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Abstract. Several sophisticated sampling strategies have been proposed recently to address
the narrow passage problem for probabilistic roadmap (PRM) planning. They all have unique
strengths and weaknesses in different environments, but none seems sufficient on its own in
general. In this paper, we propose a systematic approach for adaptively combining multiple
sampling strategies for PRM planning. Using this approach, we describe three adaptive hybrid
sampling strategies. Two are motivated by theoretical results from the computational learn-
ing theory. Another one is simple and performs well in practice. We tested them on robots
with two to eight degrees of freedom in planar workspaces. In these preliminary tests, the
adaptive hybrid sampling strategies showed consistently good performance, compared with
fixed-weight hybrid sampling strategies.

1 Introduction

Random sampling has lead to great progress in motion planning of robots with
many degrees of freedom (dofs)[1,4–6,8,9,12–14,17,18]. Using random sampling,
probabilistic roadmap (PRM) planners reliably solved motion planning problems
for multiple robots with 36 or more dofs (see,e.g., [18]), a task that had not been
accomplished before by deterministic algorithms. However, it was recognized from
early on that narrow passages in a robot’s configuration space are a bottleneck for
PRM planners[13]. There are several sampling strategies for dealing with narrow
passages, including sampling more densely near obstacle boundaries[1,5], retracting
to the medial axis[8,10,15,20], or looking for specific patterns of local geometry[11].
They all have unique strengths and weaknesses in different environments, but none
seems sufficient on its own in general. Furthermore, given a particular environment,
it is not clear how to choose a good sampling strategy. In this paper, we take the first
step towards proposing a systematic approach for adaptively combining multiple
sampling strategies and constructing hybrid sampling strategies for PRM planning.

Some earlier work on PRM planning used multiple sampling strategies. One ap-
proach is to partition the configuration space into possibly overlapping regions and
use a different sampling strategy for each region[7]. However, partitioning a high-
dimensional space into regions and maintaining them are difficult. Another approach
is to combine sampling strategies by weighting[11]. Suppose that two samplers have
distributionsπ1 andπ2, respectively. A weighted hybrid sampler then has the distri-
bution(1−w)π1+wπ2, wherew ∈ [0, 1] is the weight. For example,π1 may sample
the configuration space uniformly, andπ2 peaks in narrow passages. By combining
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the two distributions, the hybrid sampler may cover the entire configuration space
well. Unfortunately it is difficult to choose the best value forw. It has been observed
that settingw = 0.5 often gives good performance experimentally, but clearly there
are environments where more extreme values ofw give better performance. Further-
more, if there aren component samplers withn much larger than 2 and they are all
weighted equally, the performance likely deteriorates, because the best component
sampler gets only a weight of1/n and does not run frequently enough.

Instead of trying to set good values for the weightsa priori, we propose to set
them adaptively. Our basic idea is simple. We observe the performance of compo-
nent samplers. In each iteration, we adjust the weights of component samplers based
on their past performance and pick samplers to run with probabilities that depend on
the weights. Over the time, samplers with good performance have higher weights
and run more frequently. If we formulate the sampling problem this way, results
from the computational learning theory indicate that certain algorithms for updating
the weights are provably good[2,3,16]. More precisely, they are competitive against
the “optimal” one. We describe two adaptive sampling strategies using these algo-
rithms. However, these algorithms consider various worst-case scenarios, some of
which are not important in our problem. We show through experiments that a simple
heuristic algorithm actually performs slightly better than these two.

In the rest of the paper, Section 2 gives motivation of our approach by reviewing
relevant results from the learning theory. Section 3 formulates the adaptive hybrid
sampling approach. Section 4 describes three algorithms for updating the weights.
Section 5 shows how to use our adaptive hybrid sampling approach to combine
the bridge test[11] and uniform sampling. Section 6 reports experimental results.
Section 7 discusses some alternatives to the choices made in our approach. Section 8
summarizes the results and points out future research directions.

2 Preliminaries

Predicating from expert advice is studied extensively in the learning theory[3]. In a
model problem, we would like to predict the outcomes of a sequence of trials,e.g.,
horse races. There is a panel ofn experts, each making an independent prediction.
In every trial, we make a predication based on then expert predictions. The true
outcome is then revealed to us.

