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Abstract

Delaunay Triangulation (DT) and its extension
Constrained Delaunay Triangulation (CDT) are
spatial data structures that have wide applications
in spatial data processing. Our recent survey
shows, however, that there is a surprising lack of
algorithms for computing DT/CDT for large spa-
tial databases. In view of this, we propose an ef-
ficient algorithm based on the divide and conquer
paradigm. It computes DT/CDT on in-memory
partitions before merging them into the final re-
sult. This is made possible by discovering mathe-
matical property that precisely characterizes the
set of triangles that are involved in the merg-
ing step. Our extensive experiments show that
the new algorithm outperforms another provably
good disk-based algorithm by roughly an order of
magnitude when computing DT. For CDT, which
has no known disk-based algorithm, we show that
our algorithm scales up well for large databases
with size in the range of gigabytes.

1 Introduction
Delaunay triangulation (DT) is a spatial data structure that
has been studied extensively in many areas of computer
science. A triangulation of a planar point set S is a parti-
tion of a region of the plane into non-overlapping triangles
with vertices all in S. A Delaunay triangulation has the
additional nice property that it tends to avoid long, skinny
triangles, which lead to bad performance in applications
(Figure 1). In this work, we develop an efficient algorithm
that computes DT and its extension, constrained Delaunay
triangulation, for data sets that are too large to fit in the
memory.

DT is an important tool for spatial data processing:

Spatial data interpolation. In geographical information
systems (GIS), a common task is terrain modeling
from measurements of the terrain height at sam-
pled points. One way of constructing a terrain sur-
face is to first compute the DT of the sample points
and then interpolate the data based on the triangula-
tion [17, 18, 23]. Figure 2 shows a terrain surface
constructed this way. The same interpolation method
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Figure 1: A set of points (left) and its Delaunay triangula-
tion (right).

Figure 2: A terrain surface constructed using Delaunay-
based spatial interpolation.

easily extends to other spatial data, such as aerial pho-
tographs [9] and readings from sensor networks [15].

Mesh generation. Many physical phenomena in science
and engineering are modelled by partial differential
equations, e.g., fluid flow or wave propagation. These
equations are usually too complex to have closed form
solutions, and need numerical methods such as fi-
nite element analysis to approximate the solution on
a mesh. DT is a preferred method for mesh gener-
ation [1]. As an example, in the Quake project [5],
finite element analysis is applied to billions of points
to simulate the shock wave of earthquakes, and DT is
used to generate the meshes needed for simulation.

Proximity search. Voronoi diagram is an efficient data
structure for nearest neighbor search. Since the DT of
a point set is in fact the dual graph of the correspond-
ing Voronoi diagram [7, 23] and is easier to compute,
it is common to compute the DT first and obtain the
Voronoi diagram by taking the dual.
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Figure 3: Input data points and constraint edges (left) and
the corresponding Delaunay triangulation (right).

The application of DT extends further if we allow in
the input data constraint edges that must be preserved in
the final triangulation. Intuitively, this extension, called
the constrained Delaunay triangulation (CDT), is as close
as one can get to the DT, given the constraint edges (Fig-
ure 3). Constraint edges occur naturally in many applica-
tions. We give three representative examples. In spatial
data interpolation, allowing constraint edges helps to in-
corporate domain knowledge into the triangulation. For ex-
ample, if the data points represent locations where pedes-
trian traffic flow is measured, the constraint line segments
and polygons may represent obstacles to the pedestrians.
It therefore makes sense to interpolate “around” the obsta-
cles rather than through them. Likewise, in mesh genera-
tion for finite element analysis, constraint edges mark the
boundaries between different mediums, e.g., regions where
water cannot flow through. Finally, in spatial searching
and data mining, it is often useful to take into considera-
tion obstacles modelled as constraints [26, 30, 31]. One
important operation in these applications is to compute,
between two given points, the shortest path that does not
cut through any obstacles. To do this, one may use the
visibility graph method [28], which takes O(n2) time and
space in the worst case, where n is the number of input data
points. In comparison, computing the DT/CDT takes only
O(n lg n) time and O(n) space. The DT/CDT can then be
used to find an approximate shortest path with guaranteed
approximation bounds [21, 20].

The importance of DT and CDT to applications has led
to intensive research. Many efficient DT algorithms have
been proposed, and they follow three main approaches:
divide-and-conquer, incremental construction, and plane
sweep [7]. Of the three approaches, the first two are also
applicable to CDT, as well. Unfortunately, although many
applications of DT and CDT involve massive data sets,
most existing algorithms assume that the input data is small
enough to fit entirely in the memory, and their performance
degrades drastically when this assumption breaks down.

If the input data do not fit into the memory, incremental
construction is unlikely to be efficient, because a newly-
inserted point may affect the entire triangulation and re-
sults in many I/O operations. The only remaining option
is then divide-and-conquer. The basic idea is to divide the
data into blocks, triangulate the data in each block sepa-
rately, and then merge the triangulations in all the blocks
by “stitching” them together along the block boundaries.
The key challenge here is to devise a merging method

that is efficient in both computational time and I/O per-
formance, when the triangulation can not fit in the memory
completely.

Motivated by the observation that there is limited work
on practical algorithms for disk-based DT/CDT despite
their importance, our work focuses on scalable computa-
tion of CDT, with DT as a special case. We believe this
work makes the following contributions:

• We present an efficient disk-based algorithm for CDT
using the divide-and-conquer approach (Section 4).
We give a precise characterization of the set of tri-
angles involved in merging, leading to an efficient
method for merging triangulations in separate blocks.
Our algorithm makes use of an in-memory algorithm
for triangulation within a block, but the merging
method is independent of the specific in-memory al-
gorithm used. In this sense, our approach can convert
any in-memory DT/CDT algorithm into a disk-based
one.

