THE NATIONAL UNIVERSITY
of SINGAPORE

CRANUS
O et
FB/ Jecoou e

School of Computing
Lower Kent Ridge Road, Singapore 119260

TRAA4/07

Accelerating Point-Based POMDP Algorithins through Successive
Approximations of the Optimal Reachable Space

David HSU, Wee Sun, LEE and Nan RONG

April 2006

Technical Report

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the
author, at the address shown on the cover.

JAFFAR, Joxan
Dean of School

Accelerating Point-Based POMDP Algorithms through Successive Approximations
of the Optimal Reachable Space

David Hsu Wee Sun Lee Nan Rong

Department of Computer Science
National University of Singapore
Singapore, 117543, Singapore

Abstract

Point-based approximation algorithms have drastically im-
proved the speed of POMDP planning. This paper presents
a new point-based POMDP algorithm called SARSOP. Like
earlier point-based algorithms, SARSOP performs value iter-
ation at a set of sampled belief points; however, it focuses on
sampling near the space reachable from an initial belief point
under the optimal policy. Since neither the optimal policy nor
the optimal reachable space is known in advance, SARSOP
builds successive approximations to it through sampling and
pruning. In our experiments, the new algorithm solved dif-
ficult POMDP problems with more than 10,000 states. Its
running time is competitive with the fastest existing point-
based algorithm on most problems and faster by many times
on some. Our approach is complementary to existing point-
based algorithms and can be integrated with them to improve
their performance.

Introduction

Planning and decision-making under uncertainty are central
problems in artificial intelligence and robotics. Partially ob-
servable Markov decision processes (POMDPs) provide a
principled mathematical framework for solving such prob-
lems (White III 1991; Hauskrecht 2000). Unfortunately,
the computational cost of solving POMDPs exactly is in-
tractable (Papadimitriou & Tsisiklis 1987), and this has pre-
vented their wide-scale adoption in practical applications.
Recently, point-based approximation algorithms have drasti-
cally improved the speed of POMDP solution (Pineau, Gor-
don, & Thrun 2003; Smith & Simmons 2005; Spaan & Vlas-
sis 2005): POMDPs with hundreds of states can now be
solved in less than a minute on a desktop computer (Smith
& Simmons 2005). These algorithms have the potential to
make POMDP practical in many applications.

To gain computational efficiency, point-based algorithms
compute an approximately optimal solution policy over a
set of points sampled from the belief space B instead of an
optimal policy over the entire B. Their success hinges on
two key factors. First, point-based algorithms must sample
a small, representative set of points from the relevant part
of B, in order to achieve good approximation to the opti-
mal policy. Second, under fairly general conditions, optimal
policies for POMDPs can be represented as value functions
that are convex and piecewise linear (Sondik 1971). Ex-
ploiting this fact, point-based algorithms represent the value

function as a set of a-vectors, each corresponding to an opti-
mal hyperplane of the value function at some sampled point.
It then computes the solution by performing value iteration
on the a-vectors at the sampled points.

A key question to ask is then “Which part of B should
be sampled and what distribution should be used for sam-
pling?” Some early POMDP algorithms sample the entire
belief space B, using a uniform sampling distribution, such
as a grid. To improve computational efficiency, more re-
cent point-based algorithms sample only R(by), the subset
of points reachable from a given initial belief point by € B,
under arbitrary sequences of actions. To push further in this
direction, we would like to sample only near R*(by), the
subset of belief points reachable from by under the optimal
policy. Tt is clear that R*(by) C R(bg) C B, and R*(bo) is
the smallest set that must be sampled and covered well. Of
course, the optimal policy is unknown in advance, and we
need to approximate R*(bg). In the following, to simplify
the notation, we will omit the argument by. It is understood
that R and R* are reachable from a given initial point bg.

In attempt to address the above question, we have devel-
oped a new point-based POMDP algorithm called SARSOP,
which stands for Successive Approximations of the Reach-
able Space under the Optimal Policy. The main idea of
SARSOP is to compute successive approximations of the
optimal value function over R*. In each iteration, we sample
additional belief points and use the information there to up-
date the a-vectors and improve the value function approxi-
mation. We maintain a certificate data structure, which helps
us to efficiently prune extraneous belief points and a-vectors
that lie outside R* and do not contribute the final solution.
The focus on sampling near R*, which is potentially much
smaller than R, offers two main advantages computation-
ally. First, a smaller number of sampled points is needed to
approximate R*. Second, by checking for dominance over
a smaller space, we can prune a-vectors more aggressively.