If we knew that experti is the most successful predicator, then following the
prediction ofi is our best choice, but if we do not know the best expert, what shall
we do? Algorithm 1 seems a fairly intuitive solution[16]. We assign a weight to
each expert. In every trial, we choose to follow the prediction of an expert with
probability proportional to the expert’s weight. When the true outcome is revealed,
all the experts making correct predictions are rewarded: their weights are increased
by a constant factor1 + η. Surprisingly, this simple algorithm is guaranteed to do
almost as well as the best expert. It has been shown that in any sequence of trials,
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Algorithm 1 Randomized Weighted Majority.
1: Let wi(t) be the weight of experti at tth trial. Initializewi(0) = 1 for i = 1, 2, . . . , n.
2: for t = 1, 2, . . . do
3: Set the probability

pi =
wi(t)∑n

j=1
wj(t)

, i = 1, 2, . . . , n. (1)

4: Given the experts’ predictionsxi, i = 1, 2, . . . , n, outputxi with probabilitypi.
5: When the outcome is revealed, set

wi(t+1) =

{
wi(t)(1 + η) if experti’s prediction is correct,

wi(t) otherwise,
i = 1, 2, . . . , n,(2)

whereη is a small positive constant.

the expected number of correct predicationsR made by the Randomized Weighted
Majority algorithm satisfies

R≥ (1− η

2
)R̂− ln n

η
,

whereR̂ the number of correct predictions made by the best expert[16]. Forη = 0.5,
we haveR≥ 0.75R̂− 2 ln n.

If we treat each sampler as an expert, it seems that the Randomized Weighted
Majority algorithm may be applicable to hybrid sampling. This is almost true, after
some modifications. First, we must note an important difference. In the prediction
problem, every expert makes a prediction for a trial, and the weights of all experts
are updated, if necessary, when the outcome is revealed. In the sampling problem, in
each iteration, we choose a sampler to pick a point at random, and then evaluate the
performance of this sampler according the point chosen. However, we know nothing
about the performance of other samplers in this iteration. A good sampler may be
“starved” because it is unlucky and never gets a chance to show its performance.
This difference leads us to another model problem in the learning theory, the multi-
armed bandit problem[2].

In the bandit problem, a gambler chooses to play one ofn slot machines, each
with a different, unknown reward. The rewards may change over time. The gam-
bler’s objective is to maximize the total reward over a sequence of plays.

3 Adaptive Hybrid Sampling

A classic multi-query PRM planner proceeds in two stages[13]. The first stage is
pre-computation. The planner samples the configuration spaceC at random and con-
structs a roadmap graphG that captures the connectivity ofC. The nodes ofG are
sampled collision-free points fromC and are calledmilestones. There is an edge
between two milestones if they can be connected via simple, collision-free paths,
typically, straight-line segments. The second stage is query processing. The planner
searchesG for a collision-free path between two given query configurations.

In this paper, we follow this general framework, but address only the first stage
and focus on combining multiple strategies for samplingC. Methods for the second
stage are well-known[1,13].
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Assume that our adaptive PRM planner is givenn samplers, preferably, of com-
plementary strengths. A hybrid sampler that combines these component samplers
by weighting has the distribution

π =
n∑

i=1

piπi,

whereπi is the distribution of component sampleri andpi is probability of pick-
ing sampleri. Choosing the best values for the weights in advance seems difficult.
So let us turn this static problem into a dynamic one.

At each time stept, we pick a sampleri with probabilitypi(t). Using this sam-
pler, we pick a new milestoneq at random fromC and connectq with existing mile-
stones nearby, if possible. Finally, we adjust the probabilitiespi(t), i = 1, 2, . . . , n,
and continue to the next step. Choosing the values forpi(t) is potentially easier,
because each time step involves only local considerations of the relative merits of
component samplers. At the end ofT steps, the hybrid sampler has the distribution

π′ =
1
T

T∑
t=1

π′(t) =
1
T

T∑
t=1

n∑

i=1

pi(t)πi =
n∑

i=1

(
1
T

T∑
t=1

pi(t)

)
πi.

This is basically the average of sampling distributions inT steps, and the weight
of sampleri is (1/T )

∑T
t=1 pi(t). We hope thatπ′ is close toπ with the optimal

weights.
To update the probabilitiesp1, p2, . . . , pn, we maintain a weightwi for every

component sampleri and adjustwi by assigning a rewardr based on the new mile-
stone obtained. Our objective is to build a small roadmap that captures the connec-
tivity of the free space well. A good roadmapG has two properties:coverageand
connectivity. Let us say that two points arevisible to each other, if they can be con-
nected via a straight-line path that lie entirely in the free spaceF . Then coverage
means that the union of the visibility sets of milestones inG covers a significant
portion ofF . So for any given (query) configurationp ∈ F , there is a straight-line
path betweenp and a milestone inG with high probability. Furthermore,G should
capture the connectivity of the underlying free spaceF that it represents: there is a
path inG between two milestonesq andq′, if and only if q andq′ lie in the same
connected component ofF . We evaluate the new milestone and assign a rewardr
according to these two criteria. After connectingq with other existing milestones in
G, we have three possibilities:

• The new milestoneq cannot be connected to any other existing milestones inG.
This implies thatq does not lie in the visibility set of any other milestones inG
and likely contributes to the coverage ofG. So we set the rewardr = 1.