• We describe in details the implementation of our al-
gorithm (Section 5). One interesting aspect of our im-
plementation is that after computing the triangulation
in each block and identifying the triangles involved
in merging, we can merge the triangulations using
only sorting and standard set operations, and maintain
no explicit topological information. These operations
are easily implementable in a relational database, en-
abling our algorithm to be integrated with various
spatial data processing techniques that are now com-
monly found in the industry [3, 4, 2]. Furthermore,
since the algorithm uses no floating-point calculation
during merging, it is more robust.

• We have performed extensive experiments to test the
scalability of our algorithm for both DT and CDT
(Section 6). For DT, we compare our algorithm
with an existing disk-based algorithm that is provably
good, and show that our algorithm is faster by roughly
an order of magnitude. For CDT, to our knowledge,
there is no implemented disk-based algorithm. We
compare the performance of our algorithm with an
award-winning in-memory algorithm [24] and show
that the performance of our algorithm degrades much
more gently when the data size increases.

2 Previous Work

Intensive research has led to several in-memory DT al-
gorithms that are asymptotically optimal. They fall in
three main categories: divide-and-conquer, randomized
incremental construction, and plane sweep. See [7] for
a good survey. Experiments show that of the three ap-
proaches, divide-and-conquer is most efficient and ro-
bust in practice [24, 25]. Similarly, for CDT, a divide-
and-conquer algorithm achieves the asymptotically optimal
running time [13], but the algorithm is quite complex and
difficult to implement. In practice, incremental construc-
tion is the most popular approach for CDT. It proceeds by



first constructing the DT and then conforming the triangu-
lation to the constraint edges by inserting them one at a
time [6, 16, 27].

All the algorithms mentioned in the above paragraph as-
sume that the input data set is small enough to fit in the
memory. When the data set becomes too large, they rely
entirely on virtual memory management by the operating
system and perform poorly due to a large number of un-
necessary I/O operations. Research on efficient disk-based
algorithm for DT and CDT has been limited. While there
are DT algorithms that are optimal in I/O performance un-
der certain theoretical models [14, 19], we are not aware of
implementation of these algorithms and experimental re-
sults on their performance in practice. In fact, we have
only found one experimental study of a disk-based DT al-
gorithm [22] in the literature. Furthermore, it appears, sur-
prisingly, that there is no earlier work on efficient disk-
based CDT algorithms.

Another related line of research is parallel DT/CDT al-
gorithms (see, e.g., [11, 12]), but their emphasis is on
parallel efficiency and not I/O efficiency. The divide-and-
conquer approach that we use is related to that used in the
work of Chen et al. on parallel DT computation [12], but
our merging method is more efficient, and we handle CDT
as well as DT.

3 Preliminaries
Let S be a set of points in the plane. The convex hull of S is
the smallest convex set that contains S, and a triangulation
of S is a partition of the convex hull into non-overlapping
triangles whose vertices are in S (Figure 1). The boundary
of a triangulation then clearly coincides with the boundary
of the convex hull. In general, a point set admits differ-
ent triangulations, and we can impose additional conditions
to obtain desirable properties and make the triangulation
unique. The Delaunay triangulation of S is a triangulation
with the additional empty-circle property:

Definition The Delaunay triangulation of a point set S,
denoted by DT (S), is a triangulation such that for every
triangle t in the triangulation, the circumcircle R(t) of t
contains no points in S in its interior.

One can show that DT tends to avoid long, skinny triangles,
resulting in many benefits in practice [10].

DT can be generalized, if the input data contains not
only points, but also line segments acting as constraints. A
planar straight line graph (PSLG) is a set S of points and a
set K of non-intersecting line segments with endpoints in
S. The points can be used to model service sites, and the
line segments can be linked together to model polygonal
obstacles of arbitrary shapes. Given a PSLG (S, K), we
say two points p and q in S are visible to each other if the
straight-line segment between p and q does not intersect
with any segment in K. Using this notion of visibility, the
constrained Delaunay triangulation of (S, K) is defined as
follows:

Definition Given a PSLG (S, K), a triangulation T is a
constrained Delaunay triangulation of (S, K), denoted by

p p

Figure 4: For DT, the shaded triangle is invalid because
its circumcircle contains the point p (left). For CDT, the
same shaded triangle is valid because p is not visible to the
vertices of the triangle (right).

CDT (S, K), if

• every constraint segment k ∈ K is an edge of some
triangle in T , and

• for each triangle t ∈ T , there is no point p ∈ S such
that p is both in the interior of the circumcircle of t
and visible to all three vertices of t.

Note that if there is no constraint segment passing through
the circumcircle of t, then the second condition above is
equivalent to the the empty-circle property for DT, and so
it is a natural extension of the empty-circle property when
constraint segments are present (Figure 4).

4 Disk-Based Constrained Delaunay Trian-
gulation

4.1 Overview

The input to our algorithm is a PSLG (S, K), which con-
sists of a set S of points in the plane and a set K of non-
intersecting constraint segments. We assume that (S, K)
is so large that it cannot fit into the main memory, and our
problem is to compute CDT (S, K).