Experiments show that the new algorithm solved difficult
POMDP problems with more than 10,000 states. It was
competitive with the fastest existing point-based algorithm
in running times and often much faster.

The idea of approximating R* through sampling and
pruning is relatively straightforward, but surprisingly, to our
knowledge, it has not been exploited before to improve the
speed of POMDP planning. Our experiments show that the

gain can be substantial.

One additional benefit of our approach is that it is comple-
mentary to existing point-based algorithms, such as point-
base value iteration (PBVI) (Pineau, Gordon, & Thrun 2003)
and heuristic search value iteration (HSVI2) (Smith & Sim-
mons 2005), and can be integrated with them to improve
their performance.

Preliminaries
POMDPs

A POMDP models an agent taking a sequence of actions un-
der uncertainty to maximize its reward. Formally it is spec-
ified as a tuple (S, A, Z,by, T, O, R,~), where S is a set of
discrete states, A is a set of actions, and Z is a set of obser-
vations.

At any time, the agent lies in some state s € S. Com-
monly, we assume that the probability distribution for the
agent’s initial state is known and given by bo(s) = p(s).
At each time step, the agent takes some action a € A
and moves from a start state s to an end state s’. Due to
the uncertainty in action, the end state s’ is described by
a conditional probability function T'(s,a,s’) = p(s'|s,a),
which gives the probability that the agent lies in &', after
taking action a in state s. After taking the action, the agent
makes an observation to gather information on its state.
Due to the uncertainty in observation, the observation re-
sult z € Z is again described by a conditional probability
function O(s, a, z) = p(z|s,a) for s € S and a € A.

The reward function R gives the agent a real-valued re-
ward R(s, a) if it take action « in state s, and the goal of the
agent is to maximize its expected total reward by choosing a
suitable sequence of actions. If the sequence of actions has
infinite length, we often specify a discount factor v € (0, 1)
so the total reward is finite and the problem is well defined.

In a POMDP, the agent’s state is only partially observable.
We thus rely on the concept of a belief, which is simply
a probability distribution over S. Suppose that the agent’s
current belief is b. It takes action a and obtains observa-
tion z. The new belief b’ is given by b/(s’) = 7(b,a,z) =
nO(s',a,2)> . T(s,a,s")b(s), where 7 is a normalizing
constant.

The solution to a POMDP is a policy 7 that specifies the
action 7r(b) for any belief b encountered. We want to find the
policy that maximizes the expected total reward.

Related work

POMDRP is a principled approach for planning under uncer-
tainty. Due to its computational intractability, there have
been significant efforts in developing approximation algo-
rithms. See (Hauskrecht 2000) for a recent survey. The brief
review here focuses on point-based algorithms.

Early point-based algorithms sample the entire belief
space B3 using fixed- or variable-resolution grids (Lovejoy
1991; Brafman 1997; Geffner & Bonet 1998). More re-
cent algorithms sample only R, the subset of B reachable
from an initial belief point by in order to improve effi-
ciency (Hauskrecht 2000; Pineau, Gordon, & Thrun 2003;
Roy, Gordon, & Thrun 2005; Smith & Simmons 2005;

Spaan & Vlassis 2005). To our knowledge, HSVI2 (Smith
& Simmons 2005) has so far demonstrated the best perfor-
mance experimentally, among the point-based algorithms.
HSVI2 uses heuristics to guide their sampling towards re-
gion which may potentially have higher rewards. Our algo-
rithm is related to PBVI (Pineau, Gordon, & Thrun 2003),
HSVI2, and Perseus (Spaan & Vlassis 2005), but to gain
further in efficiency, it focuses on maintaining only sample
points that are near R*, which is even smaller than R, and
builds an approximation of the optimal value function over

One way of speeding up point-based algorithms is to im-
prove backup operations. For example, HSVI2 and Perseus
perform backup only at selected belief points. Furthermore,
each backup operation generates more c-vectors, which may
cause some earlier a-vectors to become completely domi-
nated and thus redundant. Many POMDP algorithms peri-
odically prune redundant a-vectors to improve efficiency.

One crucial reason for the computational intractability of
POMDPs is the high dimensionality of the belief space B.
We thus need to develop lower-dimensional representations
of B. See, e.g., (Poupart & Boutilier 2003; Roy, Gordon,
& Thrun 2005). These approaches are very important, but
beyond the scope of this paper.