• The new milestoneq is connected to milestones in two or more connected com-
ponents ofG. In this case, the addition ofq merges two connected components
of G and improves its connectivity. We also setr = 1.

• The new milestoneq is connected to milestones in a single connected compo-
nent ofG. The milestoneq clearly does not improve the connectivity ofG, and
it may or may not improve the coverage significantly. We assign a reward of 0.
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Similar considerations were used in[17]. After assigning the rewardr, we adjust the
weightsw1, w2, . . . wn and the probabilitiesp1, p2, . . . pn accordingly.

A sketch of our planner is shown below.

Algorithm 2 Adaptive PRM planner.
1: Let wi be the weight of sampleri. Initialize wi = 1 for i = 1, 2, . . . , n.
2: for t = 1, 2, . . . do
3: Pick a sampleri with probabilitypi that depends onwi.
4: Suppose that samplerit is picked. Apply this sampler and pick a new milestoneq.
5: Sort the existing milestones inG according to their distance toq using a suitable

distance metric.
6: For every milestoneq′ among theK closest toq, add an edge betweenq andq′, if q and

q′ are within a pre-specified distance and they can be connected with a collision-free
straight-line path.K is a fixed constant.

7: Let Vq be the set of milestones that are connected toq. Set the reward

r =

{
1 if Vq is empty,
0 if all the milestones inVq lie in one connected component ofG,
1 if the milestones inVq lie in two or more connected components ofG.

8: Adjust the weights based on the rewardr.

By maximizing the total reward over the iterations, this algorithm tries to build a
roadmap that has a small number of milestones and captures the connectivity of the
free space well. A small roadmap reduces storage requirement and speeds up the
query time in the second stage of PRM planning. In addition, a small roadmap often
leads to fast pre-computation time as well, as we will see in Section 6.

Since an adaptive hybrid sampling strategy combines a set of component sam-
plers, we cannot expect it do well if all the component samplers are bad. Our goal
is therefore to design an adaptive strategy that compares favorably with thebest
fixed-weight hybrid sampling strategy in a wide variety of environments.

4 Updating the Weights

To complete our description of adaptive sampling, we now specify how the probabil-
ity pi of choosing sampleri depends on the weightwi and howwi is updated. There
are several options. While some offer theoretical guarantees and others perform well
experimentally, they all share some basic considerations:

Reward and penalty In essence, the weights reflect the past performance of
samplers. We try to identify good samplers through their weights. The weight
of a sampler is increased if it receives high rewardsfrequentlyby obtaining
useful milestones. The weight is decreased otherwise. A similar idea is used in
Algorithm 1 for the prediction problem.
RobustnessSometimes a good sampler may have a small weight, due to ran-
dom variations. It is then seldom picked and can never have its weight increased.
In other words, the weight of a sampler remains small, not because it performs
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badly, but because it never has a chance to show its performance. We must
prevent this from happening by ensuring that every sampler has a reasonable
chance of being picked. This is similar to the classic trade-off between explo-
ration and exploitation in reinforcement learning[19].
ResponsivenessThe rewards for the samplers may change over time. For ex-
ample, uniform sampling may work well in the beginning, when there is a lot
of wide open space. Once such space is covered, the performance of uniform
sampling deteriorates. The weights must respond to these changes. Therefore
the recent performance history is more important than that a long time ago.

In the following subsections, we describe three methods, AS1, AS2, and AS3,
for updating the weights. The first two are derived from algorithms originally de-
signed for the multi-armed bandit problem[2]. The last one is simple, but works
well in practice.

4.1 AS1: Competing Against the Best Fixed-Weight Strategy from a Pool

Suppose that there aren component samplers. We first construct a pool ofm fixed-
weight hybrid samplers (FHS). Each FHS has an associated constant weight vector
β = (β1, β2, . . . , βn), where theith elementβi represents the probability of sam-
pling component sampleri. Let βj denote the weight vector of thejth FHS. We
maintain a weightwj for each FHSj.

Now in iterationt, we choose component sampleri with probability

pi = (1− γ)
m∑

j=1

wj(t)β
j
i∑m

k=1 wk(t)
+ γ

1
n

, i = 1, 2, . . . , n, (3)

wherewj(t) is the weight of thejth FHS in iterationt andγ ∈ (0, 1] is a fixed
constant. The probabilitypi is a weighted sum of two components. The first com-
ponent is proportional to the weight, similar to that used in Algorithm 1. A sampler
with good past performance is chosen with high probability. Here the weightwj is
multiplied byβj

i , because our expert samplers here are not the component samplers,
but the fixed-weight hybrid samplers. The second component ofpi is basically uni-
form sampling. It is the same for all component samplers so that every sampler has
a chance of being chosen, in order to ensure robustness.