Our proposed algorithm initially ignores the constraint
segments K and computes DT (S). Then it adds the con-
straint segments back and updates the triangulation to con-
struct CDT (S, K). To reduce the memory requirement,
our algorithm uses a divide-and-conquer approach. Specif-
ically, it goes through four main steps:

1. Divide: Partition the input PSLG (S, K) into small
blocks so that each fits in the memory;

2. Conquer: Use an in-memory DT algorithm to com-
pute the DT for each block;

3. Merge: Stitch together Delaunay triangulations from
all the blocks and build the complete DT (S);

4. Conform: Insert constraint segments block by block
and update the triangulation to build CDT (S, K).

Both the merging and conforming steps potentially require
updating the entire triangulation, which leads to high I/O
cost, because the triangulation is too large to be stored in
the memory. Our goal is therefore to design an algorithm
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Figure 5: The dividing step: partition the input PSLG into
blocks of roughly equal size so that each fits into the mem-
ory. In the zoomed-in picture, small circles indicate Steiner
points created at the intersections of input segments and
block boundaries.

that minimizes the number of unnecessary I/O operations
during merging and conforming.

We now give details on the four steps. Section 4.2 de-
scribes the first three steps, which compute DT (S). Sec-
tion 4.3 describes the last step, which enforces the con-
straints.

4.2 Computing the Delaunay Triangulation

In the dividing step, we partition the rectangular region
containing (S, K) into rectangular blocks Bi, i = 1, 2, . . .
so that the number of points and segments in each block
is small enough for the data to fit into the memory (Fig-
ure 5). As a convention, each block contains the right and
top edges, but not the left and bottom edges. We assume
that every segment is completely contained within a block.
If a segment goes through multiple blocks, we can split it
by adding additional points at the intersections of the seg-
ments and block boundaries. These additional points are
called Steiner points by the convention in the literature. See
Section 5 for details and alternatives.

The conquering step is straightforward. Let Si ⊆ S
be the subset of points that lie in Bi. We simply invoke
an in-memory DT algorithm to construct DT (Si) for each
block. Suppose that t is a triangle in DT (Si) and R(t) is its
circumcircle. If R(t) lies entirely within Bi, then no point
in another block can enter R(t) and fail the empty-circle
test of t (Figure 6). Thus t remains valid after merging. If
R(t) crosses the boundary of Bi, a point in another block
may fall inside R(t) and cause t to be invalidated during
merging. This fact is summarized in the lemma below:

Lemma 4.1 Let Si ⊆ S be the subset of points in block
Bi. For a triangle t ∈ DT (Si), if the circumcircle of t
lies entirely within Bi, t must remain valid after merging;
otherwise, t may be invalidated.

For convenience, we make the following definition:

Bi

Bj

t1

t2

t3

Figure 6: The conquering step: compute DT in each block.
The triangle t1 is safe, and both t2 and t3 are unsafe.

Definition Let Si ⊆ S be the subset of points in block Bi.
A triangle t ∈ DT (Si) is safe if its circumcircle lies within
Bi; otherwise, t is unsafe.

Distinguishing between safe and unsafe triangles is valu-
able, because safe triangles are unaffected by merging and
can be reported directly in the conquering step. Only the
unsafe triangles need to be loaded into the memory in the
merging step, thus significantly reducing the memory re-
quirement.

We now move on to the more difficult step, merging.
If we merge DT (Si) with DT (Sj) in an adjacent block.
Some unsafe triangles in DT (Si) may be invalidated, be-
cause the points in Sj fail the empty-circle tests for those
triangles. In addition, some new triangles must be created
to stitch together DT (Si) and DT (Sj).

First let us consider the triangles that are created during
merging. We start with some terminology.

Definition A triangle whose vertices all lie in the same
block is called a non-crossing triangle; otherwise, it is
called a crossing triangle.

Suppose that t is a non-crossing triangle in DT (S), the
final DT of S. Then t must satisfy the empty-circle test,
meaning that no point in S lies within the circumcircle of
t. Assuming that t lies within block Bi, we know by the
definition of Delaunay triangulation that t is also a triangle
in DT (Si), because Si ⊆ S. So we have the next lemma:

Lemma 4.2 Let Si ⊆ S be the subset of points in block Bi.
If t ∈ DT (S) is a non-crossing triangle that lies inside Bi,
then t ∈ DT (Si). Hence merging DT (S1), DT (S2), . . .
cannot create any new non-crossing triangle.

Lemma 4.2 implies that we only need to focus on cross-
ing triangles. Denote by S ′ the set of point in S such that
every point in S′ is either a vertex of an unsafe triangle or
on the boundary of DT (Si), for some block Bi. The set
S′ is called the seam. According to the lemma below, we
can obtain all the crossing triangles by computing DT (S ′)
(Figure 7).

Lemma 4.3 A triangle t is a crossing triangle in DT (S)
if and only if t is also a crossing triangle in DT (S ′).

Intuitively this lemma holds, because we can obtain
DT (S′) from DT (S) by deleting all the non-seam points,
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Figure 7: The merging step: compute the DT of the
seam. After merging Bi and Bj , t2 becomes invalid and
is deleted, but t3 remains valid.

S\S′, and re-triangulating. All crossing triangles would re-
main unchanged in this process, because their vertices all
lie in S′ and are not deleted. See Appendix A for a formal
proof.