SARSOP

SARSOP is a point-based POMDP algorithm. In this sec-
tion, we start with an overview of its basic structure and then
give details on how it achieves strong performance by com-
puting successive approximations of the value function over
the optimal reachable space R*.

Basic structure of the algorithm

In many point-based POMDP algorithms, we sample a set
of points from B and maintain a set I' of a-vectors, which
represent a piecewise linear approximation V to the optimal
value function. Each a-vector in I' represents a potentially
optimal hyperplane at a sampled point. To improve the ap-
proximation V, we back up the a-vectors at the sampled
points. With suitable initialization (using, e.g., fixed-action
policies (Hauskrecht 2000)), V is always a lower bound on
the optimal value function. See Algorithm 1 for a formal de-
scription of the algorithm. It iterates over three main func-
tions, SAMPLE, BACKUP, and PRUNE, until further update
produces little change in the approximation V. Many point-
based algorithms, including SARSOP, share this basic struc-
ture, but differ in the details of the three functions.

The sampled belief points form a tree X (Figure 1). Each
node of X represents a sampled point. As there is no con-
fusion, we use the same symbol b to denote both a sampled
point and its corresponding node in X. The root of X is the
initial belief point by. To sample a new point &', we pick a
node b from X as well as an action a € A and an obser-
vation z € Z according to suitable probability distributions
or heuristics. We then compute b’ = 7(b, a, 0) and insert b’
into X as the child of b. Clearly, every point sampled this
way is reachable from by.

Next, we perform backup at selected nodes in X. A
backup operation at node b collates the information in the

Algorithm 1 The basic structure of point-based POMDP al-
gorithms with asynchronous value backup.

1: Insert the initial belief point by as the root of the tree X.
Initialize the set I' of a-vectors.
repeat
SAMPLE(X, IN).
Choose a subset of nodes from X. For each chosen
node b, BACKUP(X, T, b).
6: PRUNE(X, D).
7: until termination conditions are satisfied.
8: return .

SAMPLE(X, I)
1: Pickbe X,a€ A,and z € Z.
2: b — 7(b,a,0).
3: Insert ' into X as a child of b.
BACKUP(X, T, b)
I: Foralla € A,z € Z, o, « argmaxcp(o-7(b, a, 2)).
2: Foralla € A,s € S,a4(s) — R(s,a)+
2. T(s,a,8)0(s s a,
3: o «— argmax,c 4(aq - b)
4: Insert o into T,

2)g, 5 (8).

children of b and propagates it back to b. In particular, we
want to propagate the information from the node containing
the new sample point. Experimentally, the backup opera-
tions create a bottleneck, usually taking more than 90% of
the total computational time.

Invocation of SAMPLE and BACKUP generates new sam-
pled points and a-vectors. However, not all of them are use-
ful for constructing the optimal policy and are pruned to im-
prove computational efficiency.

Reachable space under the optimal policy

The efficiency of point-based POMDP algorithms depends
on two key factors. First, how are the sampled points dis-
tributed over B? Since our goal is to compute the optimal
policy for a given initial belief point by, we should avoid
sampling far away form R* to save computational costs.
Second, the cost of a single backup operation is directly
proportional to the number of a-vectors in I'. One way of
speeding up backup, which dominates the total running time,
is then to keep the set I" small. Existing point-based algo-
rithms usually prune an a-vector if it is dominated by others
over the entire B. We would like to prune more aggressively:
an a-vector is pruned if it is dominated by other a-vectors
over R*. This results in potentially much smaller I'.
Unfortunately we do not know the optimal policy or the
optimal reachable space R* in advance. Even if we do, the
cost of checking a-vector dominance over R* exactly may
be prohibitive. Instead, we use the set of sampled points in
X to approximate R* and iteratively improve the approxi-
mation as the policy improves. By checking for dominance
only at the sampled points, the cost of pruning is greatly re-
duced. The details are described in next two subsections.

Approximating R* through belief point pruning
To use the sampled points in X as an approximation of R*,
we must prune those points far away from R*. For this, we

:
Rb
(b)

Figure 1. (a) The POMDP tree with the root bg. (b) The cor-
responding reachable belief space /R. The shaded nodes indicate
points in R*.

maintain not only a lower bound V, but also an upper bound
V" on the optimal value function. Various methods for main-
taining the upper bound can be used. Currently SARSOP
uses the same method as HSVI2. The upper bound compu-
tation is very fast, but the bounds are somewhat weak. See
(Smith & Simmons 2005) for details.