Suppose that component samplerit is picked in iterationt and receives a reward
r. We scale the reward by a factor of1/pit to take into account how frequently
samplerit is chosen. If a component sampler is not picked, it receives no reward. In
formula, we have

ri =
{

r/pi if i = it,
0 otherwise,

i = 1, 2, . . . , n.

Next we set the reward of FHSj by taking a linear combination ofr1, r2, . . . , rn

using the weight vectorβj :

sj(t) =
n∑

i=1

βj
i ri(t), j = 1, 2, . . . ,m.
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Finally we update the weight of every FHS:

wj(t + 1) = wj(t) exp(γsj(t)/n), j = 1, 2, . . . ,m. (4)

The weight is multiplied by an factor that depends exponentially on the reward
received. This is again similar to that used in Algorithm 1. The exponential factors
ensure that the weights change quickly with the samplers’ performance so that the
adaptive algorithm is responsive.

If this update method is applied to the multi-armed bandit problem described in
Section 2, one can show that the adaptive algorithm is competitive against the best
fixed-weight algorithm[2]. More precisely, ifR andR̂ are the expected total reward
of the adaptive algorithm and the best fixed-weight algorithm respectively, then

R̂− R≤ (e− 1)γR̂+
n ln m

γ
. (5)

This result applies only partially to our sampling problem, because in the bandit
problem, although the rewards may vary over time, they are assigned in advance. In
our problem, every new milestone added to the roadmap may affect the rewards of
future milestones. To apply this result, we have to assume that the effect of adding a
milestone is small. This assumption is valid over a small, finite number of iterations.

Now how do we construct a pool of fixed-weight hybrid samplers? One way is
to discretize the weights and enumerate all the possibilities. The size of the pool
then depends exponentially onn, the number of component samplers, and we must
maintain a large number of weights. This is feasible only ifn is very small.

4.2 AS2: Competing Against Arbitrary Strategies

The difficulty of constructing a pool of hybrid samplers leads us to the second
method for updating the weights. It maintains a weightwi for each component sam-
pler i and chooses a sampleri in iterationt with probability

pi = (1− γ)
wi(t)∑n

j=1 wj(t)
+ γ

1
n

, i = 1, 2, . . . , n. (6)

To update the weights, we first set the reward for each component sampler:

ri =
{

r/pi if i = it,
0 otherwise,

i = 1, 2, . . . , n,

as in the previous section. Next we set the new weights

wi(t + 1) = wi(t) exp(γri/n) +
eα
n

n∑

j=1

wj(t), i = 1, 2, . . . , n, (7)

whereα is a small positive constant. The new weight consists of two terms. The first
term is same as that in (4). The second term is a fraction of the average weight, so
that no individual weight becomes too small relative to the others. This is again to
ensure robustness: the probability of picking an under-performing sampler quickly
rises, if its performance improves.
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It can be shown that if applied to the multi-armed bandit problem, this update
method is competitive against any arbitrary sequence of choices of component sam-
plers[2]. The bound has a form similar to (5), but depends on the number of times
that the optimal strategy switches the samplers. Again, in our sampling problem,
this bound is only applicable over a small, finite number of iterations.

4.3 AS3: Equal-Weight with Variable-Length History

The weights of component samplers reflect their past performance. A simple way
for tracking performance is to maintain an observation queue for each component
sampler. An element of the queue records the reward that the sampler receives when
chosen to pick a milestone. The average reward in the queue then gives a good
estimate on the sampler’s past performance.

The question now is how long the queue should be. If the queue is very long, the
estimate may be more reliable. However, when the samplers’ performance changes,
the weights change slowly due to the long queue length, and the adaptive sampler
may not be responsive enough. On the other hand, if the queue is too short, the esti-
mate may be unreliable, and we cannot differentiate the samplers’ performance due
to random variations. Consider, for example, two samplers. One receives a reward
of 1 out of 10 milestones that it picks. The other receives a reward of 1 out of 100
milestones that it picks. If the queue length is three, then both of them may have re-
ceived 0 rewards for the last three milestones and appear to have equal performance.
Therefore, ideally we would like the queue to be short enough to reflect the sam-
plers’ recent performance and long enough to be robust against random variations.

To achieve this goal, we use variable queue lengths. Every time that a sampler
is picked, we append its reward to the end of the queue. Hence the queue length
increases by 1. If the reward is 1, we reduce the queue length by a half and keep only
the recent elements in the queue, because at this moment, the queue likely contains
enough information for reliable estimation of the performance. If the reward is 0, we
do not change the queue length so that the queue is long enough to contain sufficient
information for estimating the performance.