Next let us identify those unsafe triangles in DT (Si)
that are invalidated during merging. One possibility is to
test whether an unsafe triangle t overlaps some crossing tri-
angle in DT (S′). However, the overlapping test is difficult
because it is unclear which crossing triangles t may over-
lap. Checking against all crossing triangles is clearly inef-
ficient. Furthermore the overlapping test requires numeri-
cal calculation which increases computational cost and de-
creases robustness. Fortunately the following lemma helps
to solve the problem much more easily and efficiently.

Lemma 4.4 DT (S′) contains all the valid unsafe trian-
gles and no invalid unsafe triangles.

This lemma can be proven in a similar way as Lemma 4.2
(see Appendix A). Now let U denote the set of unsafe tri-
angles for all the blocks. We can sort the triangles in U
and DT (S′) in lexigraphical order according to the indices
of their vertices and perform a set intersection of U and
DT (S′). The result is exactly the set of valid unsafe trian-
gles that need to be reported.

To summarize, in the dividing step, we partition the in-
put data into blocks Bi, i = 1, 2, . . .. In the conquering
step, we compute DT (Si) for each block Bi. We report
all the safe triangles as valid triangles for DT (S) and store
the set U of unsafe triangles. In the merging step, we need
only U and the seam S ′. This is an important reason for
the memory space efficiency of our algorithm, as typically
U and S′ are much smaller than the original input S. After
computing DT (S′), we report all the crossing triangles in
DT (S′) as valid triangles in DT (S). We then compute the
set intersection of U and DT (S ′) and report the resulting
triangles. The theorem below establishes the correctness of
these steps.

Theorem 4.5 The combination of dividing, conquering,
and merging steps computes DT (S) correctly.

PROOF: DT (S) consists of two types of triangles:
non-crossing triangles, each of which is contained entirely
within some block Bi, and crossing triangles. According
to Lemma 4.3, all the crossing triangles in DT (S) are

Bj

Bi

Figure 8: The DT of input data points. There are three
types of triangles: triangles in light shade are the safe tri-
angles obtained in the conquering step; triangles in dark
shade are the valid unsafe triangles that are preserved dur-
ing the merging step; the rest are crossing triangles.

obtained in the merging step by computing DT (S ′).
Non-crossing triangles are further divided into safe and
unsafe triangles. By Lemma 4.1 and 4.2, all the safe
triangles in DT (S) are reported in the conquering step.
From Lemma 4.4, we can infer that all the unsafe triangles
in DT (S) are computed correctly by taking the set
intersection of U and DT (S ′). Therefore all the triangles
in DT (S) are captured correctly.

4.3 Inserting Constraint Segments

Now we add the constraints segments back and compute
CDT (S, K). To do this efficiently, we need the following
result [27]:

Lemma 4.6 Let CDT (S, K) be the CDT of a point set
S and a constraint segment set K, and let pq be a new
segment such that the endpoints of the segment, p and q,
are in S and pq does not intersect with any segment in
K. To compute CDT (S, K

⋃

{pq}), we only need to re-
triangulate the region covered by the triangles overlapping
pq (Figure 4.3).

This lemma says that adding an new constraint segment pq
into an existing CDT only affects those triangles overlap-
ping pq . This greatly restricts the set of triangles that need
to be considered and localizes the updates. Using this re-
sult, we can add the segments in blocks and process each
block Bi almost independently. Let Ki ⊆ K be the sub-
set of segments in block Bi. Conceptually we compute a
series of triangulations T0, T1, T2, . . ., where T0 is simply
DT (S) and Ti for i ≥ 1 is an updated triangulation after
Ki is inserted into Ti−1.

We now explain how to process Bi and compute Ti.
First we load all triangles in Ti−1 that lie inside or cross
the boundary of Bi. This set of triangles forms a triangu-
lation Q. We insert the segments Ki into Q and compute
the CDT using an in-memory CDT algorithm. The result is
a new triangulation Q′. By Lemma 4.6, loading Q is suf-
ficient, because all segments in Ki lie Bi according to our
assumption and cannot affect any triangles in other blocks.
Furthermore, the new triangles in Q′ do not affect any tri-
angles in other blocks, either. This entire process can thus
be completed in the memory, and in the end, we report the
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Figure 9: Inserting constraint segment pq only requires re-
triangulating grey region consisting of triangles intersect-
ing with pq.

Bj

Bi

Figure 10: The conforming step: insert constraint segments
Ki from Bi and update the triangulation.

triangles in Q′ and obtain the updated triangulation Ti. Of
course, since the intermediate triangulation Ti resides on
the disk, we must be careful to minimize the I/O operations
when loading triangles from Ti−1 and reporting triangles in
Q′. These data organization issues are discussed in the next
section. Figure 10 illustrates the result of conforming the
triangulation to Ki.

The theorem below shows the correctness of our CDT
algorithm.

Theorem 4.7 Our algorithm computes CDT (S, K) cor-
rectly.

PROOF: We use induction to show that Ti is a cor-
rect CDT for S and K =

⋃

i Ki. By Theorem 4.5,
T0 = DT (S) is correct. Assume that Tj−1 is a correct
CDT of (S,

⋃j−1

i=1
Ki). To process block Bi, we insert the

constraint segments Ki to Tj−1. Lemma 4.6 ensures that
re-triangulating captures all the changes that occur as a
result of inserting Kj and Tj is the CDT of (S,

⋃j

i=1
Ki. It

follows that the algorithm computes correctly CDT (S, K)
when all Ki, i = 1, 2, . . . are inserted.

Figure 11 shows the final CDT (S, K) after the inser-
tion of all the segments in K.

Bj

Bi

Figure 11: The final CDT of the input PSLG.

