planner can be used in real-time when
obstacle trajectories are not known in advance.

In the future, we plan to apply the planner to en-
vironments with more complex geometry. Geometrical
complexity essentially increases the cost of collision-
checking, but hierarchical techniques deal with this is-
sue well. In [11], a similar, but simpler planner was

Randomized Kinodynamic Motion Planning with Moving Obstacles 17

successfully applied to compute geometric disassembly
paths with CAD models having up to 200,000 trian-
gles. Another issue that we would like to investigate is
the reduction of the standard deviation of the planning
time. We suspect that the long thin tail shown in Fig-
ure 5 is typical of all PRM planners developed so far.
But it seems more critical to reduce it for single-query
planners, since such planners are more likely to be used
interactively or in real-time than multi-query ones.

Acknowledgments: This work was supported by ARO
MURI grant DAAHO04-96-1-007, NASA TRIWG Coop-
Agreement NCC2-333, Real-Time Innovations, and the
NIST ATP program. David Hsu has also been the recipient
of a Microsoft Graduate Fellowship, and Robert Kindel, the
recipient of an NSF Graduate Fellowship.

References

[1] P. K. Agarwal. Range searching. In Handbook of dis-
crete and computational geometry, J.E. Goodman and
J. O’Rourke (eds.), CRC Press, Chap. 31, p. 575-598,
1997.

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and
D. Vallejo. OBPRM: An obstacle-based PRM for 3D
workspaces. In Robotics: The Algorithmic Perspective,
P.K. Agarwal, L.E. Kavraki, and M.T Mason (eds.),
A K Peters, p. 155-168, 1998.

[3] J. Barraquand and J. C. Latombe. Robot motion plan-
ning: a distributed representation approach. Int. J. of
Robotics Research, MIT Press, 10(6):628-649, 1991.

[4] J. Barraquand and J. C. Latombe. Nonholonomic
multibody mobile robots: controllability and motion
planning in the presence of obstacles. Algorithmica,
10(2-4):121-155, 1993.

[5] J. E. Bobrow, S. Dubowsky, and J. Gibson. Time-
optimal control of robotic manipulators along specified
paths. Int. J. of Robotics Research, 4(3):3-17, 1985.

[6] J.P. Desai and V. Kumar. Motion planning for coop-
erating mobile manipulators. J. of Robotic Systems,
16(10):557-579, 1999.

[7] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinody-
namic motion planning. J. of the ACM, 40(5):1048—
1066, 1993.

[8] P. Fiorini and 7. Shiller. Time optimal trajec-
tory planning in dynamic environments. Proc. IEEE
Int. Conf. on Robotics and Autom., p. 1553-1558,
1996.

[9] T. Fraichard. Trajectory planning in a dynamic
workspace: a ‘state-time space’ approach. Advanced
Robotics, 13(1):75-94, 1999.

[10] K. Fujimura. Time-minimum routes in time-
dependent networks. [EFE Tr. on Robotics and Au-
tom., 11(3):343-351, 1995.

[11] D. Hsu, J. C. Latombe, and R. Motwani.
Path planning in expansive configuration spaces.
Int. J. Comp. Geomelry and Applications, 9(4-5):495—
512, 1999.

[12] P. Jacobs and J. Canny. Planning smooth paths for
mobile robots. In Proc. IEEFE Int. Conf. on Robotics
and Autom., p. 2-7, 1989.

[13] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods,
Vol. 1, John Wiley & Son, 1986.

[14] K. Kant and S. W. Zucker. Toward efficient trajectory
planning: The path-velocity decomposition. Int. J. of
Robotics Research, 5(3):72-89, 1986.

[15] L.E. Kavraki, M. Kolountzakis, and J. C. Latombe.
Analysis of probabilistic roadmaps for path planning.
IEEE Tr. Robotics and Autom., 14(1):166-171, 1998.

[16] L.E. Kavraki and J. C. Latombe. Randomized pre-
processing of configuration space for fast path plan-
ning. Proc. IEEE Int. Conf. on Robotics and Autom.,
p. 21382145, 1994.

[17] L.E. Kavraki, J. C. Latombe, R. Motwani, and
P. Raghavan. Randomized query processing in robot
motion planning. J. Computer and System Sciences,
57(1):50-60, 1998.

[18] L.E. Kavraki, P. Svestka, J. C. Latombe, and
M. Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEFFE
Tr. Robotics and Autom., 12(4):566-580, 1996.

[19] J.P. Laumond. Feasible trajectories for mobile
robots with kinematic and environmental constraints.
Proc. Int. Conf. on Intelligent Autonomous Systems,
p. 346-354, 1986.

[20] J.P. Laumond, P.E. Jacobs, M. Taix., and R.M. Mur-
ray. A motion planner for nonholonomic mobile
robots. IEEE Tr. on Robotics and Autom., 10(5):577—
593, 1994.

[21] S. LaValle and J. Kuffner. Randomized kinodynamic
planning. Proc. IEEFE Int. Conf. on Robotics and Au-
tom., p. 473-479, 1999.

[22] Z. Li, J. F. Canny, and G. Heinzinger. Robot motion
planning with nonholonomic constraints. In Robotics
Research: The 5th Int. Symp., H. Miura et al. (eds.),
MIT Press, p. 309-316, 1989.

[23] K. M. Lynch and M. T. Mason. Stable pushing:
mechanics, controllability, and planning. [Int. J. of
Robotics Research, 15(6):533-556, 1996.

[24] J.A. Reeds and L.A. Shepp. Optimal paths for a car
that goes forwards and backwards. Pacific J. of Math-
ematics, 145(2):367-393, 1990.

Randomized Kinodynamic Motion Planning with Moving Obstacles

[25] J. Reif and M. Sharir. Motion planning in the presence
of moving obstacles. Proc. IFEFE Symp. on Founda-
tions of Computer Science, p. 144-154, 1985.

[26] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. Over-
mars. Multi-level path planning for nonholonomic
robots using semi-holonomic subsystems. Algorithms
for Robotic Motion and Manipulation, J.P. Laumond
and M. Overmars (eds.), A.K. Peters, p. 79-96, 1997.

[27] Z. Shiller and S. Dubowsky. On computing the global
time-optimal motions of robotic manipulators in the
presence of obstacles. IEEFE Tr. on Robotics and Au-
tom., 7(6):785-797, 1991.

[28] P. Svestka and M. H. Overmars. Motion planning for
car-like robots using a probabilistic learning approach.
Tech. Rep. RUU-CS-94-33, Dept. of Computer Sci-
ence, Utrecht Univ., The Netherlands, 1994.

[29] P. Svestka and M. Overmars. Probabilistic path plan-
ning: robot motion planning and control. Lec-
ture Notes in Control and Information Sciences, 229,
Springer, p. 255-304, 1998.