For each component sampleri, we maintain a weightwi and a queue of length
Li. We initialize the queues by settingLi = 1 for all i and inserting a reward of 1
into each queue. In iterationt, we pick sampleri with probability

pi =
wi(t)∑n

j=1 wj(t)
, i = 1, 2, . . . , n. (8)

Suppose that samplerit is picked and receives a rewardr. We insert the reward into
it’s queue and update its queue length:

Lit(t + 1) =
{

(Lit(t) + 1)/2 if r = 1,
Lit(t) + 1 otherwise.

(9)

Finally we update the weights. The weightwi is simply the average of rewards in
sampleri’s queue:

wi(t + 1) =

∑Li(t+1)
j=1 ri

j

Li(t + 1)
, i = 1, 2, . . . , n, (10)
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(a) (b)

Fig. 1.Building short bridges is much easier in narrow passages than in wide-open free space.

whererj
i is thejth element in samplei’s current queue.

Note that the reward is either 1 or 0 according to our definition. With proper
initialization, the update rule (9) guarantees that every queue contains at least one
strictly positive reward. In addition, if a component sampler receives a reward of 1
for everyk milestones that it picks, the queue length varies betweenk and2k, large
enough to give a reasonable estimation of the sampler’s performance.

5 The hybrid bridge test

To evaluate our adaptive hybrid sampling approach, we use it for combining the
bridge test[11] and uniform sampling.

The bridge test is a specialized sampler designed to boost the sampling density
inside narrow passages. It is based on the following observation. A narrow passage
in a d-dimensional configuration space has at least one restricted directionv such
that a small perturbation of the robot’s configuration alongv results in collision of
the robot with obstacles. Therefore, for a collision-free configurationq in a narrow
passage, it is easy to sample at random a short line segments throughp such that
the endpoints ofs lie in obstacles inC (Figure 1a). The line segments is called a
bridge, because it resembles a bridge across the narrow passage. We say that a point
p ∈ F passes the bridge test, if we succeed in obtaining such a segments throughp.
Clearly buildingshortbridges is much easier in narrow passages than in wide-open
free space (Figure 1). By favoring short bridges over longer ones, we increase the
chance of accepting points in narrow passages. To sample a new milestone using the
bridge test, we pick a line segments from C at random by choosing its endpoints
and determine whethers passes the bridge test. If so, we insert the midpoint ofs
into the roadmapG as a new milestone.

While being very effective in boosting the sampling density inside narrow pas-
sages, the bridge test severely reduces the sampling density in wide-open collision-
free regions. This may be undesirable, because an adequate number of nodes are
needed in the roadmap to cover the entire free space. The difficulty encountered by
the bridge test can be overcome by uniform sampling, which tends to place many
samples in wide-open free space. Therefore we use the adaptive hybrid sampling
approach to combine the bridge test and the uniform sampling.
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(a) (b) (c)

Fig. 2. Test environments with point robots.

6 Experiments

We implemented in Java the adaptive PRM planners with the three methods for
updating the weights and conducted preliminary tests. In these tests, the uniform
sampler and the bridge test are used as component samplers. The test environments
consist of robots with two to eight dofs in planar workspaces. These environments
differ in the weights needed for optimally combining the component samplers, so
that we can compare the performance of the adaptive hybrid sampling strategies and
the best fixed-weight hybrid sampling strategy.

We now briefly describe the test environments below.

• Figure 2: There are three sets of test environments here, all using point robots.
In Figure 2a, the workspaces contain two large chambers joined with a narrow
passage with multiple turns. In Figure 2b, the workspaces contain four chambers
joined with narrow passages. To go from one chamber to another, the robot
must pass through one of the narrow passages. For Figure 2c, we have four
workspaces of this type with narrow passages of different lengths. The figures
show the simplest and the most complex one.

• Figure 3a: We have a rigid-body robot that need to go from one large empty
chamber to anther by passing through a opening in the lower middle of the
figure. We have six workspaces of this type with openings of different sizes. If
the opening is wide, the robot can go through easily. If the opening is small, the
robot has translate and rotate simultaneously in order to pass through.

• Figure 3b: In this environment, a rigid segment needs to enter a narrow corridor,
reorient in a small circular room, and exits another narrow corridor.
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(a) (b) (c)

Fig. 3. Test environments with rigid or low-dof robots.

(a) (b)

Fig. 4. Test environments with articulated robots.

• Figure 3c: Here we have a T-shaped robot with two parts, a “torso” and a “shoul-
der”, connected with a joint. The workspace contains a long and narrow corridor
with two turns. Inside the corridor, the robot must extend itself by aligning its
shoulder with the torso to avoid colliding with the walls of the corridor. How-
ever, to make a turn in the corridor, the robot has to rotate the shoulder so that
it becomes almost perpendicular to the torso. Otherwise the robot cannot turn
around the corner.