Table 1: List of data tables.
Table Description Fields
S Set of data points and Steiner points each in-

dexed by a primary key, i
i, x, y

Si Set of data and Steiner points in Bi i, x, y

S′ Seam i, x, y

K Segments set, i1 and i2 are primary key in S i1, i2
Ki Set of segments in Bi i1,i2
U Set of unsafe triangles represented by the pri-

mary key of their vertices
i1, i2, i3

5 Implementation

This section describes the implementation of our algo-
rithm. In our implementation, a point in the plane is rep-
resented by its x- and y-coordinates, a segment by two in-
dices to its endpoints, and a triangle by three indices to
its three vertices. Our implementation consists of insertion
and deletion to multiple tables and they are listed in Table
1 for ease of discussion. We will give more details on these
tables as we go along. Our discussion here will come in
two parts: (1) divide and conquer (2) merge and conform.

5.1 Divide and Conquer

The input to our disk-based CDT algorithm consists of a
set of points S, and a set of constraint segments K. We
first describe how the set of points and constraint segments
are divided into partitions.

Let N be the number of input points and M be the block
size, which is governed by the physical memory space. For
simplicity, let us assume N = r2M for some integer r.
We divide S into r2 rectangular blocks. First we sort all
the points in S according to their x-coordinate values and
divide the the point sets vertically into r disjoint columns,
each containing rM points. Then the points in each col-
umn are re-sorted according to their y-coordinate values
and cut horizontally into blocks of size M . If such integer
r does not exist, we can do a rounding off to make sure
each block does not contain more than M points.

This way of partitioning data with alternating vertical
and horizontal cuts is chosen so that the shape of each
block is close to square for a uniform distribution of points
in a square area. This is preferable because generally the
computational cost (time and I/O) of the merging step is
closely related to the sum of the circumference lengths of
all the blocks, which is minimized when all the blocks are



square. As our experiments show, the alternating cut also
works well for non-uniform data distributions.

In the previous section, we stated one assumption on the
segment set K is that none of the segments overlaps differ-
ent blocks. This assumption is of course not true in general.
Here we give two ways to handle those overlapping seg-
ments. One way is to delay the insertion of those overlap-
ping constraint segments and compute the CDT first with
the segments that completely lie in some single block, then
insert the overlapping constraint segments one by one into
the triangulation. Alternatively one can break all the over-
lapping constraint segments into pieces by creating Steiner
points at the intersections of the constraint segments and
boundaries of the blocks. The first approach computes the
true CDT of the input PSLG. However as we know, each
insertion of constraint segment involves locating the seg-
ment in the triangulation which is computationally expen-
sive time when the whole CDT does not fit into the mem-
ory. The second approach computes the CDT of the in-
put point sets and the Steiner points. We adopted the sec-
ond approach in our implementation because it enables us
to process all the segments in batches in the conforming
step, which is much more I/O efficient. A small number of
Steiner points are often allowed and sometimes necessary
in most applications. For conciseness, we hereby use S for
the union of the set of input points and the set of Steiner
points, and Si for the set of points within block Bi. By the
convention we adopted in 4.2, Si includes Steiner points
on the right and top edges of Bi.

Having sorted all the points in S, we assign a unique pri-
mary key i to each point based on that order. This is impor-
tant for us to map most of our processing into database op-
eration instead of geometrical computation. Correspond-
ingly, each segment in K will then be represented by the
primary keys of those points marking its ends. From here
on, we can see S and K as tables. Similarly, we add in the
corresponding primary key for each point into Si for each
block.

The conquering step is quite simple. By our way of par-
titioning the data, input points from the same block Bi are
stored sequentially on disk. The conquering step first load
the set Si and compute DT (Si). Then as described in the
previous section, we need to classify the triangles as safe or
unsafe in DT (Si). The status of the triangle is decided by
checking whether its circumcircle intersects the boundary
of Bi. If it does intersect, the triangle is considered safe,
else the triangle will be considered unsafe. All safe trian-
gles are directly reported to the final triangulation DT (S);
all the unsafe triangles are added into the list U , and all the
vertices which are either incident to some unsafe triangle
or lying on the boundary of DT (Si) for some block Bi are
added into the seam, S ′. Some points can be reported to S ′

multiple times, so S′ so duplicate points should be filtered
off from S′.

Again U and S′ can be seen as tables with each triangle
in U represented by the primary key of its vertices while
points in S′ are kept in sorted order of the primary key
together with the x, y coordinates.

Algorithm 1 Conquer
Input:

boundaries /* the boundaries for all blocks */
Si /* the partitioned point set for each block Bi*/

Output:
DT (S) /* the final DT of the point set stored on disk */
S′ /* the set of points that will be needed in merging step */
U /* the set of unsafe triangles */

1: S′ = ∅
2: U = ∅
3: for all blocks Bi do
4: compute DT (Si)
5: for all t ∈ DT (Si) do
6: if circumcircle R(t) crosses the boundary of Bi then
7: add the vertices of t into S′

8: add t into U
9: else

10: report t to the final DT (S)
11: end if
12: end for
13: end for
14: remove duplicate points in S′

Algorithm 2 Merge
Input:

S′ /* the set of points needed in merging */
U /* the set of unsafe triangles */

Output:
DT (S) /* the final DT of the point set stored on disk */

1: compute DT (S′)
2: for all t ∈ DT (S′) do
3: if t is a crossing triangle then
4: report t to the final DT (S)
5: end if
6: end for
7: for all t ∈ DT (S′) ∩ U do
8: report t to the final DT (S)
9: end for

5.2 Merge and Conform

The merging step of our algorithm computes all the cross-
ing triangles and valid unsafe triangles in DT (S). By
Lemma 4.3, we can find all the crossing triangles from
DT(S’).