By maintaining both upper and lower bounds, we can im-
prove our approximation of R* as these bounds improve.
Consider a node b in X. Let

Q(b, a) = Z R(Sv a)b(s) + Zp(z\b, a)V(7(b,a,z))

be the lower bound on the value of taking action a at b. The
upper bound @ is defined similarly, using V. If Q(b,a) <
Q(b,a’) for some actions a and a’, the optimal policy will
never take the action a at node b and traverse the subtree un-
derneath. We thus prune the subtree along with all the asso-
ciated sampled points. Some pruned points may possibly lie
in R*, as there are other paths in X to reach them under the
optimal policy. However, the benefit of reducing the number
of sampled points usually outweighs the loss in value func-
tion approximation due to over-pruning. These points can
also be recovered from the other paths in X eventually.

Belief point pruning improves computational efficiency in
two ways. As the suboptimal branches of X are pruned,
SARSOP avoids sampling the part of B unreachable under
the optimal policy (see SAMPLE in Algorithm 1), and thus
the sample distribution is automatically adapted to bias to-
wards R*. Furthermore, reducing the number of sampled
points helps in a-vector pruning. We explain why in the
next subsection.

a-vector pruning

Let P denote the set of sampled belief points in X. SARSOP
prunes away an a-vector if it is dominated by others over
R*, which is approximated by the current P. A simple cri-
terion for dominance is to say that for two a-vectors o; and
a2, a1 dominates o at a belief point b if oy - b > g - b.
However, this is not robust. The set P is a finitely sampled
approximation of R*. Since SARSOP computes an approxi-
mately optimal policy over P only, the computed policy may
choose an action that causes it to slightly veer off R* and
get into a region in which the value function approximation
is poor. To address this issue, we impose the more stringent
requirement of dominance over a §-neighborhood: «; dom-
inates ap at a belief point b if oy - b’ > ap - b’ at every point

ay

i

(b)

Figure 2. (a) 0-dominance. «; dominates c, but not as in the
d-neighborhood of b. (b) The certificate structure.

b’ whose distance to b is less than J, for some fixed constant
0. We call this §-dominance. We can check §-dominance
very quickly by computing the distance d from b to the in-
tersection of the hyperplanes represented by o1 and ao and
making sure that d > 4. See Figure 2b for an example.

To prune a-vectors efficiently, SARSOP maintains a cer-
tificate structure, using d-dominance. The certificate struc-
ture is a bipartite graph consisting of two sets of nodes, P
and I". There is an edge between two nodes b € P and
a € T, if « is not dominated by another a-vector over the
d-neighborhood of b. Thus, every edge (b, o) represents a
certificate that demonstrates the usefulness of a. A sampled
point b issues a certificate to an a-vector, when it is created
through a backup operation at b. The certificates from each
sampled point b are checked periodically and revoked if the
corresponding «a-vectors are J-dominated at b. Following
the checks, any a-vector holding no certificates can be im-
mediately pruned.

By maintaining the certificate structure and checking J-
dominance, SARSOP prunes away the useless a-vectors, but
retain all the optimal a-vectors over the space within a dis-
tance 6 of R*.

The pruning method above works well if P is a represen-
tative sample of R*. At the beginning, when there are few
sampled points in P, pruning the a-vectors too aggressively
may result in poor performance. To mitigate this effect, we
incorporate all the corner points of the belief simplex B into
the certificate structure. These additional points are not used
for backup operations, but only for checking 4-dominance.
They introduce little overhead, as the sparsity of these points
(with only one nonzero coefficient per point) allows us to
compute the certificates involving them very quickly.

We expect each belief point to be involved in only a few
certificates. Thus, as a number of belief points decreases,
the number of certified a-vector decreases as well. This is
why belief point pruning helps in a-vector pruning.

Relationship with existing point-based algorithms

As mentioned earlier, the main idea of SARSOP is to build
successive approximations of the value function over R*
through belief point and a-vector pruning. It should be clear
by now that the idea is general and independent of how a
point-based algorithm samples B and performs backup (see
Algorithm 1). Therefore, belief point and a-vector prun-
ing can be integrated with existing point-based algorithms,
in particular, PBVI, HSVI2, and Perseus, and improve their
performance.