• Figure 4a: This example contains a seven-dof articulated robot with a fixed
base. At both the initial and goal configurations, the robot is trapped inside
narrow openings and must execute difficult maneuvers in order to find a path.

• Figure 4b: The environment contains a relatively long corridor with two turns.
So each milestone in the corridor has low visibility and covers only a small
portion of the free space. The robot is an articulated robot with six links and a
mobile base, eight dofs in total.

6.1 Comparing Adaptive Hybrid Sampling and Fixed-Weight Hybrid
Sampling

We tested the three adaptive sampling strategies along with seven fixed-weight sam-
pling strategies for comparison. For every environment, we specified one or more
queries and ran a planner until the roadmap being constructed was sufficient for



12 D. Hsu and Z. Sun

answering the specified queries. Every test was repeated ten times, and the results
were averaged.

Table 1 shows the performance statistics for the various various sampling strate-
gies listed by the columns. The second row of the table shows the weight used by
the fixed-weight sampling strategies for combining component samplers, where a
weight w means that the probability of picking the uniform sampler isw and the
probability of picking the bridge test is1−w. There are four rows corresponding to
every environment.Nmil andNcol are respectively the number of milestones and the
number of collision checks used for constructing a roadmap.Pmil is the relative per-
formance, defined as the ratio ofNmil over the minimum number of milestones used
by all the sampling strategies. A sampler withPmil = 1 has the best performance,
usingNmil as the criterion.Pcol is similarly defined usingNcol.

According to the relative performancePmil, most fixed-weight sampling strate-
gies tend to perform well in some environment and not in others. The adaptive sam-
pling strategies perform consistently well in almost all the environments. Their per-
formance is usually not more than 20% worse than that of thebestfixed-weight
sampling strategy and is never more than 50% worse. In comparison, a fixed-weight
algorithm may be several times worse. In several tests, including the two with seven-
and eight-dof articulated robots, adaptive sampling strategies have the best perfor-
mance among all sampling strategies tested.

To compare the three adaptive sampling strategies, we calculated the average of
their relative performancePmil over all the tests. The results are shown in the last
row of Table 1. The results for the fixed-weight sampling strategies are also shown
for reference. In general, the adaptive sampling strategies perform better than any of
the fixed-weight sampling strategies. It is interesting to observe that AS3, the sim-
plest adaptive strategy, performs quite well. In fact, it is slight better than the other
two more sophisticated one. AS2 performs the worst among the adaptive strate-
gies. We suspect that since AS2 tries to control the differences in weights among
the component samplers, it is not aggressive enough in exploiting the one with best
performance. More tests are needed to confirm this.

Among the fixed-weight sampling strategies, FHS 1/2 performs the best and is
comparable to AS2. This is not surprising, because many test environments here
contain both large collision-free regions and narrow passages and FHS 1/2 gives
equal weights to the uniform sampler and the bridge test.

We want to emphasize that the statistics in the last row of Table 1 depends on the
chosen test environments. If we add a few environments with no narrow passages,
the exact numbers will change. However, we believe that our general observations
regarding the adaptive sampling strategies will remain valid.

In our adaptive sampling approach, we have chosen a reward function that min-
imizes the number of milestones in the roadmap. A small roadmap often leads to
fast computation time as well. This is confirmed by our experiments. Although our
reward function does not take into account the computational cost explicitly, the per-
formance of adaptive sampling strategies are often quite competitive with the best
fixed-weight sampling strategy, according to the relative performancePcol. We use
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the number of collision checks as a measure of computational cost, because colli-
sion checks dominate in the running time of PRM planners. It allows us to run many
tests simultaneously on different machines without concerning about the variations
due to machines and system load.

Table 1: The performance of various hybrid sampling strategies.

Env. FHS FHS FHS FHS FHS FHS FHS AS3 AS2 AS1
(Fig.) 1/16 1/8 1/4 1/2 3/4 7/8 15/16
2a Nmil 1113 553 292 186 152 175 252 179 188 164

Pmil 7.35 3.65 1.93 1.23 1.00 1.15 1.66 1.18 1.24 1.08
Ncol 167485 80364 39348 20497 12208 10370 11078 17857 20838 15554
Pcol 16.15 7.75 3.79 1.98 1.18 1.00 1.07 1.72 2.01 1.50
Nmil 4302 2965 2877 3113 6029 12056 20086 2734 3127 2866
Pmil 1.57 1.08 1.05 1.14 2.21 4.41 7.35 1.00 1.14 1.05
Ncol 1517858 1011482 873142 685624 692915 696258 612797 717057 687636 727879
Pcol 2.48 1.65 1.42 1.12 1.13 1.14 1.00 1.17 1.12 1.19