Lemma 4.4 states that the set of valid unsafe triangles
are also stored in DT (S ′). Thus we only need to compute
DT (S′) to find these two sets of triangles, which saves a lot
of memory space as S ′ is usually significantly smaller than
S. Note that since S′ might not fitted into the main mem-
ory, we might have to recursively perform another disk-
based DT of S′. We will give more details on this in the
discussion section later.

We scan through DT (S ′) to select the crossing trian-
gles. A triangle is crossing if it overlaps different blocks.
The valid unsafe triangles can be expressed as the set inter-
section U∩DT (S′), U being the set of unsafe triangles ob-
tained in the conquering step. This can be easily computed
since both U and dt(S ′) are represented by the primary key
of their vertices 1.

We next look at the conform step. Section 4.3
briefly describes how to process the segments block by
block and progressively update the triangulation to obtain

1For easy comparison, we stored the vertices of each triangle in a
anti-clockwise order starting with the vertices that have the smallest x-
coordinate



CDT (S, K). Let Ki ⊆ K be the subset of segments in
block Bi. Lemma 4.6 shows that inserting all segments in
Ki only affects the triangulation Q formed by triangles lie
completely in or cross the boundary of Bi. The result of
conforming Q to Ki is Q′. Once Q and Ki are loaded, we
can simply call an in-memory CDT subroutine to compute
Q′. Here we focus on how to load Q and report Q′. The
loading and reporting must be done carefully. Otherwise
imagine that we simply report all the triangles in Q′ se-
quentially to the disk. Some of the triangles in Q′ overlap
other blocks. It will be very difficult to load these triangles
when we process the blocks they overlap.

We can classify the triangles in Q and Q′ into two
groups: triangles totally contained in Bi, and those over-
lapping other blocks. The triangles totally contained in Bi

can be sequentially loaded and reported straight away, as
they cannot be affected by segments in other blocks by
Lemma 4.6. The triangles overlapping other blocks are
managed using a cache mechanism.

After DT (S) is constructed in the conquer step, we du-
plicate the crossing triangles for each block it overlaps so
that for any block Bi, we can sequentially load all cross-
ing triangles in DT (S) that overlap Bi. Thus Step 5 in the
conform function can be done with minimal I/O time.

To capture the changes due to the insertion of segments,
we maintain two sets C1 and C2 of triangles in main mem-
ory as caches. C1 stores newly created triangles overlap-
ping unprocessed blocks, while C2 stores dirty triangles
overlapping unprocessed blocks. Denote the set of trian-
gles in Q that overlap other blocks by A. Both A and A′

are initialized to be empty. We first read into A all crossing
triangles in DT (S) that overlap Bi. Then we add all tri-
angles overlapping Bi from C1 into A, and delete all dirty
triangles found in C2 from A. A combined with all trian-
gles in DT (S) that lie entirely in Bi clearly gives us Q.

After we conform Q to Ki to obtain Q′, we can report
all the triangles that do not overlap any other block to the fi-
nal CDT (S, K). All the remaining triangles overlap other
blocks. Denote them by A′. We append C1 with the set
difference A′\A as all triangles in A′\A are newly created
ones. Similarly, we append C2 with A\A′. It is safe to im-
mediately report all triangles in C1 that do not overlap any
unprocessed block, and delete all such triangles from C2

as they are no longer in use. Alternatively, one can choose
lazy evaluation depending on the caches’ capacity.

6 Experimental Evaluation

Our program is implemented in C++. For in-memory
DT/CDT, it uses TRIANGLE [24], which is awarded the
J. H. Wilkinson Prize for Numerical Software for its effi-
ciency and robustness.

We tested our implementation extensively on both DT
and CDT. For DT, we compare our algorithm with both
TRIANGLE and a provably good disk-based algorithm,
which, as we have mentioned in Section 1, appears to be
only one in the literature with implementation and exper-
imental studies. For CDT, since there is no implemented
disk-based algorithm, we compare our algorithm with TRI-

Algorithm 3 Conform
Input:

DT (S) /* the DT of S stored on disk*/
Ki /* the segments contained in each block */

Output:
CDT (S, K) /* the final CDT stored on disk */

1: C1 = ∅
2: C2 = ∅
3: for all blocks Bi do
4: A = ∅
5: load interior triangles in Bi from DT (S)
6: load crossing triangles overlapping Bi from DT (S) into A
7: add all triangles in C1 overlapping Bi into A
8: delete all triangles found in C2 from A
9: combine A with interior triangles to form Q

10: conform Q to Ki to get Q′

11: report all triangles in Q′ that lie within Bi to the final
CDT (S, K)

12: A′ = the set of triangles remained in Q′

13: C1 = C1 ∪ (A′\A)
14: C2 = C2 ∪ (A\A′)
15: report all triangles in C1 that do not overlap any unprocessed

block to the final CDT (S,K)
16: delete all triangles in C2 that do not overlap any unprocessed

block
17: end for

ANGLE and test for scalability on large data sets 2.
Our experimental platform is an Intel Pentium 4 PC,

which has one 1.4GHz CPU and 512MB memory, and runs
RedHat Linux Fedora I. The code is compiled with option
-O. We use the Linux time command to measure the run-
ning time and the vmstat command to measure the I/O
operations. One drawback of vmstat is that it only mon-
itors the overall I/O activity of the whole system. So we
kept all other system activities at the minimum when per-
forming the experiments to maximize measurement accu-
racy.