In fact, we implemented SARSOP on top of HSVI2 by
incorporating our belief point and a-vector pruning meth-
ods. SARSOP uses the same sampling strategy introduced
in HSVI2, because of its strong performance experimentally.
To sample a new belief point, it traverses a single path down
the tree X by choosing the action with the highest upper
bound and the observation that maximally reduces the gap
between the lower and the upper bounds at the root of X,
until it reaches a node b at a desired level. It then samples a
new point &’ and insert b’ into X as a child of b (see SAMPLE
in Algorithm 1). After creating the new node, it performs
backup operations at all nodes along the path leading to b'.

Convergence

SARSOP prunes only belief points and a-vectors that are
provably suboptimal. The pruning does not affect the value
function approximation over the unpruned belief points in
X. Therefore, SARSOP converges, if its sampling strategy
converges. Since SARSOP uses the same sampling strategy
as HSVI2, to compute a policy with a given reward quality at
the root, it is sufficient to build X to a fixed depth. The con-
vergence result of HSVI2 holds for SARSOP as well (Smith
& Simmons 2004).

Experimental results

We now compare the performance of SARSOP with that of
HSVI2, which, to our knowledge, has so far got the best
experimental performance among the point-based POMDP
algorithms.

Implementation details

HSVI2 uses a heuristic called a-vector masking. During a
backup operation at a point b, it updates only the entries of
an a-vector corresponding to the non-zero entries of b, rather
than all the entries. We found that the heuristic sometimes
improves the performance. Other times, it slows down the
performance substantially (see Table 1). Therefore, we im-
plemented SARSOP on top of a modified version of HSVI2
without this heuristic.

We made several small improvements on the sparse ma-
trix operations. These improvements are applied to the im-
plementations of all the algorithms (SARSOP, HSVI2, and
HSVI2 without masking) tested in our experiments.

Experimental setup

Our test set consists of six problems (see Table 1). The first
four are standard ones for testing point-based algorithms.
The fifth, Rock Sample, was introduced in the work on
HSVI2. It has a large state space of more than 10,000 states.
We added a new problem, Bridge, which has a moderately-
sized state space of 2,653 states, but is difficult because it
easily misleads heuristics based on full observability. The
discount factor y was set to 0.95 for all the problems.

In the Bridge problem, a robot needs to get across a river
with many bridges on a foggy day. It has a map of the en-
vironment, represented on a 51 x 52 grid (Figure 3). The
robot is uncertain of its initial position, which is uniformly
distributed in a region along left border of the map. It is un-
able to sense its location in the fog, but can localize itself

O 0 00O 00O O0 O0O0 O

O
S
S
E)
S
S
S
S
S
s
o

O0/0|0 0|0 O/0O|0|0 0

Figure 3. A scaled down version of the Bridges problem on a 11 x
12 grid. “S” marks the possible initial positions of The robot. The
robot is equally likely to start in any of these squares. “D” marks
the destinations. “R” marks the river. “O” marks places that the
robot can fully localize itself.

exactly anywhere along the top or bottom borders. With ap-
propriate control, the robot can either stay in the same place
or move deterministically to any of the five squares adja-
cent to its current position: directly above, below, or to the
right. The cost of movement is 1 in the horizontal and ver-
tical directions and v/2 in the diagonal direction. The robot
gets a reward of 10,000 if it reaches the right border of the
map and a penalty of 2,000 if it falls into the river. Roughly,
the optimal policy for the robot is to move diagonally until it
reaches the top or bottom border to localize itself. It can then
safely cross the river and get to the destinations on the right
border. A feature of this problem is that heuristics based
on full observability favor the shorter horizontal movements
rather than the diagonal movements and thus often choose
the wrong action.

In the experiments, we performed 100 simulation runs for
each computed policy to estimate its total reward. We ran all
the algorithms on each problem multiple times (at least 5)
until the variances of the reward estimates are small enough.
The experiments were conducted on a PC with a 2.4GHz
Intel Xeon processor and 2GB of memory.

Results

Table 1 shows the performance statistics of SARSOP and
HSVI2, averaged over the multiple runs for each problem.
The statistics for HSVI2 without masking are also shown
for reference. Columns 2-3 of the table give the running
times and the estimated rewards of the computed policies.
Columns 4-6 give the number of a-vectors (|T']), the number
of sampled belief points (] X), and the number of backup
operations (Np).