2b Nmil 669 353 187 101 137 207 309 105 100 108
Pmil 6.70 3.53 1.88 1.01 1.37 2.08 3.09 1.05 1.00 1.08
Ncol 103596 53656 27162 11865 10873 11152 11927 11947 11639 12703
Pcol 9.53 4.93 2.50 1.09 1.00 1.03 1.10 1.10 1.07 1.17
Nmil 645 352 193 152 230 343 568 160 159 159
Pmil 4.24 2.31 1.27 1.00 1.51 2.26 3.73 1.05 1.05 1.05
Ncol 85138 47511 26010 17450 17792 18768 21731 17587 18160 18176
Pcol 4.88 2.72 1.49 1.00 1.02 1.08 1.25 1.01 1.04 1.04

2c Nmil 1819 927 785 1090 1818 2584 3278 918 1098 878
Pmil 2.32 1.18 1.00 1.39 2.32 3.29 4.17 1.17 1.40 1.12
Ncol 347616 277882 267565 299200 351005 358380 342660 282575 300651 277935
Pcol 1.30 1.04 1.00 1.12 1.31 1.34 1.28 1.06 1.12 1.04
Nmil 1675 1195 1262 1830 2977 4451 6828 1457 1821 1393
Pmil 1.40 1.00 1.06 1.53 2.49 3.72 5.71 1.22 1.52 1.17
Ncol 483457 458349 465805 536236 610222 606826 608901 486440 531548 473291
Pcol 1.05 1.00 1.02 1.17 1.33 1.32 1.33 1.06 1.16 1.03
Nmil 1730 1472 1717 2461 4606 7263 9790 1775 2452 1831
Pmil 1.18 1.00 1.17 1.67 3.13 4.93 6.65 1.21 1.67 1.24
Ncol 597517 584873 624850 729751 801062 787507 754726 633707 730754 641777
Pcol 1.02 1.00 1.07 1.25 1.37 1.35 1.29 1.08 1.25 1.10
Nmil 2250 2334 2620 3862 6529 10755 14351 2847 3868 2776
Pmil 1.00 1.04 1.16 1.72 2.90 4.78 6.38 1.27 1.72 1.23
Ncol 760372 790932 855248 1007718 1035480 996845 939488 881965 1005656 877832
Pcol 1.00 1.04 1.12 1.33 1.36 1.31 1.24 1.16 1.32 1.15

3a Nmil 298 227 192 262 520 942 1773 284 252 301
Pmil 1.55 1.18 1.00 1.36 2.71 4.90 9.23 1.48 1.31 1.57
Ncol 129789 94001 73004 76797 101187 140429 228454 78212 75842 81124
Pcol 1.78 1.29 1.00 1.05 1.39 1.92 3.13 1.07 1.04 1.11
Nmil 416 288 174 135 207 359 555 144 131 149
Pmil 3.17 2.19 1.33 1.03 1.58 2.73 4.23 1.10 1.00 1.13
Ncol 170584 112289 61895 36990 38266 47626 60873 35347 35759 40334
Pcol 4.83 3.18 1.75 1.05 1.08 1.35 1.72 1.00 1.01 1.14
Nmil 387 251 163 102 118 183 307 97 103 104
Pmil 3.98 2.58 1.68 1.05 1.22 1.88 3.16 1.00 1.06 1.07
Ncol 146300 90293 54056 26187 21038 23255 31127 23970 26805 26472
Pcol 6.95 4.29 2.57 1.24 1.00 1.11 1.48 1.14 1.27 1.26
Nmil 456 306 174 101 85 127 178 102 97 100
Pmil 5.39 3.61 2.05 1.19 1.00 1.50 2.10 1.20 1.15 1.18
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Table 1 cont’d

Ncol 170438 109733 56449 25873 14797 17027 18821 25498 24477 26914
Pcol 11.52 7.42 3.82 1.75 1.00 1.15 1.27 1.72 1.65 1.82
Nmil 503 321 185 106 89 106 141 107 103 109
Pmil 5.65 3.60 2.08 1.19 1.00 1.19 1.58 1.20 1.16 1.23
Ncol 197556 118420 61478 26727 15889 14454 15454 26596 26090 29119
Pcol 13.67 8.19 4.25 1.85 1.10 1.00 1.07 1.84 1.80 2.01
Nmil 376 302 215 146 123 108 101 141 144 154
Pmil 3.72 2.99 2.13 1.45 1.22 1.07 1.00 1.40 1.42 1.52
Ncol 215164 162173 99902 48856 26070 16547 12410 42629 46277 52322
Pcol 17.34 13.07 8.05 3.94 2.10 1.33 1.00 3.44 3.73 4.22