6.1 Delaunay Triangulation

Data Distribution

We ran our program on point sets with three different dis-
tributions: Kuzmin, Line Singularity and Uniform (Fig-
ure 12). These are standard distributions for evaluating the
performance of DT algorithms [11, 12].

Kuzmin distribution. The Kuzmin distribution models
the distribution of star clusters in flat galaxy forma-
tions. It is a radically symmetric distribution with the
distribution function

M(r) = 1 − 1√
1 + r2

, (1)

where r is the distance to the center. This distribution
converges to the center faster than the normal distri-
bution.

Line Singularity distribution. Line Singularity is an ex-
ample of distributions that converge to a line. It has a
parameter b, which is set to 0.01 in our experiments.

2We use synthetic datasets in this paper to ensure that they are suffi-
ciently large and to control the distribution of the data. Performance on
real-life geographical datasets is available in [29], but these datasets are
not sufficiently large for us to make any conclusion. We exclude them due
to lack of space
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Figure 12: Data distributions for testing DT.

To take a sample (x, y) from the Line Singularity dis-
tribution, we pick a uniform random sample (u, v) and
apply the formula

(x, y) = (
b

u − bu + b
, v). (2)

Uniform distribution. The uniform distribution consists
of points picked uniformly at random from the unit
square.

Both Kuzmin and Line Singularity are highly skewed
distributions, and so standard partition techniques such as
bucketing do not work well. For each distribution, we ran
several experiments with different data size ranging from
5 to 80 million points. The data size of 12 million points
was chosen because TRIANGLE is usually killed by the op-
erating system on data sets of roughly 13 million points. In
the experiments, we the block size in our program for data
partitioning to be 2 million points.

Results

Figure 13a compares the running time of TRIANGLE and
our algorithm for all three distributions. We consider both
CPU time and I/O time.

First, observe that both algorithms perform almost iden-
tically on all three distributions, indicating that they are in-
sensitive to data distributions.

¿From Figure 13a, we see that our disk-based algorithm
generally outperforms Triangle in total running time on
data sets of more than 5 million points. As the data size
increases, TRIANGLE spends more and more time on I/O.
This is not surprising. As an in-memory algorithm, TRI-
ANGLE stores all the data, such as points, triangles, etc., in
arrays. As the data size grows, the arrays become too large
to fit completely in the memory, and part of the data must
be swapped to the disk. Yet TRIANGLE continues to access
these large arrays randomly. As a result, the CPU must stall
frequently and wait for the data to be loaded from the disk.
In contrast, I/O time for our disk-based algorithm is much
smaller and grows gently with the data size. This is at-
tributed to the efficient data management by our algorithm.
Figure 13b, which shows the amount of data throughput
between the memory and the disk, further confirms this
view. Our algorithm shows a steady linear growth in I/O
cost, while TRIANGLE shows a much faster super-linear
growth. Furthermore TRIANGLE cannot handle very large
data sets: the process was killed by the operating system if
the data sets contained more then 13 million points. What
Figure 13b cannot show is that our algorithm not only gen-
erates fewer I/O operations, but also access the disk access
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Figure 14: Comparison of our algorithm with a provably-
good disk-based DT algorithm.

Kuzmin Line Singularity

Figure 15: Examples of generated PSLGs using different
distributions.

sequentially most of the time, resulting lower I/O cost per
operation on the average. Overall, our algorithm is faster
in in total running time, as a result of effective I/O manage-
ment, and can process much larger data sets.

We also compared our algorithm with another disk-
based DT algorithm by Kumar and Ramos [22]. Kumar
and Ramos’ algorithm is provably efficient. In their exper-
iments, they used a dual-processor Athlon MP 1800 sys-
tem with 1GB memory. Despite the slight disadvantage of
our hardware system, our algorithm demonstrated roughly
an order of magnitude speedup in total running time Fig-
ure 14. The reason, we believe, is that our data partitioning
and merging methods are more effective and avoid process-
ing the same data multiple times.

6.2 Constrained Delaunay Triangulation

Data Distribution

The point sets for the input PSLGs are again generated
with Kuzmin, Line Singularity, and Uniform distributions.
There are two parameters for data generation: the total
number of points N and the ratio the ratio of the num-
ber of constraints segments versus the number of points
0 ≤ α ≤ 1, which is used to control the density of seg-
ments. Below we describe how the data sets are generated
for each distribution:

Kuzmin PSLG We first randomly generate
√

N/3 values
for radius r using the distribution function M(r) of
the Kuzmin distribution. Then we generate

√

N/3
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Figure 13: Running time and I/O cost comparison of DT algorithms on three data distributions.

values for angle θ from [0, 2π). Each combination of
(a, r) represents a point in the polar coordinate sys-
tem. Together these combinations form a spiderweb
with N/3 cells. In each cell, we randomly sample
three points, which are then connected with constraint
segments to form a triangle with probability α. See
Figure 15 for an example.

Line Singularity PSLG (Figure 15 right) We first gen-
erate a Uniform PSLG with the same parameters N
and α, and then map each point (u, v) in the PSLG to
(x, y) using (2).

Uniform PSLG We uniformly and randomly partition the
unit square into a grid of N/3 cells. In each cell,
we sample three points and decide with probability
α whether to create constraint segments to connect
them.