The results show that SARSOP is much faster than HSVI2
on all problems, except for Rock Sample. On Tag, Tiger
Grid, and Bridge, SARSOP is faster by 5 to 10 times.

The results also show that reducing the number of belief
points and a-vectors significantly improves computational
efficiency. This is especially clear if we compare the results
of SARSOP and HSVI2 without masking so that the effect
of a-vector masking does not interfere. Note that a-vector
pruning is highly effective in all the test problems, often re-
ducing the number of a-vectors by several times. In compar-
ison, belief pruning is less effective. The reason, we believe,

Table 1. Performance comparison.
Time (s) Reward T |X| Ng
Hallway |s|=61,]A|=5,|Z|=21

HSVI2 2.6 1.00 73 78 218
HSVI2 w/o mask 2.9 1.00 73 78 228
SARSOP 1.7 1.04 42 59 170
Hallway2 |5|=93,|4|=5,|2|=17

HSVI2 17.2 0.57 222 104 284
HSVI2 w/o mask 10.8 0.57 219 108 296
SARSOP 10.1 0.57 87 119 326
Tiger Grid |s|=36,/4|=5,|2|=17

HSVI2 161.6 2.37 1716 595 1711
HSVI2 w/o mask 139.6 241 1441 534 1436
SARSOP 15.1 2.40 148 351 949
Tag |5|=870,|A|=5,|Z|=30

HSVI2 26.8 -5.51 699 357 964
HSVI2 w/o mask 12.2 -5.67 366 135 361
SARSOP 54 -5.71 123 86 237
Rock Sample [7,8] |s|=12,545,|4|=13,|Z|=2

HSVI2 1007 21.80 2169 1932 5646
HSVI2 w/o mask 1792 2226 1269 1162 3289
SARSOP 1879 21.74 922 1029 2896
Bridge |5|=2653,|4|=6,|Z|=103

HSVI2* >40000

HSVI2 w.o mask 17987 745.63 1401 1425 21186
SARSOP 4016 742.08 348 813 11880

*In Bridge, HSVI2 did not converge after running for more than 11
hours and was terminated.

is that the current upper bound method used in SARSOP is
too weak. It would be interesting to try better methods to
compute tighter upper bounds.

The a-vector masking technique used by HSVI2 works
well for some problems, but degrades the performance sub-
stantially on others. In Rock Sample, the robot always
knows its own position perfectly. This greatly reduces un-
certainty and enables masking to work extremely well, and
HSVI2 is much faster than the other two algorithms.

The ideas of a-vector pruning and masking are in princi-
ple complementary. It should be possible to make masking
more rigorous and remove its negative effect. We can then
combine pruning and masking, but we have not explored this
possibility yet.

The effect of

Recall that to prune a-vectors, we need to check for -
dominance, where ¢ is a parameter. We examined the ef-
fect of 4 on performance through experiments. The general
trend is that smaller § values allow more aggressive a-vector
pruning and lead to better performance (see Table 2). For
some problems, if § is too small, it may slow down the per-
formance due to over-pruning. However, this issues does
not always occur, and § = 0 sometimes gives the best re-
sult. See, e.g., the Tiger Grid problem in Table 2. Of course,
some problems are more sensitive to ¢ than others. In par-
ticular, we found that Rock Sample is quite sensitive to §. In
the neighborhoods of some belief points, the optimal policy
performs delicate switching of actions. Setting the § value
too small easily causes over-pruning.

Table 2. The performance of SARSOP for various ¢ values.

0 Time (s) Reward IT| | X| Ns
Tiger Grid
1x 1072 41.9 2.39 223 518 1419
1x1073 26.9 2.40 163 442 1166
1x 1074 15.1 2.40 148 351 949
0 12.5 2.39 168 329 876
Tag
1x 1072 22.1 -5.66 208 165 432
1x 1073 20.3 -5.57 167 270 704
1x 1074 5.4 -5.71 123 86 237
0 212 -5.66 164 301 785

In our current implementation of SARSOP, 4 is set man-
ually. For our experiments, § was set to 1 x 10~* for all the
problems, except for Rock Sample, which had § = 1x 1073,
It is possible to set § automatically. We can keep a small sub-
set of dominated a-vector unpruned and observe their effect
on the value function approximation during the backup op-
erations. We then use this information to update d so that it
is as small as possible, but still avoids over-pruning. We will
soon implement and experiment with this technique.