3b Nmil 466 499 582 865 1712 3284 5507 686 858 709
Pmil 1.00 1.07 1.25 1.86 3.67 7.04 11.81 1.47 1.84 1.52
Ncol 233219 238416 251035 289033 368119 407976 406592 260165 287502 264616
Pcol 1.00 1.02 1.08 1.24 1.58 1.75 1.74 1.12 1.23 1.13

3c Nmil 516 423 461 690 1335 2319 4172 540 696 543
Pmil 1.22 1.00 1.09 1.63 3.16 5.48 9.87 1.28 1.65 1.28
Ncol 102561 83150 82067 93159 118517 145181 194409 85648 93408 86068
Pcol 1.25 1.01 1.00 1.14 1.44 1.77 2.37 1.04 1.14 1.05

4a Nmil 17046 16510 17514 14361 16523 26995 30000 14303 14371 14234
Pmil 1.20 1.16 1.23 1.01 1.16 1.90 2.11 1.00 1.01 1.00
Ncol 3.7e+6 3.4e+6 3.3e+6 2.2e+6 2.2e+6 3.6e+6 3.7e+6 2.2e+6 2.2e+6 2.2e+6
Pcol 1.71 1.56 1.55 1.01 1.03 1.65 1.73 1.00 1.01 1.00

4b Nmil 5188 3797 2975 2514 4433 8150 14509 2459 2488 2738
Pmil 2.11 1.54 1.21 1.02 1.80 3.31 5.90 1.00 1.01 1.11
Ncol 1.5e+6 1.0e+6 0.7e+6 0.5e+6 0.7e+6 1.1e+6 1.7e+6 0.5e+6 0.5e+6 0.6e+6
Pcol 3.21 2.23 1.55 1.01 1.52 2.38 3.69 1.00 1.01 1.27

Pmil 3.54 2.20 1.52 1.35 2.00 3.30 5.25 1.22 1.34 1.25

6.2 The Behaviors of Adaptive Sampling Strategies
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Fig. 5. The change of probabili-
ties for combining samplers.

To gain some intuition on the behaviors of adaptive
sampling strategies, let us look at how the probabil-
ities for combining the component samplers change
over time (Figure 5). The plot was obtained for sam-
pler AS3 in an environment shown in Figure 2c.
Figure 5 shows that in the first 100 iterations, the
uniform sampler and the bridge test have roughly
the same probabilities of being chosen. The rea-
son is that since the free space contains both large
collision-free regions and narrow passages, the two
samplers perform equally well. In the next 600 it-

erations, the uniform sampler is no longer effective, as most of the free space has
already been covered, but the bridge test still obtains useful milestones from the nar-
row passages. As a result, the bridge test has much higher weight. Finally when the
roadmap contains enough milstones, neither samplers can obtain additional useful
milestones easily. So their weights become more similar again.
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Table 2.The performance of various hybrid sampling strategies with a new reward function.

Env. FHS FHS FHS FHS FHS FHS FHS AS3 AS2 AS1
(Fig.) 1/16 1/8 1/4 1/2 3/4 7/8 15/16
3a Ncol 73156 42341 23800 15624 17066 17791 16613 16137 15543 15505

Pcol 4.72 2.73 1.53 1.01 1.10 1.15 1.07 1.04 1.00 1.00
Ncol 98774 54648 33494 18014 11941 10214 9378 13632 18100 13347
Pcol 10.53 5.83 3.57 1.92 1.27 1.09 1.00 1.45 1.93 1.42

7 Discussion

Our current adaptive sampling strategies use a reward function that minimizes the
number of milestones in the roadmap, because a small roadmap speeds up the
query processing and often leads to fast pre-computation as well. However, if pre-
computation time is the main objective, then we should explicitly incorporate into
the reward function the cost of obtaining a milestone and adding it to the roadmap
and minimize the ratio of reward over cost. We did some initial testing with this
new reward function on the two environments in which the original reward function
has unsatisfactory pre-computation time. The results, shown in Table 2, indicate that
the new reward function indeed improves pre-computation time, if we compare the
results with the corresponding ones for the last two environments in block 3a of
Table 1. We are currently exploring efficient ways to implement this new reward
function as well as other interesting reward functions.

8 Conclusion and Future Work

In this paper, we propose a systematic approach for adaptively combining multiple
sampling strategies for PRM planning. Using this approach, we describe three adap-
tive hybrid sampling strategies. They were tested on robots with two to eight dofs
in planar workspaces. In these preliminary tests, the adaptive planners showed con-
sistently good performance, compared with fixed-weight hybrid-sampling planners.
In particular, AS3, the simplest adaptive planner, performed surprisingly well.

For future work, we plan to apply adaptive hybrid sampling to 3-D workspaces
to examine it effectiveness further. More importantly, we plan to use a large number
of component samplers and investigate which one of our adaptive strategies, or any
new ones, work well. We are also interested in applying this approach to single-
query motion planning problems.
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