Results

For CDT, we compare with TRIANGLE only, since there
are no practical disk-based algorithms (see Section 2). Our
experiments consist of two parts. In the first part, we fix the
segments to points ratio α, and vary the number of points
N . In the second part, we fix N and vary α.

In the first part, we set α = 50%, and ran data set with
5 to 50 million points for all three distributions. The data
sets with 8 million points were chosen because TRIANGLE

got killed by the OS on the data set with 9M points and
α = 50%. The charts (Figure 16) are organized in the
same way as for DT.

As Figure 16 shows, the performance of both algorithms
is very similar for all three distributions, which means

that both are insensitive to data distributions for CDT as
well. The performance comparison yields similar conclu-
sion as that for DT, only that the advantage of the disk-
based algorithm becomes even more obvious. TRIANGLE

builds the DT first and constructs the CDT by inserting
the segments one by one. Each insertion requires search-
ing the triangulation and finding the location to insert the
segment. When the triangulation cannot be stored in the
memory completely, the search incurs significant I/O cost,
which explains the dramatic increase in running time and
I/O cost. Our disk-based CDT program processes the seg-
ments in batches. For each batch of segments, only a much
smaller triangulation of the corresponding block needs to
be searched. As a result, the search can be done entirely
in the memory, which greatly reduces the running time and
I/O cost.

Next, we fix the number of points N at 8 million and
vary the segments to points ratio α from 10% to 90%. The
performance of both algorithms is very similar for all three
distributions. For brevity, only the chart on Kuzmin dis-
tribution is presented here. As Figure 17 illustrates, both
TRIANGLE and our algorithm demonstrate linear growth
in running time and I/O cost with respect to α, but the rate
of growth for our algorithm is much smaller. Although
TRIANGLE processes segments one by one while our al-
gorithm does it in batches, both algorithms are incremental
construction in nature. Since the size of triangulation is not
affected by the number of segments, one would expect that
the average cost to insert a segment into the triangulation
remains relatively constant as the density of constraint seg-
ments increases. This explains the linear growth in compu-
tational cost.
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Figure 16: Running time and I/O cost comparison of CDT algorithms on three data distributions.
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Figure 17: Comparison between TRIANGLE and our al-
gorithm on Kuzmin PSLGs with different segments/points
ratios.

7 Discussion

Currently the merging step of our algorithm computes the
DT of the seam, DT (S ′), in the memory. This has worked
well in all of our experiments, despite the large input data
size. Typically the seam size is less than 0.6% that of the
original input data. The largest seam encountered has only
281934 points, well within the memory capacity. Never-
theless, as the data size grows, the seam will eventually fail
to fit in the memory. In this case, we propose to apply our
algorithm recursively to S ′. For truly massive data sets, we
can apply the recursion multiple times and obtain the fi-
nal triangulation, as long as each recursive step reduces the
seam size by a significant fraction. The recursive exten-
sion of our algorithm works well, except for some patho-
logical cases, e.g., all the points lying on a parabolic curve.
Such a pathological case would fail all disk-based algo-
rithms based on divide-and-conquer, unless all the data fit
in the memory. However, one simple way for breaking such
pathological cases in practice is to insert a few randomly

sampled points into the input data as a preprocessing step.

8 Conclusion
This paper presents an efficient disk-based algorithm for
CDT on large spatial databases. We have tested the al-
gorithm extensively for both DT and CDT. Experimen-
tal results show that for DT, our algorithm outperforms a
provably good disk-based algorithm by roughly an order
of magnitude. For CDT, which has no previously imple-
mented disk-based algorithms, we show that our algorithm
scales up well for large databases. In the future, we plan to
look at how our algorithm can be used and extended as a
pre-processing step in applications such as spatial proxim-
ity search, location based services, and spatial data inter-
polation.
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A Proofs
LEMMA 4.3. PROOF: First we show that if t ∈ DT (S),
then t ∈ DT (S′). DT (S′) can be obtained by deleting
all the points in S\S′ from DT (S) and re-triangulating.
Deleting a point p from a DT only affects those triangles
incident to p; a triangle t not incident to p remains
unchanged, because the empty-circle property for t is
unaffected by deletion of points. For any point p ∈ S\S ′,
p cannot be incident to any crossing triangle; otherwise,
p would have already been included in S ′. Therefore all
the crossing triangles in DT (S) remain after the deletion
of points in S\S′. It then follows that for any crossing
triangle t ∈ DT (S), t ∈ DT (S ′). To prove the other
direction, simply observe that adding a point back only
creates those triangles that are deleted.

LEMMA 4.4. PROOF: First we show that DT (Si) con-
tains no invalid unsafe triangles. If t is an invalid unsafe
triangle from some block, it must intersect a crossing tri-
angle in DT (S). Since DT (S ′) and DT (S) have exactly
the same set of crossing triangles by Lemma 4.3, t inter-
sects some crossing triangle in DT (S ′). This is impossi-
ble, because DT (S ′) is a well-formed triangulation. Hence
DT (Si) contains no invalid unsafe triangles.

Next we show that DT (S ′) contains all the valid unsafe
triangles. All such triangles must be present in DT (S),
as they are valid. Now we apply the same point deletion
argument in the proof of Lemma 4.3. We obtain DT (S ′)
from DT (S) by deleting all the points in S\S ′. Since
unsafe triangles are unaffected by the deletion of these
points, all the valid unsafe triangles remain in DT (S ′).
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