Discussion

Our experimental results show that the idea of approximat-
ing the optimal value function over R* through belief point
and a-vector pruning brings significant computational ad-
vantages. Currently, SARSOP improves the approximation
to R* by pruning branches of the tree X known to be sub-
optimal. The pruning removes sampled points lying far
away from R*. This can be considered as rejection sam-
pling. Ideally, we want to improve the SAMPLE function
in Algorithm 1 so that it does not generate these irrelevant
points at all. The pruning partially achieves this, as it ef-
fectively adapts the sampling distribution so that SAMPLE
no longer explores the pruned branches. Much more can be
done. Indeed, in robot motion planning, another PSPACE-
hard problem that shares many difficulties with POMDPs,
probabilistic roadmap (PRM) algorithms have made tremen-
dous progress in the last decade by using specialized sam-
pling strategies that exploit the geometric structure of the
space (Choset et al. 2005; Hsu, Latombe, & Kurniawati
2006). Nowadays, we can solve many difficult motion plan-
ning problems for robots with many degrees of freedom in
complex geometric environments within minutes. We be-
lieve that the development of good sampling strategies that
exploit the geometric structure of the belief space will bring
similar benefits to POMDP solution and is a promising di-
rection for future research.

Conclusion

Point-based algorithms have greatly improved the speed
of POMDP solution, using sampled approximations of the
space reachable from an initial belief point. We propose
a new point-based algorithm, SARSOP, which pushes this
idea further by focusing on the space reachable under the
optimal policy. SARSOP builds successive approximations
of this optimal reachable space through sampling and prun-

ing. Experiments shows that it outperformed the fastest ex-
isting point-based algorithm by many times on some prob-
lems, while remaining competitive on others. Our approach
is complementary to those used in existing point-based al-
gorithms and can be combined with them to improve their
performance.

References

Brafman, R. 1997. A heuristic variable grid solution method for
POMDPs. In Proc. Nat. Conf. on Artificial Intelligence, 727-733.
Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard, W.;
Kavraki, L.; and Thrun, S. 2005. Principles of Robot Motion :
Theory, Algorithms, and Implementations. The MIT Press. chap-
ter 7.

Geftner, H., and Bonet, B. 1998. Solving large POMDPs using
real time dynamic programming. In Working Notes of AAAI 1998
Fall Symposium on Planning with Partially Observable Markov
Decision Processes, 61-68.

Hauskrecht, M. 2000. Value-function approximations for par-
tially observable Markov decision processes. J. Artificial Intelli-
gence Research 13:33-94.

Hsu, D.; Latombe, J.; and Kurniawati, H. 2006. On the prob-
abilistic foundations of probabilistic roadmap planning. Int. J.
Robotics Research 25(7):627-643.

Lovejoy, W. 1991. Computationally feasible bounds for par-
tially observed Markov decision processes. Operations Research
39(1):162-175.
Papadimitriou, C., and Tsisiklis, J. 1987. The complexity of
Markov decision processes. Mathematics of Operations Research
12(3):441-450.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In Proc. Int. Jnt.
Conf. on Artificial Intelligence, 477-484.

Poupart, P., and Boutilier, C. 2003. Value-directed compression
of POMDPs. In Advances in Neural Information Processing Sys-
tems, volume 15. The MIT Press. 1547-1554.

Roy, N.; Gordon, G.; and Thrun, S. 2005. Finding aproximate
POMDP solutions through belief compression. J. Artificial Intel-
ligence Research 23:1-40.

Smith, T., and Simmons, R. 2004. Heuristic search value iteration
for POMDPs. In Proc. Uncertainty in Artificial Intelligence, 520-
527.

Smith, T., and Simmons, R. 2005. Point-based POMDP algo-
rithms: Improved analysis and implementation. In Proc. Uncer-
tainty in Artificial Intelligence.

Sondik, E. 1971. The optimal control of partially observable
Markov processes. Ph.D. Dissertation, Stanford University, Stan-
ford, California, USA.

Spaan, M., and Vlassis, N. 2005. Perseus: Randomized point-
based value iteration for POMDPs. J. Artificial Intelligence Re-
search 24:195-220.

White III, C. 1991. Partially observed Markov decision processes:
A survey. Annals of Operations Research 32:215-230.

	upload.pdf
	TRA204.pdf
	Table 1 Datasets

	1:

