RANDOMIZED SINGLE-QUERY MOTION PLANNING
IN EXPANSIVE SPACES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

David Hsu
May 2000



© Copyright by David Hsu 2000
All Rights Reserved



| certify that | have read this dissertation and that in my opin-
ionitisfully adequate, in scope and quality, as adissertation
for the degree of Doctor of Philosophy.

Jean-Claude L atombe
(Principal Adviser)

| certify that | have read this dissertation and that in my opin-
ionitisfully adequate, in scope and quality, as adissertation
for the degree of Doctor of Philosophy.

Rajeev Motwani

| certify that | have read this dissertation and that in my opin-
ionitisfully adequate, in scope and quality, as adissertation
for the degree of Doctor of Philosophy.

Leonidas J. Guibas

Approvedfor the University Committee on Graduate Studies:







Abstract

Random sampling is a fundamental technique for motion planning of objects with many
degrees of freedom (dof). This thesis presents efficient randomized algorithms for single-
guery motion planning of objects with many dofs and under complex motion constraints.
Unlike most other probabilistic roadmap planners, our algorithms perform no preprocess-
ing of the environment. They sample collision-free configurations incrementally in the
connected components of the space that contain the query configurations, thus avoiding
the high cost of pre-computing a roadmap for the entire space. Two specific planners are
discussed. One addresses the simpler problem of path planning. The other extends the
basic idea and takes into account kinematic and dynamic constraints on motion as well. A
control system is used to represent both types of constraints in a unified framework. Our
algorithms have been tested extensively on both synthesized examples and real-life CAD
datafrom the industry; they have shown strong performance on rigid-body and articulated
objects with up to 18 dofs. We also demonstrate their generality and effectivenessin three
practical applications: assembly maintainability checking, motion synthesis for animated
characters, and kinodynamic motion planning for an integrated real-time robot system in
environments with moving obstacles.

The lack of theoretical explanation for the randomized motion planners success in
experiments has motivated us to introduce the notion of expansive spaces as a new way to
characterize the complexity of input environments. It provides us a conceptual framework
to understand why randomized motion planners work well and under what conditions. We
prove that in an expansive space, our algorithms find a solution trajectory with probability
that convergesto 1 at an exponentia rate, if a solution exists.

An efficient motion planner isal so useful asaprimitivefor accomplishing more complex
tasks. An example of thisis the robot placement problem, an important application from
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the manufacturing industry. By combining a randomized path planner with local iterative
optimization, our placement algorithm computes simultaneously a base location and a
corresponding collision-free path for a fixed-base robot manipulator to execute specified
tasks as efficiently as possible.
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CHAPTER

| ntroduction

Geometry and motion are two ubiquitous phenomena of the physical world. To operatein
this world or to simulate it, we need proper modeling of the environment, compact data
structures to represent the models, and efficient algorithmsto generate motion for different
types of moving objects. Motion planning for objects with many degrees of freedom (dof)
and under complex motion constraints is the subject of thisthesis.

Motion planning is concerned with computing collision-free motion for objects in an
environment popul ated with obstacles. It hasitsorigininrobotics, whereplanning collision-
freemotionto achieve aspecified goal isafundamental characteristic of autonomousrobots.
Motion planning has since found applications outside traditional robotics, in domains as
disparate asdesign for manufacturing, computer animation, medical surgery simulation, and
computational biology. For example, in computer animation, motion planning techniques
enable animated characters to respond to task-level commands such as* go to the table and
pick up the apple” [IBN94, KKKL94, KL99], thus making them more interactive and lively.
In computational biology, motion planning helps discovering new drugs by identifying
paths with desirable properties for small drug molecules to dock in the cavities of large
protein structures[SLB99]. Thesenew applicationsarerising asthedriving forces of motion
planning research.

Initssimplest form, motion planning isapurely geometric problem: given adescription
of the geometry of an object and a static environment, our goal is to find a collision-free
path for the object to move from an initial configuration to a goal configuration. Thisis
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2 Chapter 1. Introduction

called the basic motion planning problem[Lat91b]. A key difficulty in developing ageneral
motion planning agorithm (or amotion planner, asit isoften called) liesin the large number
of dofs that an object may have. A free-flying rigid body in three dimensions has six dofs.
An articulated robot manipulator can have arbitrary large dofs depending on the number
of jointsthat it has. Unfortunately the fastest complete algorithm (an algorithm that finds
a path if one exists and reports that none exists otherwise) is exponential in the number
of dofs of a moving object [Can884]. In addition, the motion of objects is often subject to
physical constraints. For example, a car cannot move sidewise; the motion of a bouncing
ball must obey the laws of physics. These constraints compound the difficulty of motion
planning.

We believe that random sampling is a fundamental technique for attacking the expo-
nential dependency of motion planning algorithms on the number of dofs. By sacrificing
a limited amount of completeness in a well-understood manner, random sampling signif-
icantly improves the efficiency of motion planners, thus making them practical in awide
range of applications. Intuitively the success of random sampling in motion planning prob-
lemsis due to the “abundance of witnesses’ [Kar91]: while feasible tragjectories may liein
a space difficult to search efficiently by a deterministic algorithm, many solutions actually
exist, and thusit isrelatively easy to obtain one by sampling the space at random.

In this thesis, we present a novel randomized motion planner for rigid-body and artic-
ulated objects with many dofs and extend the algorithm to deal with objects whose motion
is subject to kinematic and dynamic constraints. We also provide probabilistic analyses
of these techniques under a suitable geometric characterization of the environment and
demonstrate their effectivenessin several practical applications.

1.1 Overview of Motion Planning Problems

Motion planningis not asingle problem, but acollection of problems sharing some common
characteristics. The goal of a motion planner isto transform the world from an initial state
to agoa state by computing a sequence of admissible motions for the moving objectsin
the presence of obstacles. The basic path planning problem stated at the beginning of the
chapter captures this essential feature, though it only deals with the geometric relationship
between the moving objects and the obstacles. Various extensions of the basic problem
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have been studiedin theliterature. We group them below into four categories. Since motion
planningisavast field, itisclearly impossibleto citeall theimportant work. Thereferences
listed here are only representative ones from alimited number of viewpoints of the author.

M ore complex moving objects Extensionsin this category are driven by more and more
realistic modeling of complex moving objects. Motion planning under kinematic and
dynamic constraints [Lau86, BL93, DXCR93, BDGB85] has received much attention. Coordi-
nating the motion of multiple moving objects [SS83b, ELP87, OLP89] is another interesting
problem. In robotics, the most common moving objects are, of course, robots. Re-
searchers have developed modular robots, which consist of hundreds of individual pieces,
each operating independently, but coordinating with one another in order to achieve agoal.
Transforming a modular robot from aninitial configuration to agoal configurationisachal-
lenging new problem [PEUC97, KRVM98, CY 99, NGY00]. More recently, motion planning
for deformable objects [KLH98] has gained importance, especially in the context of virtual
prototyping, whose goal is to reason about the motion of objects during manufacturing or
maintenance.

Dynamic Environments In the basic motion planning problem, all obstacles are assumed
to be static. However, many environments in the physical world are dynamic. An envi-
ronment may contain moving obstacles, whose motion is either completely known [RS85,
KZ86, Fuj95] or only partially known [QK93, LS95]. It may aso contain movable ob-
jects [ALS95, KL94b], which can be manipulated in order to accomplish atask.

Incomplete Information Most of the above problems assume that the environment con-
taining the moving objects is completely known a priori, but the assumption does not
always hold in practice. For example, a robot may have very limited information about
the environment in advance, but is equipped with sensors (e.g., cameras and laser rangers)
to obtain new information from the environment. Sensor data provide the information
that the robot needs to explore the environment and perform specified tasks. At the same
time, they restrict the amount of information that the robot can use to decide its action:
arobot can only “see” a subset of the environment detected by its sensors. Sensor-based
motion planning [LS87, QK93, CB97, Rim97, GBGL *98] aims at generating efficient motion
strategies under these constraints.



4 Chapter 1. Introduction

Uncertainty The use of motion planning in physical environments—as opposed to simu-
lated ones—poses additional challenges. In aphysical environment, robots must deal with
imprecision in control and sensing. Preimage backchaining [LPM T84, Bri89] is an elegant
framework for addressing thisissue. It has been applied to mobile robot navigation, but its
impact so far remains limited [Lat00]. In practice, most robotic systems use some form of
reactive execution to deal with the imprecision in control and sensing.

This work addresses the basic motion planning problem as well as the extension that
takes into account kinematic and dynamic constraints. The techniques proposed here are
applicable to environments that are either static or contain moving obstacles with known
motion. In the following, we will use the term path planning for the basic motion planning
problem, and use the term motion planning for various extensions of the basic problem.

1.2 Randomized Motion Planning: Algorithms, Analyses,
and Applications

Random sampling has been applied successfully in recent years to solve path planning
problems for objects with many dofs. Previous work deals mainly with the multi-query
problem, i.e, to process many queries in a known static environment (see, e.g., [KL94a,
S095b, HST94, AW96, BOvdS99]). These algorithms typically preprocess the environment
for arelatively long time by random sampling so that path planning queries for the given
environment can be answered efficiently later. However, in many practical applications,
environments change frequently, and it is wasteful of computation time to perform ex-
pensive preprocessing. The focus of this work is to develop efficient random-sampling
techniques for the single-query problem, in which we solve the path planning problem
for only one query. Like the previous randomized path planners, our algorithm builds a
graph, whose vertices correspond to collision-free configurations of an object and whose
edges correspond to simple collision-free paths between the vertices; this graph encodes
the connectivity information among the collision-free configurations. Unlike the previous
work, our algorithm builds the graph by first sampling in the neighborhoods of the query
configurations and then iteratively in the neighborhoods of the newly-sampled configura-
tions. It stops as soon as a path isfound between theinitial and the goal configuration. The
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Figure 1.1. Assembly maintainability checking, whose goal is to remove a specified component from an
assembly of mechanical parts without collision.

new sampling strategy offers two main advantages. First, it samples only the connected
components of the space containing the initial and the goal configurations, thus avoiding
the high cost of pre-computing a graph for the entire space. Second, it is more efficient
in obtaining collision-free configurations, because it samples only the neighborhoods of
configurations known to be collision-free. Our algorithm has been applied to difficult as-
sembly maintainability problemsfrom the automotiveindustry (using General Motors CAD
data describing environments with up to 200,000 triangles), and have demonstrated strong
performance. See Figure 1.1 for an example.

Path planning is the ssimplest type of motion planning problems. When an object’s
motion is constrained and it cannot move with arbitrary velocity and acceleration, our
problem becomes more complex, because the final computed motion not only has to be
collision-free, but also satisfies all the constraints. Here we consider two important classes
of constraints, non-holonomic (kinematic) constraints and dynamic constraints. Theformer
imposes a relationship between the configuration of an object and its velocity; the latter
involves the acceleration as well. Despite the apparent difference, both types of constraints
can be cast into the same mathematical form and represented by a control system, which
isasystem of differential equations that describes all the possible movements of an object
locally. To sample new configurations, we first pick at random a point in the space of
allowable control functions and then transform the sampled point into a valid configuration
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(@ (b)

Figure 1.2. A simple space and a difficult space.

of the object. With some modifications, our randomized algorithm for path planning is
extended to address this much broader class of problems that takes into account kinematic
and dynamic constraints on the motion of objects. Our framework is also general enough
to deal with moving obstaclesin the environment.

The efficiency of randomized motion planning algorithms has been widely observed in
this and earlier work, but there has been little theoretical work to explain the experimental
success. We introduce the notion of expansive spaces as a geometric characterization of
the environment and use it to analyze the performance of our planners. Our definition of
expansive spaces uses the volumes of certain subsets in the space of al possible configu-
rations of an object, rather than the more traditional measures such as the number of dofs
of the object and the number of polynomials or polygons describing obstacle boundaries.
Consider the 2-D examplesin Figure 1.2. Both spaces have the same dimensionality and
the same number of edges describing the obstacle boundaries. However, experiments show
that the space in Figure 1.2a, which no narrow passages, is much easier for a randomized
motion planner, than the onein Figure 1.2b, which has a narrow passage connecting the | eft
and right portions of the space. Expansiveness gives a quantitative measure of the impact
of narrow passages on the difficulty of motion planning. Expansiveness is an important
notion, because it provides a conceptual framework for understanding why randomized
motion planning algorithms work well (or not so well) and under what conditions. Our
definition also allows kinematic and dynamic constraints on the motion of objects to be
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incorporated during the analysis.

At the beginning of the chapter, we have mentioned that path planning is directly useful
in a number of practical applications. In addition, an efficient randomized path planner
can be used as a primitive operation to solve more complex problems. We demonstrate
this on the robot placement problem, an important application from the manufacturing
industry. In arobot placement problem, our goal isto find a base location for a fixed-base
robot manipulator so that specified tasks are executed as efficiently as possible. Thisisa
crucial issueinrobot workcell design. Our proposed algorithm combinesarandomized path
planner with iterative optimization techniques to compute simultaneously a base location
and a corresponding collision-free path that are optimized with respect to the execution
time of tasks.

1.3 Outline

Thisthesis presents randomized algorithms for motion planning and practical applications
of the algorithms.

Thefirst part (Chapters 2—4) forms the core of the work, in which we examine random-
ized motion planning from both an experimental and a theoretical point of view. Chapter 2
treatsthe path planning problem. We present general schemesfor three variants of the prob-
lem and a specific planner for one variant. We also discuss implementation of the planner
and experiments with articulated and rigid-body objects in 3-D environments. Chapter 3
extends the planner to deal with objects whose motion is under kinematic and dynamic
constraints. Our algorithm represents both types of constraints by a control system and
treats them in a unified framework. Experiments of the planner on two example systems
arereported. Thefirst one consists of two wheeled mobile robotsthat maintain adirect line
of sight as well as a minimum and a maximum distance between them. The second oneis
a hovercraft with ssimplified dynamics. Chapter 4 is devoted to the probabilistic analyses
of our planners. We show that under a suitable characterization of the environment, called
expansiveness, the failure probability of our planners decreases exponentially as running
time increases.

The second part of the thesis (Chapter 5) illustratesthe usefulness of randomized motion
planning techniquesin a practical application. It discussesthe robot placement problem, in
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which we would like to find a base location for a robot manipulator so that specified tasks
are executed as efficiently as possible.

Finally, in Chapter 6, we summarize the main results and point out directionsfor future
research.



CHAPTER

Path Planning in High-Dimensional
Configuration Spaces

Inapath planning problem, our goal isto find acollision-free path for an object to movefrom
an initial configuration to a goa configuration. Thisis a provably hard problem [Rei79],
because the complexity of path planning increases dramatically as the number of dofs of
moving objects grows.

Randomization is the most effective technigue for reducing the high cost associated
with path planning of moving objects with many dofs. The main objective of this chapter
isto present randomized techniquesfor path planning. We start with a brief description of
configuration space, a powerful framework for understanding motion planning problems
(Section 2.1) and review related work on path planning (Section 2.2). We then move on
to general schemes for three variants of the path planning problem (Section 2.3). These
schemes help to identify the commonalities among different randomized path planners
and pinpoint the key issues in their design. Next we focus on a specific planner for the
single-query problem (Sections 2.4 and 2.5) and discuss techniques for optimizing paths
generated by randomized planners (Section 2.6). Our planner has demonstrated very good
performance on both rigid-body and articul ated objects. Experimental resultson the planner
are reported in Sections 2.7-2.9. We end the chapter with some comments on the strength
of our new planner and areas for further improvement (Section 2.10).

9
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Figure 2.1. The configuration of arigid body.

2.1 Configuration Spaces

The configuration of amoving object M isa set of parametersthat uniquely determinesthe
position of every point in M. For example, the configuration of arigid body isits position
and orientation (Figure 2.1); the configuration of an articulated object is usually alist of
joint angles (Figure 2.2).

The set of al configurationsof M formsthe configuration spaceC. A configuration ¢ is
freeif M does not collide with the obstacles in the environment or with itself when placed
at q. The set of al free configurations formsthe free space F C C.

For a polygonal rigid body P trandating in a 2-D polygona environment, we can
construct the configuration space C explicitly by computing the Minkowski difference of
P and the obstacles [LP83, GRS83]. Basicaly we “grow” the obstacles by the shape of
P and shrink P to a point. The idea of transforming the moving object to a point in a
suitable space wasfirst introduced by Udupafor collision avoidance [Udu77], and exploited
more systematically by Lozano-Pérez and Wesley in proposing the first path planner for
polygonal robots translating without rotation [LPW79]. However, explicitly constructing
C is very complex and inefficient for high-dimensional configuration spaces. So instead,
we represent C implicitly by afunction CLEARANCE: C — R, which maps a configuration
g € C to the approximate distance between an object placed at ¢ and the obstacles. The
functionreturnsOif g isin collision. It admitsvery efficient implementation by hierarchical
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Figure 2.2. The configuration of an articulated object.

collision detection or distance computation algorithms (e.g., [Qui94, GLM96, GHZ99]).

In the configuration space, the moving object M ismappedto apoint. The path planning
problem for M becomes that of finding a path for a point in the free space F. If M hasn
degrees of freedom, then it takes a minimum of » parameters to specify a configuration of
M. So the dimension of C isn. Aswe may expect, path planning becomes increasingly
more difficult as the dimension of C grows.

2.2 Path Planning Algorithms

Traditional path planning techniquestypically follow onethree of the approaches. roadmap,
cell decomposition, and artificial potential field (see [Lat91b] for acomplete survey). Some
of thesetechniquesarevery efficient for moving objectswith asmall number of dofs (2 or 3).
However, their performance quickly degrades as the number of dofs increases. Depending
on the speed of hardware, they can solve path planning problemsfor objects with up to four
or five dofs. So they cannot compute motion for rigid bodies translating and rotating freely
in 3-D space or 6-dof articulated robot manipulators, two important cases in practice.
Theoretical studies have confirmed the difficulty of path planning. They indicate that a
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complete planner may take time exponentia in the number of dofs of the moving object.
Reif gave the first lower bound for path planing. He showed that the generalized mover’s
problemis PSPACE-hard [Rei 79):

Suppose that a moving object M is composed of a set of polyhedra linked
together at some vertices and that the environment consists of static polyhedral
obstacles. Findingacollision-free pathfor M betweentwo given configurations
is PSPACE-hard.

Later on, Canny showed that the generalized mover’s problem isin PSPACE [Can88b], thus
establishing that it is PSPACE-complete. A number of other path planning problems have
also been shown to be PSPACE-hard, including that of planar linkages[HJW84] and multiple
moving rectanglesin a plane [HSS84]. These lower bounds suggest that the complexity of
path planning likely grows exponentially with the dimension of the configuration space.

Thea gorithm of Shwartz and Sharir [SS83a] providesan upper bound on the complexity
of path planning:

Suppose that a configuration space C has dimension » and obstaclesin C are
defined by p polynomial constraints of maximum degree d. A collision-free
path between two given configurations can be found in time exponentia in n
and polynomial in p and d.

Their algorithm computesan algebrai c decomposition of the configuration space and is dou-
bly exponential in». Canny’sroadmap technique[Can88a], which capturesthe connectivity
of the configuration spacein anetwork of one-dimensional curves, reducesthe running time
to singly exponential in . Itisthe best complete agorithm known for path planing. These
algorithms have helped calibrating the complexity of path planning and understanding its
combinatorial nature [Lat00], but they are very complicated and impractical to implement.

In recent years, random sampling has emerged as a promising new approach for path
planning. Randomized path planners are capable of solving complex path planning prob-
lemsfor moving objectswith many dofs. They aresimpletoimplement and very efficientin
practice. These benefits of random sampling have been exploited in other domains as well,
e.g., Monte Carlo integration and simulation of stochastic systems[KW86]. Here instead of
using random sampling to estimate anumerical value, we useit to estimate the connectivity
of the configuration space.
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Planners based on random sampling are not complete. Some of them satisfy a weaker,
but still interesting property called probabilistic completeness. if a path exists, the proba-
bility that the planner findsit convergesto 1 quickly, as running time increases.

Early randomized path planners often use randomization to augment a more traditional
planning method. The randomized potential field planer [BL91] alternates between best-first
motions that track the negated gradient of a potential function measuring progress towards
the goal and random motions to escape the local minima of the potential function. The
algorithm proposed by Glavinageneratesrandomintermediate configurationsto help agoal -
directed best-first search to escapelocal minima[Glad0]. Althoughit wasimplemented only
for polygonal objects moving in 2-D environments, Glavina's algorithm contains several
major ingredients of the powerful probabilistic roadmap (PRM) method that came a few
years later.

PRM planners proceeds in two stages. In the preprocessing stage, it samples collision-
free configurations at random and connects them by simple canonical paths, thus creating
a probabilistic roadmap. In the query stage, it connects the two query configurations to
the roadmap and searches the roadmap for a path. The first PRM planners [KL94a, SO95a,
HST94] use astraightforward uniform distribution for sampling new configuration, possibly
followed by an enhancement step toincreasethe sampling density in critical regions[KL944d.
Recently a number of other sampling strategies have been devel oped, including shrinking
the obstacles [HKL*98], sampling near the free space boundaries[ABD*98] or medial axis
of the configuration space[WAS99], and using “guards” to reject unwanted samples[NSL99].

Since PRM planners perform relatively expensive pre-computation, they are most suit-
able for processing multiple queries in a static environment. The algorithm that we are
going to present addresses a different variant of the path planning problem, in which the
environment changes frequently and expensive pre-computation is wasteful. The algo-
rithm, initially proposed in [HLM97], builds a roadmap on the fly by sampling first in the
neighborhood of the query configurations and then iteratively in the neighborhoods of the
newly-sampled configurations. It stopsas soon asa path isfound between theinitial and the
goal configuration. Compared to a distribution that samples configuration space with non-
zero probability everywhere [Ove9d2], the sampling strategy presented hereis more efficient,
especially when the free space contains many connected components, because it samples
only those components relevant to the current query. The algorithm proposed by LaValle
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Figure 2.3. An example of probabilistic roadmaps.

and Kuffner issimilar to ours, but uses a dightly different sampling strategy [LK99].

2.3 General Schemes

To find a collision-free path, a randomized path planner builds a roadmap graph ' that
captures the connectivity of the configuration space. It samples at random a set of free
configurations called milestones and inserts them into (G as vertices. There is an edge
between two milestones in & if they can be connected by a canonical path from a pre-
determined set of paths (usualy straight line segments). The roadmap G is thus a sampled
representation of the configuration space; it can be searched to answer a path planning
guery. See Figure 2.3 for an illustration.

Therearethreevariantsof the path planning problem, and theal gorithmsfor constructing
the roadmaps are dlightly different in each case. In the first variant, we pre-compute a
roadmap so that multiple planning queries about the same environment can be answered as
fast as possible. This variant often occursin mobile robot navigation, where arobot moves
between two given locations in a static environment. I1n the second variant, we assume that
the moving object has a home configuration ¢, and a query always asks for a path between
g, and another configuration. Both human armsand robot manipulatorshave natural resting
configurations that serve as home configurations. We still pre-compute a roadmap &, but
to improve the speed of pre-computation, G contains only milestonesthat can be connected
to the home configuration. In the third variant, we perform no pre-computation at all and
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build a small roadmap on the fly in order to answer the query. This scenario occurs if
environments change frequently and pre-computation is not feasible. As far as roadmap
construction is concerned, these three variants differ in the amount of query information
available when the roadmap is generated: nothing is known about the query in the first
case, one of the two query configurations is known in the second case, and the query is
completely known inthelast case. We call thefirst variant the all-pairs problem, the second
variant, the single-source problem, and the third variant, the single-pair problem.

The all-pairs problem In an al-pairs problem, the planner builds a roadmap & by first
sampling the configuration space at random according to a suitable probability distribution
and retains the free configurations as milestones in . It inserts an edge between two
milestones in & if they can be connected by a straight-line path. Once 7 is constructed,
the planner answers queries by first connecting the initial configuration ¢;,;; and the goal
configuration ¢,.. to ¢ and then searching ¢ for a path between g;;; and ggoa1 [BKLT97].
A sketch of the roadmap construction algorithm is shown below.

Scheme 2.1 Roadmap construction for all-pairs problems.

1. repeat

2 Pick ¢ from C at random with probability 7(q).
3 if CLEARANCE(q) > 0 then

4, Insert ¢ into the roadmap G as a milestone.
5 for every milestone ¢’ € (G suchthat ¢’ # ¢
6 if LINK(q, ¢') then

7 Insert an edge into ¢ between ¢ and ¢'.

In line 6 of the scheme, LINK(q, ¢') is a boolean function that returns TRUE if thereis a
straight-line path between ¢ and ¢’ and FALSE otherwise.

A straightforward distribution for generating new configurationsisthe uniform distribu-
tion. Figure 2.4 gives an exampl e of roadmaps generated by the uniform sampling strategy.
Althoughitisvery ssmple, wewill show that the uniform sampling strategy isfairly efficient
if the configuration space possesses certain geometric properties (Section 4.2).
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)

Figure 2.4. A roadmap generated by the uniform sampling strategy for an all-pairs problem in the 2-D
configuration space.

The single-source problem Roadmap construction for single-source problems is very
similar to that for all-pairs problems. The main differenceisthat part of the query, the home
configuration ¢, is known in advance. The planner inserts ¢, into the roadmap G at the
beginning, and G contains only milestones that are connected to ¢;,. Asaresult, G consists
of only one connected component of the configuration space. If ¢;, liesin avery restricted
part of the environment, this modification reduces the size of ¢ and speeds up the roadmap
construction.

To process a planning query, the planner tries to connect the other query configuration
¢ to the roadmap in the same way as that in al-pairs problems, and searches the roadmap
for a path between ¢ to g;.

Thesingle-pair problem Inboth the all-pairs and the single-source problem, we construct
the roadmap in the preprocessing stage. Our objective there is to compute a roadmap that
captures the connectivity of C as accurately as possible in a reasonable amount of time. In
contrast, there is no preprocessing stage in the single-pair problem. Instead the planner
constructs a small roadmap on the fly to answer the query quickly. It does so by sampling
only the connected components that contain either the initial configuration ¢;,;; or the goal
configuration ¢,..1. The roadmap for a single-pair problem consists of two trees rooted at
Ginit @Nd qgoa1 respectively (Figure 2.5). The planner samples new milestones at random
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®
.

Figure 2.5. A roadmap for a single-pair problem in the 2-D configuration space. The two circles mark g;n;¢
and Ggoal-

from C and inserts them into the trees as milestones, until the two trees “meet”, i.e, a
milestonein onetreeis connected to a milestonein the other. The two treesare constructed
inanidentical way. The pseudocode below sketchesthe algorithm for building atree rooted
at a given configuration.

Scheme 2.2 Building atree 7' rooted at configuration go.

Insert ¢q into 7.
repeat
Pick ¢ from C at random with probability 7(q).
if CLEARANCE(q) > 0 then
Find some milestone ¢’ € (¢ such that ¢’ iscloseto g and ¢’ # ¢.
if LINK(q, ¢') then
Insert ¢ into 7" along with an edge between ¢ and ¢'.

N o g ks~ o DdNPE

Note that in contrast to Scheme 2.1, anew configuration isinserted into 7' only if it can be
connected to some milestone already in 7. So by construction, there is a path between ¢,
and every milestonein 7.

Inthe all-pairs problem, the roadmap ' potentially has multiple connected components.
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In the single-source problem, G has a single connected components. In asingle-pair prob-
lem, GG contains two trees rooted at ¢;ni: and ¢40.1. Despite the difference, the key element
that determines the efficiency of all these planning schemes is the sampling distribution =
for generating new configurations. A distribution good for one type of problems may not
be the best for others. For example, the uniform sampling strategy is a viable candidate for
the all-pairs problem: since we do not know the query configurations in advance, it seems
reasonable to have the milestones uniformly cover C. Uniform sampling can also be used
for the single-pair problem, but it is not a good choice because it makes equal amount of
effort in the entire configuration space, which may contain many connected components
irrelevant to the current query. In the next section, we will look in detail how to construct a
more efficient sampling strategy for the single-pair problem.

2.4 Randomized Expansion

Most previous work on randomized path planning is devoted to the all-pairs problem.
They can also be easily adapted for the single-source problem. On the other hand, many
practical applications require a planner for the single-pair problem, because environments
change frequently, and there is not enough time to pre-compute a roadmap for the entire
configuration space. In asingle-pair problem, although the free space may contain severa
connected components, at most two of them are relevant to the query being processed, and
it is clearly undesirable to perform expensive preprocessing to construct a roadmap of the
entire configuration space. Instead we would prefer to build only the part of the roadmap
that is relevant to the query, i.e, the part that contains only the configurations connected to
the query configuration ginit OF ggoal-

Following the scheme in the previous section, our planner constructs two trees of
milestones (the roadmap) rooted at i and ¢,..1 respectively. 1t samplesnew configurations
first in the neighborhoods of gi,i: and g,..1, and then iteratively, in the neighborhoods of
newly-generated milestones. It stops as soon as the two trees become one connected
component, and a path between g;ni; and ¢,..1 1S then extracted from the roadmap. We call
this algorithm randomized expansion.

To add anew milestoneto atree 7' (Figure 2.6), the planner picks at random amilestone
g inT" with probability 7, (¢) and samples a new free configuration ¢’ uniformly at random
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Figure 2.6. Adding a new milestone. The configurations a« and ¢ are rejected, but b is accepted as a new
milestone.

from the neighborhood of ¢. If there is an straight-line path between ¢ and ¢/, then ¢ is
inserted into 7" as a milestone along with an edge between ¢ and ¢'.

An important issue for our planner is to avoid oversampling any region of the config-
uration space, especially around ginic and ggo.1. 1deally we would like the milestones to
eventualy distribute rather uniformly over the connected components containing g;,i; Or
ds0al. 10 achieve this objective, our planner defines a weight for every milestone ¢ in 7'.
Theweight of ¢ isthe number of milestonesin 7" within some pre-defined neighborhood of
q. Theweight function w(q) measures how densely the neighborhood of ¢ has already been
sampled, and the planner picks a milestone ¢ in 7" with probability inversely proportional
to theweight of ¢, i.e,, 7,(q) o< 1/w(q). So amilestonewith asmaller weight has a greater
chance of being picked. Other monotonically decreasing functions of weights are likely to
work, too, but 1/w(z) is easy to compute and has worked well in our experiments. It also
facilitates the analysis of the planner in Chapter 4.

Every time that the planner adds a new milestone ¢ to 7', it checks whether there is
a straight-line path between ¢ and the milestones in the other tree. If so, a path between
ginit AN ggoa1 1S found, and the planner terminates. In practice, it is unlikely that there
is a collision-free straight-line path between two milestones far avay from each other.
To improve the performance, the planner checks the straight-line connection between two
milestones only if they are close enough.
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Like al other randomized path planners, our planner will not stop if no path exists. We
must explicitly set the maximum number of milestones to be sampled. Alternatively we
may choose to terminate the algorithm and report that no solution exists if the minimum
weight over all the milestonesin the two trees exceeds acertain value, becausethisindicates
that we have adequately sampled the configuration space, but are still unable to find a path.

2.5 Implementation | ssues

Two primitive operations, CLEARANCE and LINK, are needed to implement the randomized
path planners presented in Sections 2.3 and 2.4.

The procedure CLEARANCE(g) computes the approximate distance between a moving
object M placed a ¢ and the obstacles. It can be realized in various ways, and thereis a
trade-off among efficiency, accuracy of results, and generality. At oneextreme, CLEARANCE
performs only collision detection and returns ssmply 0 or 1 depending on whether ¢ isin
collision. At the other extreme, it computes the exact distance between M placed at ¢ and
the obstacles. The cost of computing the exact distance can be quite expensive.

A very fast technique for collision detection is to pre-compute a bitmap of the envi-
ronment indexed by the configuration of M [LRDG90, Lat914]. After the pre-computation,
it takes only constant time to determine whether a given configuration is in collision by
indexing into the bitmap. This technique works well if the environment is planar or can
be projected to a plane. If the environment contains only convex polygonal objects, the
best theoretical algorithm can compute the exact distance between two objects in poly-
logarithmic time after linear time preprocessing [DK90]. In practice, we can often do better
by tracking the closest pair of features (vertices, edges, and faces) [LC91, Mir98, GHZ99] as
objects move continuously in space. To handle non-convex polygonal objects with com-
plex geometry, most algorithms build hierarchical bounding volumes. The basic ideaisto
construct successively simpler approximations to the underlying polygonal object. When
two objects are far apart, we use the simpler approximations to speed up the computation.
When two objects are close together, we travel deeper into the hierarchies and use more de-
tailed approximations, but only in localized regions. Some of these hierarchical algorithms
perform only collision detection [GLM96, Hub96]; others can compute the approximate dis-
tance as well [Qui94]. Algorithms for non-convex objects may be a little slower than their
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Table 2.1. Trade-off among three types of implementation for CLEARANCE.

Algorithm Input Output ‘ Query Time
bitmap planar or 2§-D objects binary very fast
feature tracking convex polygonal objects | exact distance fast

hierarchical bound- | non-convex polygonal ob- | approximate or exact | fast
ing volumes jects distance

more specialized counterparts for planar or convex objects, but they are nevertheless very
efficient in general and are capable of of handling complex environments with hundreds of
thousands polygons. The trade-off among the three types of agorithms mentioned above
are summarized in Table 2.1.

The procedure LINK determines whether there is a collision-free straight-line path be-
tween two configurations. A simple implementation of LINK would discretize the path
into a sequence of configurations and regard the path free if all these configurations are
free. Problems may arise if the discretization is not fine enough, but they can usually
be addressed by leaving some tolerance around the obstacles. A better way is to bisect
the straight-line path between its endpoints recursively into two segments until either an
endpoint of segmentsisin collision or the collision-free spheres centered at the endpoints
cover the segments completely and thus certify that the segments are collision-free (Fig-
ure 2.7) [BKL*97]. Theradii of the spheres covering the segment are computed from the
distance information returned by CLEARANCE.

The discretization method requires only a collision detection routine in the implementa-
tion. In contrast, the recursive bisection method needs some form of distance computation.
Collision detection is faster than distance computation; using a collision detection routine
reduces the time spent for each collision check. On the other hand, athough distance
computation takes longer to execute, it provides more information, which is used by the
recursive bisection method to reduce the total number of collision checks. Our experience
seemsto indicate that the second approach works better.

For the randomized expansion planner, we also need to compute the weight function
w(q). A naive method to compute w(g) would enumerate all the milestone in the tree
T that lie in the neighborhood of ¢. It takes O(n) time, where n is the total number of
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Figure 2.7. Recursively bisecting the straight line segment into two segments until the collision-free spheres
centered at the endpoints of segments cover the segments completely or one endpoint isin collision.

milestonesin 7. The method works only if n is relatively small. Asan improvement, we
may put a grid on the configuration space, insert milestones into the grid, and then use the
grid to locate the milestones close to ¢q. This method works very well for low-dimensional
configuration spaces, but the size of the grid grows exponentially with the dimension of the
configuration space. Range search techniques [GO97], which has been studied extensively
in computational geometry, provide the most efficient way to computew(q). They typically
achieve poly-logarithmic computation time, using a reasonable amount of space, but are
more complicated to implement.

2.6 Path Optimization

Paths generated by arandomized path planner typically contain many unnecessary zig-zags,
because of the random steps takes by the planner. They cannot be used directly and need to
be smoothed or optimized first. We would like to devel op an algorithm that is efficient and
works for configuration space of arbitrary dimensions.

Research in computational geometry has yielded many fast algorithms for the shortest
path problem in 2-D environments under various metrics [GO97, pp. 445-466]. The corre-
sponding problem in three or higher dimensions is considerably harder: the shortest-path
problemin 3-D has been proven to be NP-hard [CR87]. Thereforeto find aminimum-length
path for a moving object with many dofs, we have to resort to approximation techniques.
One possibility is to plan a collision-free path first and then deform the path iteratively to
reduceitslength [SD91]. Thisisthe approach taken here. Alternatively, for asimple object
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with two or three dofs, one may discretize the configuration space of the moving object and
search the space exhaustively for an approximation to the minimum-cost path [DXCR93].

In this section, we describe an efficient algorithm for optimizing the length of a path.
Theideaisto look at a path at multiple levels of resolution [SDS96] and iteratively replace
pieces of the current path by shorter ones. We consider only piecewise-linear paths, but
this is not a severe restriction, since any reasonable path can be well-approximated by a
piecewise-linear one.

Let us define the length of a straight-line path between two configurations p and ¢ as
the Euclidean distance ((p, ¢) between them. The length of a piecewise-linear path v with
n vertices vy, v, ..., v, IS then the sum of the lengths of straight-line paths between the
successive verticeson v: L(y) = Y0 d(vi, vigs ).

The Euclidean distance is a metric; so it satisfies the triangle inequality d(p,q) <
d(p,r) + d(r,q) for any p,q,r € C. If we replace a portion of a path by a straight-line
segment in C, the length of the path can only decrease (or stay the same).

Lemma?2.1 Let p and ¢ be two points on a path 4. If 4’ is a new path obtained by
replacing the part of v between p and ¢ by the straight-line segment between p and ¢, then
L(¥') < L(%)-

Lemma 2.1 helps characterizing paths of minimum length: there isa minimum-length path
that is locally “straight” at every point where the path is not touching the obstacles. More
precisely, let 4 be acollision-free path of minimum-length, and let I' be the set of collision-
free paths such that for every v € I', v has zero curvature at every point p on v where v
IS not tangent to obstacles in the configuration space. If 4 isnot in I', we can repeatedly
replacing sub-paths of 4 by straight-line paths and in the limit reach a path 4’ € I'. By
Lemma 2.1, the length of 4 cannot be longer than that of 7. Hence the following lemma.

Lemma 2.2 The set I' contains a collision-free path of minimum length.

One way to optimize vy = (vy,va,...,v,) isthen to break v recursively into two sub-
paths v, = (v1,vs,...,0,/2) @y = (Vy)2, Vnjatis - - -5 Un), @Nd check whether v, and ~,
can be replaced by straight-line paths. If they can, Lemma 2.1 guaranteesthat the length of
the new path is shorter than that of ~. We call this recursive procedure SHORTCUT.

The procedure SHORTCUT is reasonably efficient, taking O(n) time to execute, but
unfortunately it may stop far short of reaching the minimum-length path. In the example
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Figure 2.8. SHORTCUT gets stuck at 1, which is far from the minimum 5. The path v, is the input to
SHORTCUT, and v, showsthe path after one iteration.

shown in Figure 2.8, it terminates after reaching the path +;,. No further improvement is
possible because the straight-line path (vq, vs) isin collision. Of coursg, if there were more
vertices on +, we might be able to reach the true minimum-length path, but it is difficult to
know in advance how many vertices are needed.

To address this problem, after SHORTCUT stops, we use an oracle to scan through each
vertex v; in the path and add additional vertices around v; if necessary. Specifically the
oracle puts two additional vertices v; and v, on the straight-line segments (v;_;,v;) and
(v;, vig1) respectively and try to replace the sub-path (v;, v;, v,.) by the straight line segment
(v1,v,). A bisection method is used to determine v; and v, so that (v;, v,.) is collision-free.
First set v; to be the midpoint of (v;_;, v;), and v, to be the midpoint of (v;,viy1). If the
line segment (v;, v,) isnot collision-free, bisect again and set v; to be the midpoint between
v; and the previous v;, and v, to be the midpoint between v; and the previous v,.. Continue
until (v, v,.) liescompletely inthe free space. Ingeneral, v; = (1/2%)v,_; + ((25 —1)/2%)v;
and v, = (1/2%)v;q + ((2F — 1)/2%)v;, at thekth step for & = 1,2,. ... The procedureis
guaranteed to terminate because v; is a free configuration and hence there exists an open
ball B that contains v; and lies entirely in the free space. Once both v; and v, are inside
B, the line segment between them must be collision-free, because B is convex. After
the oracle adds additional vertices to the path, SHORTCUT is invoked again. The process
terminates when no further improvement is possible. We call SHORTCUT with an oracle
ADAPTIVE-SHORTCUT.

Thefirst iteration of ADAPTIVE-SHORTCUT callsonly SHORTCUT and all later iterations
perform the oracle computation followed by SHORTCUT. A computed example is shown in
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Figure2.9. Minimum-length paths computed by ADAPTIVE-SHORTCUT after 0, 1, 2, 3, 4, and 10 iterations.

Figure 2.9. We have verified analytically that in this example, the optimized path obtained
after 10 iterationsis amost exactly the same asthe true minimum. Note that the result after
the first iteration is the local minimum that we would have reached without the oracle; as
shown in the figure, it is quite some distance away from the true minimum.

We can shed some light on the efficiency of ADAPTIVE-SHORTCUT by analyzing the
space of paths that it operates on. Let F; be the space of piecewise-linear paths having
1 vertices. Any path with ¢ vertices can also be represented by a path with j vertices for
J > t. Hence F; C F; for: < 7, and Fy, F5,... form a sequence of nested function
spaces. Let ' = (J2, F; be the space of all piecewise-linear paths. We are interested in
~, the optimal pathin F'. If werestrict the space of paths being considered to F; for some
fixed ¢, then 7;, the optimal path in F;, remains a good approximation to 4 provided : is
sufficiently large. However, alarge : means more vertices (variables) needed to represent
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Figure2.10. Piecewise linear approximationsto asmooth path. The paths+v, , v2, 43 arethree-, five-, and nine-
vertex piecewise-linear paths approximating 4. In the right portion of 4, al approximations are reasonably
good, whilein theleft portion of 4, only v3 approximatesy well.

a path, and thus the optimization procedure may take longer to converge to a minimum.
On the other hand, if 7 istoo small, 4; may be a poor approximation to 4. Furthermore
different portions of 4 may have different levels of smoothness. On the part where 5
is smooth, a few vertices are enough to approximate it well; on the part where 7 varies
widely, many more vertices are needed. See Figure 2.10 for an examplein two dimensions.
In ADAPTIVE-SHORTCUT, the SHORTCUT procedure removes unnecessary vertices when
replacing sub-paths by straight line segments, and the oracle adds more vertices where
needed. By moving up and down among various spaces Fy, F3, ..., ADAPTIVE-SHORTCUT
quickly converges to agood approximation to 5.

Since our algorithm iteratively makes small modification of the current path, it can
still be stuck in alocal minimum. To make the algorithm more robust, we can have the
randomized path planner return multiple paths, optimize each of them separately, and keep
the best resullt.

The correctness of our algorithm depends only on the triangle inequality. Thusit can
be applied to other measures of path cost, provided that the triangle inequality is satisfied.
Consider, for example, the time that it takes a c-joint robot manipulator to execute a
piecewise-linear path. If the manipulator has maximum speed vy, 14, . . . , . for the joints,
the time that it needs to travel along a straight-line path in C between two configurations
p=(p1,p2,...,p.) A q = (q1,qa,...,q.) isthen the maximum of timesrequired by each
joint

Pi — 4
7(p,q) = max |V7|

Again the cost of a piecewise-linear path ~ is the sum of the cost of straight-line paths
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between successive vertices of . The function = is aweighted L., metric on C, which of
course satisfies the triangle inequality.

2.7 Experimentswith Articulated Objects

In this section and next, we apply the randomized expansion agorithm to two common
types of moving objects, articulated robot manipulators and free-flying rigid bodies, in
3-D environments. Our goal is two-fold: (i) demonstrate the generality of our planner
by implementing it for different types of moving objects; (ii) demonstrate the planner’s
ability to solve difficult path planning problemsin complex geometric environments. Our
algorithm is implemented in C++. The running times reported in these two sections were
obtained on an SGI Octane workstation with a 270 MHz M1PS R12000 processor and 256
MB memory.

2.7.1 Implementation Details

First let us look at articulated robot manipulators that consist of rigid links connected
together sequentially by one-dof revolute joints. Each joint of the robot has alimited range
due to mechanical constraints.

Configuration space representation The configuration of a manipulator is specified by
alist of jointsangles (6, 6,,...,6.) € R°, where ¢ isthe total number of joints. Sincethe
joint angles have limited ranges, the configuration space is a bounded rectangular region in
R°.

Sampling free configurations To sample a new configuration ¢’ in the neighborhood of
agiven configuration ¢, we choose each coordinate of ¢’ independently by picking avalue
uniformly at random from a small interval centered at the corresponding coordinate of q.
The sizes of these intervals are determined by pre-selected constants. We keep the new
configuration if it is collision-free.

Computing the weight function Our current implementation computes the weight of a
milestone ¢ by simply enumerating all the milestones that lie in the neighborhood of .
Since the computation of CLEARANCE dominates the running time of the algorithm, the
crude implementation of weight function calculation does not cause a severe problem, as
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long as the number of milestones are reasonably small (say, a few thousands). Of course,
more efficient techniques (see Section 2.5) will improve the performance of our algorithm
in complex problems where a huge number of milestones are needed.

Implementing CLEARANCE  Quinlan’s distance computation algorithm [Qui94] is used
to implement CLEARANCE. We build one spherical bounding hierarchy for each rigid link
of a manipulator and another one for all the obstacles. To calculate the minimal distance
from the manipulator to the obstacles, we invoke Quinlan’s algorithm between each rigid
link and the obstacles, and keep the smallest distance returned.

Implementing LINK  In our current implementation for articulated objects, the fixed-
resolution discretization method is used for LINK.

2.7.2 Reaults

We tested the planner on alarge number of data sets. Figures 2.11-2.13 show four of them.
Each figure contains several query configurations as well as computed examples.

The three robots used in the tests are similar. They all have six dofs and kinematic
structures identical to that of the famous PUMA robot, but they differ in their shape. The
robot in scene 3 has a large end-effector that is difficult to maneuver. The robot in scene 4
isvery skinny so that it can navigate in narrow spaces.

The four test scenes vary in their complexity. Scenes 1 and 2 contain about twice as
many triangles as the other two (Figure 2.11). In addition, scene 2 contains three PUMA
robots with atotal of 18 dofs. Scene 3 consists of an arrangement of horizontal and vertical
bars set up around the robot to restrict its movement (Figure 2.12). There are holes of
various sizes in the scene, which may trap the large end-effector of the robot. Scene 4
contains a cluster of obstacles placed closely to one another (Figure 2.13). To reach the
goal configuration, the robot hasto travel through narrow spaces between the obstacles.

For every query, we ran our planner 30 times independently with different random
seeds. The test results are reported in Table 2.2. The numbers shown are the average over
30runs. Column 2 of the table showsthe dimension of the configuration spacefor every test
scene. Column 3 liststhetotal number of triangles, including the robot and the obstacles. It
gives some rough idea of the complexity of input geometry. Column 4 specifies the query
configurations. Columns5-8 give the average running times, the average number of calls
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Figure 2.12. Test scene 3 for articulated objects. The horizontal and vertical bars acting as obstacles restrict
the movement of the FANUC-likerabot, which has a large end-effector.
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Figure 2.13. Test scene 4 for articulated objects. The skinny robot manipulator arm passes through narrow
spaces between the obstacles.

Table 2.2. Performance statistics of the planner on articul ated objects.

Scene | Dim. | Ny Query Time (sec.) Nelear Reection | Nyt | MNink
mean | sid mean | sd Rate (%)
1 6 | 11724 ab 097 | 073 | 1024 802 38.5 15 35
ac 591 | 6.32| 6309 | 6806 11.7 88 108
ad 234 | 208 | 2171 | 2008 39.3 51 86
b,d 264 | 285 | 2379 | 2641 35.4 50 106
2 18 | 15758 ab 35.07 | 3047 | 8788 | 7701 40.7 45 81
b,c 72.62 | 42.23 | 18235 | 10698 60.4 70 144
3 6 | 4697 ab 490 | 341 | 4753 | 3324 46.4 346 875

b,c 1491 | 9.78 | 13418 | 8811 41.6 398 | 2636
de 291 | 279 | 2524 | 2476 39.9 229 | 361
be 363 | 229 | 3048 | 1954 40.0 276 | 456
4 6| 5887 | ab 13.63 | 10.38 | 12152 | 8987 33.7 596 | 1202
ac 12.70 | 10.84 | 11419 | 9316 36.0 588 | 1146
b,d 14.77 | 11.52 | 12710 | 9808 36.0 473 | 1797

Nt - number of triangles Nelear: number of callsto CLEARANCE
Nmir: humber of milestones  Njni : number of callsto LINK
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Figure 2.14. A histogram of more than 100 independent runs for a particular query. The mean of running
timesis 3.4 seconds, and the four quartilesare 1.5, 2.1, 3.8, and 16.1 seconds.

to CLEARANCE, and their standard deviations. The running time ranges from afew seconds
in simple cases to tens of seconds in more difficult ones. Given the difficulty of the test
problems and the fact that thereis no pre-computation, these are very good results. Queries
in both scene 2 and scene 4 take much longer to execute than the others, but for different
reasons. In scene 2, the cost of every collision checking is much higher, because we have
to check collision not only between the robots and the obstacles, but also among the robots
themselves. In scene4, the skinny robot arm has to squeeze through narrow spaces between
the obstaclesin order to reach the goal, a very difficult scenario for all path planners based
on random sampling. Column 9 shows the percentage of randomly-sampled configurations
regjected due to collision with the obstacles. The data indicate that our planner is very
efficient: on the average, it takes roughly two samples to obtain a free configuration.
Columns 10 and 11 give the total number of milestones generated in the two trees and the
number of callsto LINK respectively. Despitethat the robots have six or higher dimensional
configuration spaces, afew hundreds milestones are sufficient to answer the queries. These
results, once again, confirm the effectiveness of random-sampling techniques for path
planning in high dimensional configuration spaces.

The standard deviations shown in Table 2.2 seem to be very large. In some cases, they
even exceed the means, whichisvery disturbing. It turnsout that the distribution of running
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times is not Gaussian. Figure 2.14 plots a histogram of more than 100 independent runs
for a particular query. The shape of the distribution istypical of al the tests that we have
performed. In most runs, the execution time of the planner is below the mean or dlightly
above. Thisindicates that our planner performs well most of the time. The large deviation
is caused by very long execution time (as much as four or five times the mean) in a few
runs, as indicated by the long and thin tail of the distribution. Further work is needed to
reduce the occasional long execution time caused by random variations.

2.8 Experimentswith Rigid Bodies

Now let us consider another important class of moving objects, free-flying rigid bodiesin
3-D environments.

2.8.1 Implementation Details

Free-flying rigid bodies have six dofs, just as the manipulators that we have seen in the
previous section. However, they can rotate in 3-D space arbitrarily, which makes the
implementation more difficult. Choosing a good representation for the 3-D rotation space
SO(3) isacrucial aspect of theimplementation.

Configuration space representation The configuration of a free-flying rigid body has a
translational and a rotational component. The trandlation is specified by the position of a
reference point on therigid body. The rotation is specified by aunit quaternion. Compared
to other choices, such as Euler angles and matrices, the quaternion representation best
capturesthe topology of the 3-D rotation space. Furthermoreit islow in memory usage and
isrobust against floating point errors. Detail son representing 3-D rotation using quaternions
are availablein [Sho85].

Sampling free configurations Suppose that we would liketo sample a new configuration
¢’ in the neighborhood of a configuration ¢. Let z’ be the translational component of ¢'.
Since 2’ issimply a point in R?, we can sample 2’ in the same way as that in Section 2.7.
Sampling the rotational component is alittle more tricky. Let # and a unit vector 7 be the
angle and the axis of the rotational component of ¢. To sample the rotational component
of ¢', wefirst pick # in a small interval centered at ¢, and then sample a unit vector »’
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Figure 2.15. Sampling apoint 77’ on the unit sphere in the neighborhood of 7.

uniformly at random in a small area centered at » on the unit sphere so that the angle
between 77 and »’ liesin asmall interval (Figure 2.15).

Computing the weight function The weight function is computed the same way as that
described in the previous section.

Implementing CLEARANCE  We convert the unit quaternion into a rotation matrix and
send the matrix along with the translation vector to Quinlan’s algorithm to calculate the
distance between the rigid body and the obstacles.

Implementing LINK  Our implementation for free-flying rigid bodies uses recursive
bi sectionto check whether the straight-line path between two configurationsiscollisionfree.
Here the quaternion representation offers significant advantage over other representations.
After normalization, the straight-line interpolation between two unit quaternions « and «’
gives the minimal rotation needed to bring an object with orientation « to «'. It would
be much more troublesome if we used another representation for rotation. For example,
matrices obtained by straight-line interpolation of two rotation matrices do not represent
rotation in general, and there is no natural normalization that can be applied to correct the
problem.

2.8.2 Reaults

Figures 2.16-2.18 show three test scenes, each with severa query configurations and a
computed example. The moving objects are free-flying rigid bodiestrans ating and rotating
in 3-D, and thus each has six dofs. Scene 1 contains the same arrangement of obstacles as
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Figure 2.17. Test scene 2 for rigid bodies: atorus-shaped object moving in a cave-like environment.
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e

Figure 2.18. Test scene 3 for rigid bodies: a snake-shaped object passing through the small holes in the
obstacle.

that in Figure 2.13, but in this case, there is no narrow passage in the configuration space,
because the free-flying rigid body istoo big to fit through any of the narrow spaces between
the obstacles (Figure 2.16). Asaresult, the running times of the planner are much shorter.
In scene 2, a torus-shaped object moves among spikes sticking out from the top and the
bottom (Figure 2.17). In scene 3, a snake-like object has to pass through holes in a wall
(Figure 2.18). The shape of the object and the relatively small size of the holes together
makeit difficult for the snake to maneuver through the holes. Thisresultsin thelonger time
in one of the queries (see Table 2.3).

Table 2.3 reportsthe results of our experiments. Thelayout of the tableissimilar to that
of Table 2.2. The running times are a few seconds in ailmost all the cases except the last
one, in which the snake-like object hasto go through asmall hole from one side of the wall
to the other. Comparing the running times for scene 2 and scene 3, we see that although
scene 2 contains a lot more triangles, the running time of the planner is not much longer.
Thus two remarks are in order. First, the hierarchical distance computation algorithm has
performed very well for our problems and kept the cost of collision checking under control.
Second, to alarge extent, the running time of the planner depends more on the difficulty of
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Table 2.3. Performance statistics of the planner on free-flying rigid bodies.

Scene | Niy Query || Time (sec.) Nelear Reection | Nyt | Nink
mean | std | mean | sd Rate (%)

1 5192 ab 0.29 | 0.20 288 | 234 38.2 14 47
cd 1.13 | 091 | 1118 | 968 26.6 49 302

ef 1.14 | 140 990 | 1222 34.6 36 274

2 19160 ab 1.10 | 1.20 697 | 974 42.0 46 109
cd 419 | 352 | 2853 | 3053 30.9 229 697

b.e 4,02 | 440 | 2099 | 2473 334 84 306

3 120 ab 3.66 | 3.91 | 5277 | 5735 56.2 360 | 1069
cd 9.42 | 3.88 | 14356 | 3886 78.1 1108 | 3013

Ny - number of triangles Nelear: NUMber of callsto CLEARANCE
Nppir: number of milestones  Nj;oi : humber of callsto LINK

final motion required than on the number of trianglesin the scene.

2.9 Additional Experiments

To further evaluate the effectiveness of our path planner, we applied it to two practical
problems: assembly maintainability checkingand motion synthesisfor animated characters.

In assembly maintainability studies, we would like to know whether there exists a
collision-free path to remove a specified component from an assembly of mechanical parts
(see Figure 2.19b). Maintainability is an important issue in mechanical design [CL95].
Engineers must ensure that the required paths exist to remove certain critical parts for
routine maintenance or replacement. In the past, this has been a labor-intensive task,
accomplished manually by manipulating physical mock-upsor CAD models. Furthermore
maintainability must be verified every time a design change affects the geometry of the
assembly. Engineers thus find it very attractive to have an interactive tool that performs
assembly maintainability checking automatically as they make changes.

Not surprisingly, an efficient path planner is a good candidate for this task. \We model
the part to be removed as a free-flying rigid body M in a 3-D environment and treat
the rest of the assembly as obstacles. The input to the planner is CAD data describing
the geometry of the assembly. The environment usually consists of tens of thousands of
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@ (b)

Figure 2.19. An example of assembly maintainability checking. (a) The part to be removed. (b) The part in
the installed position.

polygons and is very cluttered due to designers desire to pack everything into limited
space. Theinitial configuration gi,i; of M isitsinstalled position, and the goal g1 issome
arbitrary configuration that detachs A/ from the rest of the assembly. Since g, is totally
unconstrained, to improve the speed, the planner builds only one tree of sampled milestones
from ginie.

We tested our planner on several rea-life data sets from the automotive industry. These
data sets contain complex CAD models that describe cluttered environments. A typical
problem that we have attempted has about 20,000 triangles, and the planner can solve the
problem in about 4 to 10 minutes on an old SGI Crimson workstation with one 100 MHz
MIPS R4000 processor and 256 MB of memory. Two of the problems that our planner
solved are particularly interesting. In one case, the planner needs to take out an oil pan
below a car engine without colliding with the long protrusion underneath the engine and
other parts around the engine. In the other case, a pipe behind the dashboard needs be
removed (Figure 2.19). The pipe hasthree branches. A slight movement from its installed
configuration may result in one or more of its branches colliding with the parts nearby.
Due to the special geometric arrangement of these two assemblies, the partsto be removed
must execute complicated maneuversin order to clear all the obstacles (Figure 2.20). The
planner solved the first problem in 386 seconds and the second problem in 405 seconds.
The number of callsto CLEARANCE were 4257 and 7822, respectively. Thelargest example
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shoulder
(3 dofs) A

(b)

Figure 2.21. An articulated model of a human character.

that we have run contains about 200,000 triangles. The objectiveisto remove the casing of
the transmission mechanism, clearing the dashboard and the shift stick. The planner found
apath in about 35 minutes.

Among the problems that we have worked on, there is one case in which the planner
failedto find a path after running for more than eight hours, but we were unableto determine
whether a path actually exists or not.

Another interesting application of motion planning is motion synthesisfor animated hu-
man characters. Generating natural-looking motion for characters under high-level control
IS an important issue in computer animation. Thisis avery challenging problem, because
the model of a human character has complex, multi-jointed structure with many dofs.

Motion planning providesanew tool, which alowsthe user to specify motion with task-
level commands such as “pick up the apple on the table”. Motion planners automatically
handle the complex geometric interaction between the character and the environment, and
allow the user to specify what to do rather than howto doit. Weillustrate thiswithasimple
example, inwhichacyclist extendshisarm to get atool from atool box (Figure2.21a). The
armismodeled as a7-dof kinematic chain (Figure 2.21b): three dofs at the shoulder, two at
the elbow, and two at the wrist. The joint angles are restricted in order to generate motion
that appears natural. A short motion sequence produced by our path planner is shown in
Figure 2.22. The snapshots depict a cyclist reaching out and putting his arm through the
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bicycle frame. He then grasps a screw-driver in the tool box and places it at the find
configuration. Three input configurations are given to the planner: ginit, ggrasps AN ggoal.
The grasp configuration g,,.s, Specifies the posture of the arm right before the hand grasps
the screw-driver. The final motion is obtained by concatenating the results of two queries,
one from ¢ini¢ 10 Ggrasp aNd another one from ggrasp 10 geoa-  The environment, including
the character, the bike, and the tool box, contains about 11,000 triangles. The planner
computed the motion in 15 seconds on an SGI Octane workstation with a270 MHz MIPS
R12000 processor and 256 MB memory.

2.10 Discussion

We have presented general schemes for three variants of the path planning problem. These
schemes point out the commonalities and differences among various randomized path
planners and provide general framework for their design; a crucia aspect in devising a
randomized path planner isthe sampling distribution for generating milestones.

The focus of this chapter has been to present an efficient planner for the single-query
problem. Our algorithm iteratively builds two trees of sampled milestones rooted at the
initial and the goal configuration. In contrast to traditional PRM methods, it samples only
regions of the configuration spacethat isrelevant to the current query, thus avoiding the cost
of pre-computing aroadmap for the entire configuration space. Asan additional advantage,
our algorithm has much lower rejection rate: according to the experiments, roughly half of
the sampled configurations are rejected. 1n comparison, many PRM methods have rejection
rate as high as 99% [KL944], so most of the configurations picked are in collision with
obstacles and have to be discarded.

Although the randomized expansion planner has demonstrated strong performance in
the experiments, several aspects of the algorithm deserve further investigation. Our current
implementation of the algorithm uses a fixed-size neighborhood around an existing mile-
stone to sample new configurations. The size of neighborhoods has a big impact on the
distribution of milestones. If the sizeistoo small, the milestones tend to cluster around the
initial and the goal configuration and leave large portions of the free space with no samples.
If the sizeis very large, the samples likely distribute more evenly in the free space, but the
rejection rate also increases significantly. ldeally we would like to choose a size that is
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free space

Figure 2.23. A narrow passage in the configuration space.

large enough for the samplesto eventually distribute rather uniformly in the free space, but
without significantly increasing the rejection rate. One possible way to achieve thisisto
determinethe size of the nelghborhood adaptively for every existing millstone. Weincrease
the size of the neighborhood whenever possible and reduce it if the rejection becomes too
high.

The most significant difficulty for our algorithm, aswell asall other randomized motion
planners, isthe presence of narrow passagesin the configuration space (Figure 2.23). This
isindicated by relatively long running times in several experiments, e.g., the skinny robot
manipulator arm moving among closely-spaced obstacles (Section 2.7) and the snake-
like rigid body maneuvering through small holes (Section 2.8). We will give a formal
characterization of narrow passages in Chapter 4 and discuss its implication in detail, but
intuitively it is clear that sampling at random a point in a small set is difficult. Severa
proposals have been made to address the issue. One possibility is to dilate the free space
by allowing some penetration of the object into the obstacles [HKL*98]. First a roadmap
G’ is computed in the dilated free space. Then milestonesin G that do not lie in the free
gpace F are pushed back into F by local resampling. Preliminary results based on this
idea are encouraging. However, the penetration distance needed for dilating the free space
is difficult to define and compute efficiently. When the moving object and the obstacles
have complex geometry, computing the penetration distance remains a question with no
satisfactory answer. An alternative approach is to sample more densely near obstacle
boundaries[ABD*98, BOvdS99]. Theintuition isthat there islikely a higher concentration
of obstacle boundariesnear narrow passages. So sampling densely near obstacle boundaries
may allow more samplestofall into the narrow passages. The effectiveness of thisapproach
has only been demonstrated in low-dimensional configuration spaces.
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Finally, athough the randomized expansion method has been primarily used for the
single-pair problem, it can also be applied to the all-pairs problem. The idea would be to
sample uniformly avery small number of free configurations from the configuration space
and use the randomized expansion planner to expand from these configurations in order
to generate additional milestones, thus reducing the high rejection rate of many traditional
PRM algorithms.






CHAPTER

Motion Planning under Kinematic
and Dynamic Constraints

Path planning considers only the geometry of moving objects and obstacles. Despite
its fundamental importance, it does not address some key aspects of the physical world:
inherent limitsin mechanical or biological systems restrict the motion that is possible. For
example, acar cannot movesidewise. Theselimitscausecertain configurationsto beinvalid,
even if an object does not collide with obstacles at those configurations. In this chapter, we
consider two important classes of constraints, non-holonomic (kinematic) constraints and
dynamic constraints. Unlike obstaclesin the environment, these constraints cannot always
be represented in the configuration space. They involve not only the configuration, but also
the velocity and possibly the acceleration of moving objects.

To address this issue, we use state space, a straightforward generalization of configu-
ration space. Every point in the state space contains information on both the configuration
and the velocity of an object. Our goal isto find, in the state space, atrajectory that is both
collision-free and satisfies the kinematic or dynamic constraints on motion. This new class
of problemsis often called kinodynamic motion planning [DXCR93].

We would like to extend the random-sampling algorithm, used for path planning in
the previous chapter, to solve kinodynamic motion planning problems. We start with
a mathematical characterization of kinematic and dynamic constraints (Section 3.1) and
review related work (Section 3.2). Next we formulate the kinodynamic motion problemin

a7
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the state space (Section 3.3) and present an efficient algorithm for it based on an extension of
the randomized expansion method from the previous chapter (Section 3.4). Our algorithm
has been tested on two different systemsin simulation and demonstrated good performance.
The experimental results are reported in Sections 3.5 and 3.6. Finaly in Section 3.7, we
further demonstrate the generality and effectiveness of our algorithm by showing how
to apply it to a real-time robot system operating under strict dynamic constraints in an
environment with moving obstacles.

3.1 Kinematic and Dynamic Constraints

In the previous chapter, we assumed that there is no constraint on the motion of a mov-
ing object M ; each dof of M is free to change its value independently. The presence of
constraints, however, introduces dependency among various dofs and increases the com-
plexity of motion planning. The constraintsthat we are going to consider fall into two main
categories, kinematic and dynamic.

Kinematic constraints impose a relationship between the configuration ¢ of M and its
velocity ¢. They can be written down mathematically as

F(q,q) = 0. (3.2)

Kinematic constraints can be further classified into holonomic and non-holonomic ones.
Holonomic constraints do not involve the velocity of a moving object; they have the
special form F'(¢q) = 0. A set of holonomic constraints can be used to eliminate some of
the configuration parameters and reduce the dimension of the configuration space. In fact,
articulated objects are examples of moving objects that obey holonomic constraints, if we
treat each link of the articul ated objects as arigid body, whose configuration is determined
by six parameters, threefor the translation and threefor therotation. If thereareclinks, such
arepresentationrequires6¢ parameters. The configuration spaceC can thus be embedded as
amanifoldin R, often referred to asthe ambient space of C. Notice, however, that any two
adjacent links of an articulated object are connected by a joint, which restricts the relative
motion between the two links. If the joint angles are used to parameterize C, we need only
¢ parameters, assuming that each joint has one dof. In addition, these parameters are all
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Figure 3.1. A simplified model for a car-like robot.

independent. By choosing a suitable parameterization of C, we can convert a problem with
holonomic constraintsinto one with no constraints and apply the algorithm from Chapter 2.

Of course, such aglobal parameterization may not alwaysbe possible. Inthiscase, there
are several waysto proceed if we wish to apply random-sampling techniques. For example,
consider a closed-chain robot, which is another common example involving holonomic
constraints. We can sample at random a set of independent parameters first and then solve
the constraints locally for the other parameters [HA0Q]. Another possibility isto sample a
point in the ambient space and then project the sampled configuration onto the manifold
defined by the constraints.

Non-holonomic constraints are fundamentally different from holonomic ones. They are
not integrable, meaning that we cannot eliminate ¢ via integration and convert them to the
form F(¢q) = 0. The constraints that affect the motion of a car-like mobile robot are an
important example of non-holonomic constraints (Figure 3.1). Let (z,y) be the position
of the midpoint R between the rear wheels of the robot and # be the orientation of the rear
wheels with respect to the z-axis. Assume that the wheels do not skid. Then the robot
cannot move sidewise. Thisconstraint can bewritten astan = y/z, which clearly hasthe
form F'(q,¢) = 0. What is not clear is that the constraint is not integrable. We will not get
into the details here. It sufficesto say that the mathematical conditions for integrability is
known, but for a given set of constraints, checking these condition is a non-trivial task. A
more complete description of theseissuesis availablein [Lat91b, pages 403-451].
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Dynamic constraints are closely related to non-holonomic constraints. They involve
not only the configuration and the velocity of M, but aso its acceleration. In general,
Lagrange’s equations of motion have the form

G(q,4,4) = 0, (3.2)

whereg, ¢, and G arethe configuration, velocity, and acceleration of M. Definings = (¢, ¢),
we can rewrite (3.2) as F'(s,s) = 0 which is the same as (3.1). So kinematic constraints
and dynamic constraints have the same mathematical form.

The motion of objects can also be constrained by inequalities of the forms F'(¢, ¢) < 0
or G(q,q,G) < 0. Such constraints restrict the set of admissible states to a subset of the
state space.

3.2 Redated Work

Non-holonomic motion planning refersto problemsin which an object’smotion must satisfy
non-holonomic constraints. It has attracted considerable interest in robotics [Lau86, LCH89,
BL93, LJTM94, LM96, SSL097], because the motion of wheeled mobile robots typically
obeys non-holonomic constraints. One approach for non-holonomic planning isto proceed
in two stages [Lau86]. First we generate a collision-free path that disregards the non-
holonomic constraints and then transform the path into an admissible one, i.e,, a path that
conforms to the non-holonomic constraints. This two-stage algorithm can be extended in
variousways, which areall based on theidea of successive path transformation, but differin
what transformati onsto useand how to perform thetransformations[ SSL 097, SL98, Fer98].
Techniques for finding admissible paths that have certain nice properties have also been
investigated (see, e.g., [LITM94, MC92]). A natura question to ask about these path-
transformation methods is whether it is always possible to transform a collision-free path
into an admissible path that obeys the non-holonomic constraints. The answer is yes for
car-like robots [Lau86]. One can aso prove that the result holds in general for any locally
controllable system by applying toolsfrom non-linear control theory [LCHB89, LS89, BL93].
Unfortunately the transformation suggested by the proof does not generate paths that are
useful in practice. So these methods are only applicable to systems for which an efficient



3.2 Related Work 51

transformation method is available, e.g., systems possessing a chained form [M S90].

Other approaches to non-holonomic motion planning follow classic paradigmsin path
planning. Jacobs and Canny proposed aroadmap planner for car-like robots [JC89]. Their
algorithm discretizes the boundaries of polygona obstacles and connects pairs of points
on the boundaries by canonical curves composed of circular and straight-line segments.
Barraguand and Latombe used the cell-decomposition approach [BL93]. Their planner
builds a search tree systematically in adiscretized state space. At each iteration, it expands
anode of the tree by integrating the robot’s equations of motion for a short duration of time
under some admissible control. The algorithm worksfor car-like robots and tractor-trailer
robots with arelatively small number of dofs. It does not require the robots to be locally
controllable.

Although most of the work on non-holonomic motion planning focuses on car-like and
tractor-trailer robots, some of the results are applicable to other scenarios as well, eg.,
systemsfor pushing [LM96, ALMR97] and dextrous manipulation [HL S88]

Approaches for handling dynamic constraints parallel those for non-holonomic motion
planning. One possibility is to compute a collision-free geometric path first and then
use variational techniques to deform the path into one that both conforms to the dynamic
constraints and optimizes a certain criterion such as minimal execution time [BDG85,
SD91]. A drawback of this approach is that it may not always be possible to transform a
collision-free path into an admissible one due to limits on the available actuator forces and
torques. Also no formal guarantee of performance has been established for these planners.
Alternatively one may place aregular grid on the state space and searchesfor an admissible
path directly using dynamic programming [DXCR93]. The latter approach is similar to
the cell-decomposition method of Barraquand and Latombe for non-holonomic motion
planning. It offers provable performance guarantees, but is only applicable to robot with
asmall number of dofs, because the size of the grid grows exponentially with the number
of dofs. Our planner is related to this approach, but discretizes the state space via random
sampling rather than placing aregular grid over it. The planner in [LK99] resembles ours,
but no guarantee of performance has been established for it.

With few exceptions(e.g., [Fra99] ), earlier work considers non-holonomic and dynamic
constraints separately. However, as we have seen in the Section 3.1, the mathematical
nature of these two types of constraintsis the same, and so they can be treated in a unified
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framework.

3.3 State-Space Formulation

We consider moving objects whose motion is governed by an equation of the form

5= f(sa u)v (33)

where s € S isthe object’s state, s isthe derivative of s with respect totime, and v € Q is
the control input. Theset S and () are called the state space and control space, respectively.
We assume that S and ) are bounded manifolds of dimensions» and m (m < n). By
defining appropriate charts on these manifolds, we can treat S and 2 as subsets of R* and
R™.

Eq. (3.3) can represent both kinematic and dynamic constraints discussed in Section 3.1.
k.
We can solve these k£ equations for s. In generd, if & is less than », the solution is not
unique, but we can parameterize the set of solutionsby u € R*~* and write them down, at
least formally, as s = f(s, u) for somesuitable function f. More precisely, it can be shown
that under appropriate conditions, the set of constraints G;(s, s) = 0fori = 1,2,...,kis
equivalent to (3.3), in which v isa point in R™ = R"~* [BL93].

Suppose that there are £ kinematic or dynamic constraints ¢;(s, $) = 0fori = 1,2, ...

To deal with ineguality constraints of the form G/(s, s) < 0, we typicaly restrict the
state space S and control space {2 to suitable subsets of R* and R™.

These notions are illustrated below with two examples that will be useful later in the
chapter:

Example 1 (ssimplified non-holonomic car navigation). Consider the car example in
Figure 3.1. Let (z,y,0) € R’ be the state of the car. The non-holonomic constraint
tan § = y/z isequivalent to the system

£ = wvcosb
y = wvsinf

0 = (v/L)tan .
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This reformulation corresponds to defining the car’s state to be its configuration (z, y, 6)
and choosing the control input to be the vector (v, ¢), wherev and ¢ are the car’s speed and
steering angle. Boundson (z,y,#) and (v, ¢) can be used to restrict S and €2 to subsets of
R* and R?, respectively. For instance, if the maximum speed of the car is 1, then we have
lv] < 1. g

Example 2 (point-mass robot with dynamics). For a point-mass robot Z moving on a
horizontal plane, we typically want to control the forces applied to P. This leads us to
define the state of P ass = (x,y, v,,v,), Where (z,y) and (v, v,) are the configuration
and the velocity of P. The control inputs are chosen to be the forces applied to P in the -
and y-direction. Hence the equations of motion are
T = vy Up = Uz/m (3.4)
Yy = vy Uy = uy/m,
where m isthemassof P and (u,, u,) isthe applied force. The velocity (v, v,) and force
(ug,u,) are restricted to subsets of R* due to limits on the maximum velocity and forces.
<

Obstacles in the environment are mapped into S as forbidden regions. The free space
F C S containsall the statesthat are collision-free. A trajectory o: [a, b] — S isadmissible
if, for all ¢ € [a,b], o(t) liesin F and obeys the motion constraints.

A planning query is specified by an initial state s;,;; and a goal state sz,.. A solution
to the query isacontrol function u: [a, b] — € that produces an admissible trajectory from

Sinit to Sgoal-

3.4 Control-Driven Randomized Expansion

Likethe planner for path planning (see Section 2.4), our algorithm for kinodynamic motion
planning iteratively builds a tree-shaped roadmap 7' from the initial state s;,;;. However,
there are two important differences. First the tree is constructed in the state space of a
moving object rather than its configuration space. Second the trajectories connecting two
milestonesin 7" may neither be straight nor be reversible due to the constraints. Asaresult,
we need a new way of sampling milestones.
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At each iteration, the algorithm picks at random an existing milestone s from 7', a
control function «, and asmall timeduration 4. It then integrates (3.3) from s with « for the
time duration § and obtains the trgjectory induced by u. If the trgjectory is admissible, its
endpoint s’ isadded to 7" as a new milestone. The planner also insertsin 7" adirected edge
from s to s’ and stores « with this edge. The motion constraints are thus naturally enforced
in all trajectories connecting pairs of milestonesin7'. The planner exits with success when
a sampled milestone falls into an endgame region containing the goal.

Milestone selection At each iteration, the planner picks an existing milestone s from 7" at
random with probability 7,(s), which isinversely proportional to the weight of s. Similar
to the case for path planning, the weight of s isequal to the number of other milestonesin
the neighborhood of s. So amilestone lying in a sparsely-sampled region is more likely to
be selected than one in a densely-sampled region. This technique avoids oversampling any
particular region of F.

Control function selection To facilitatethe analysislater on, we consider only piecewise-
constant control functions. A function w: [a, b] — € is piecewise constant if the interval
[a, b] admits afinite partitiona =ty < t; < ... < t, = b suchthat v isaconstant ¢; € ()
over theopeninterval (¢;_1,¢;) fori =1,2,...,¢. Inaddition, werequiret; — ¢;_1 < dmax
for some strictly positive value é,,,... The function « can thus be represented compactly as
asequence of pairs (c;,d;) fori = 1,2,...,¢, whered;, = t;, — t;_1 < dmax. LELY, denote
the set of such piecewise-constant functions with ¢ constant sesgments. Our algorithm picks
a control function v € U,, for some pre-specified / and ¢,,,.x, by sampling each constant
piece of « independently. For each piece, it picks ¢; and §; uniformly and independently
at random from © and [0, d,ax]. The specific choices of the parameters ¢ and 4,,,,. will be
discussed in Subsection 4.3.4. In the actual implementation of the algorithm, however, one
may choose / = 1, because any trajectory passing through several consecutive milestones
inthetree 7" is obtained by applying a sequence of constant controls.

Endgame connection The above “control-driven” sampling technique does not allow us
to reach the goal state s, exactly. We need to expand s,,.; into arelatively large endgame
region that the sampling algorithm will eventually attain with high probability.

To do so, we build asecondary tree 7' of milestones from s, in the same way as that
for the primary tree T', except that (3.3) is integrated backwardsin time. Let s’ be a new
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Figure 3.2. Building a secondary tree of milestones by integrating backwardsin time.

milestone obtained by integrating backwardsfrom an existing milestone s. By construction,
if thetime goesforward, the control function drivestherobot from s’ to s (Figure 3.2). Thus
there is a known trgjectory from every milestonein 7" to the goal. The sampling process
terminates with success when a milestone s € 7' is in the neighborhood of a milestone
s € T'. Inthis case, the endgame region is the union of the neighborhoods of milestones
in7". To generate the final trajectory, we simply follow the appropriate edgesof 7" and 7”;
however, thereisasmall gap between s and s’. The gap can often be dealt with in practice.
For example, beyond s, one can use a PD controller to track the trgjectory extracted from
T’. Constructing endgame regions by backward integration is avery general technique and
can be applied to any system described by (3.3).

Alternatively, for some systems, it is possible to compute analytically one or several
canonical control functions that connect two given states exactly while obeying the kine-
matic or dynamic constraints. An example is the Reeds and Shepp curves established for
non-holonomic car-like robots [RS90]. If such control functions are available and can be
computed efficiently, we can test whether a milestone s belongs to the endgame region by
checking that a canonical control function induces an admissible trajectory from s to sgoai.

Algorithm in pseudocode The algorithm is summarized in the following pseudocode.



56 Chapter 3. Motion Planning under Kinematic and Dynamic Constraints

Algorithm 3.1 Control-driven randomized expansion for kinodynamic motion planning.

1. Insert s, intoatree T'; 1 + 1.

2. repeat

3 Sample amilestone s from 7" with probability . (s).

4 Sample a control function « from ¢/, uniformly at random.
5. s’ < PROPAGATE(s, u).

6 if s = nil then

7 Adds'toT; 7 + 1+ 1.

8 Create adirected edge e from s to s’ and store « with e.
9 if s € ENDGAME then exit with SUCCESS.

10. if i = N then exit with FAILURE.

In line 5, PROPAGATE(s, u) integrates the equation of motion from state s with control .
It returns a new milestone s’ if the computed trajectory is admissible; otherwise it returns
nil. If there exists no admissible trajectory from s;,i; t0 s40.1, the algorithm cannot detect it.
Therefore, in line 10, we bound the total number of milestones to be sampled by an input
constant V.

3.5 Experimentswith Non-Holonomic Constraints

We tested our algorithm on three systemswith different kinematic and dynamic constraints.
The first one consists of two wheeled mobile robots that maintain a direct line of sight as
well as a minimum and a maximum distance between them. The second one simulates the
behavior of a hovercraft with smplified dynamics. The third one is an air-cushioned robot
that ispropelled by air thrusters and operatesamong moving obstacleson aflat table. Inthis
section, we discuss implementation issues and present experimental resultsfor the wheeled
mobile robots. We will do the same for the hovercraft in the next section and give a brief
account of the experiments with the air-cushioned robot in Section 3.7. Our algorithm is
implemented in C++. The running times reported in these sections were obtained on an
SGI Indigo 2 workstation with an 195 MHz processor and 384 MB memory.

Wheeled mobilerobotsareaclassical examplefor non-holonomic motion planning. The
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(b)

Figure 3.3. Two-cart non-holonomic robots. (a) Cooperative mobile manipulators. (b) Two wheeled non-
holonomic robots that maintain a direct line of sight and a distance range.

robot considered here is a new variation on this theme. It consists of two independently-
actuated carts moving on a flat surface (Figure 3.3). Each cart obeys a non-holonomic
constraint and hasnon-zero minimum turning radius. Inaddition, thetwo cartsare connected
by atelescopic link whose length is lower and upper bounded. This system is inspired by
two scenarios. One is the mobile manipulation project in the GRASP Laboratory at The
University of Pennsylvania[DK99]; the two carts are each mounted with a manipulator arm
and must remain within a certain distance range so that the two arms can cooperatively
manipulate an object (Figure 3.3a). The manipulation area between the two carts must be
free of obstacles. In the other scenario, two mobile robots patrolling an indoor environment
must maintain a direct line of sight and stay within a certain distance range, in order to
allow visual contact or simple directional wireless communication (Figure 3.3b).

3.5.1 Implementation Details

Description of the system We project the geometry of the carts and the obstacles onto
the horizontal plane (Figure 3.4). For: = 1,2, let R; be the midpoint between the rear
wheels of theith cart, F; be the midpoint between the front wheels, and 7.; be the distance
between R; and F;. We define the state of the system as s = (1, y1, 01, x2, y2, 02), where
(z;,y;) arethe coordinates of R;, and 6; isthe orientation of the rear wheels of the ith cart
with respect to the z-axis. To maintain a distance range between the two carts, we require
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Figure 3.4. A planar model of the two robot carts.

din < /(21 — 22)2 + (41 — Y2)? < dinax TOF SOME CONSLANLS iy AN .
Each cart has two scalar controls, «; and ¢;, where u; is speed of R;, and ¢; is the
steering angle. The equations of motion for the system are

;1 = uqcosb To = Uycosby
Y1 = wupsiné, Y2 = ugsinby (3.5
0, = (wr/Ly) tan ¢ 6, = (uz/L2) tan ¢s.

The control space is restricted by |u;| < umax @d |¢| < émax, Which bound the carts
velocities and steering angles.

Since all obstacles are stationary, the planner samples milestonesin the 6-D state space
of the carts.

I mplementing PROPAGATE  Given a milestone s and a control function u, PROPAGATE
uses the Euler method with a fixed step size to integrate (3.5) from s and computes a
trajectory o of the system under the control «. More sophisticated integration methods,
e.g., fourth-order Runge-Kuttaor extrapolation method [PTV P92], can improve the accuracy
of integration, but at a higher computational cost.

We then discretize o into a sequence of states and returns nil if any of these states is
in collision. For each cart, we pre-compute a 3-D bitmap that represents the collision-free
configurations of the cart prior to planning. It then takes constant time to check whether a
given configurationisin collision. A well-known disadvantage of this method is that if the
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resolution of the bitmap is not fine enough, we may get wrong answers. In the experiments
reported below, we used an 128 x 128 x 64 bitmap, which was adequate for our test cases.

Endgame connection We obtain the endgame region by constructing a secondary tree of
sampled milestones from s,a1.

3.5.2 Reaults

We experimented with the planner in alarge number of environments. Each oneisal0m x
10 m squareregion with static obstacles. Thetwo robot cartsareidentical, each represented
by apolygon containedin acircle of radius0.4 m, and L, = L, = 0.5 m. The speed of the
carts ranges from —3 m/sto 3 m/s, and its steering angle varies between —30° and 30°.
The distance between the two cartsrangesfrom 1.4 mto 3.3 m.

Figures 3.5-3.8 show four of the test scenesthat we used. Every figure contains several
guery states as well as a computed trajectory for some particular query. Figure 3.5 showsa
structured indoor environment, in which the two carts move from one “room” into another
while obeying all the motion constraints. Figure 3.6 shows a maze; the carts navigate from
one side of the maze to the other. Figure 3.7 contains two large obstacles separated by a
narrow passage. Thetwo robots, which areinitially parallel to each other, changeformation
and proceed in asingle file through the passage, before becoming parallel againin the end.
Figure 3.8 shows an environment consisting of two rooms cluttered with obstacles and
connected by a hallway. The carts need to move from the lower room to the upper one.
The maximum steering angles and the size of the circular obstacles conspireto increase the
number of required maneuvers.

Werantheplanner on several different queriesfor every environment. For each query, we
ranthe planner 30 timesindependently with different random seeds. Theresultssummarized
in Table 3.1 are the average over 30 runs. Every row of the table correspondsto a particular
guery. Column 2 specifies the query configurations. Columns 3—7 list the average running
time, the average number of collision checks, and their standard deviations. Columns 8-9
give the total number of milestones sampled and the number of callsto PROPAGATE. The
running times range from less than a second to a few seconds, and the final roadmaps
typically contain a few thousand milestones. One query in the last test scene takes much
longer because the carts must perform several complicated maneuversin the hallway before
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Figure 3.5. Test scene 1 for the wheeled robot carts: a structured indoor environment.

Figure 3.6. Test scene 2 for the wheeled robot carts: a maze.
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Figure 3.7. Test scene 3 for the wheeled robot carts: an environment with anarrow passage.

Figure 3.8. Test scene 4 for the wheeled robot carts. The environment consists of two rooms that contain
large circular obstacles and are connected by a narrow hallway.
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Table 3.1. Performance statistics of the planner on non-holonomic robot carts.

Scene | Query | Time(sec.) Nelear Npi Npro
mean | std mean | dd
1 ab 043 | 0.27 33199 | 14553 || 1125 12077
ac 1.10 | 0.60 | 60993 | 22010 || 2096 | 22018
b, c 0.52 | 0.40 | 36061 | 18891 || 1259 | 12859
2 ab 1.39 | 0.91 62402 | 27001 || 2473 21316
ac 0.74 | 0.65 | 43564 | 23640 || 1630 | 15315
b, d 0.54 | 0.41 | 35960 | 18410 || 1318 | 12815
cd 0.55 | 0.44 | 38384 | 20772 || 1310 | 14066
3 ab 445 | 3.92 | 126126 | 61836 || 4473 | 45690
4 ab 14.09 | 7.42 | 287828 | 86987 || 9123 | 107393
cd 0.92 | 0.51 | 56367 | 20825 || 1894 | 20250

Nelear: NUMber of collision checks Nmi: number of milestones
Npro : NUMber of callsto PROPAGATE
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Figure 3.9. A histogram of running times for more than 100 runs on a particular query. The average running
timeis 1.4 seconds, and the four quartilesare 0.6, 1.1, 1.9, and 4.9 seconds.



3.6 Experiments with Dynamics 63

reaching the final goal (Figure 3.8).

The standard deviations in Table 3.1 are larger than we would like. In Figure 3.9, we
show a histogram of more than 100 independent runsfor aparticular query. It indicatesthat
our planner performs well most of the time. The large deviation is caused by afew runs
that take as long asthree times the mean. The long and thin tail of the distributionistypical
in al our tests. Note also that the shape of the distribution is similar to the one shown in
Figure 2.14.

3.6 Experimentswith Dynamics

We al so tested our algorithm on asystem with dynamics. Dynamics makes motion planning
moredifficult. The set of possiblevelocitiesthat an object may achieveisseverely restricted
because the motion of the object must obey the laws of physics, and only limited actuator
forces and torques are available. For example, a heavy fast-moving object cannot stop
instantaneously. The motion planner must take this into account when generating the
trajectory.

Thesystem that we are going to consider simulatesthe behavior of ahovercraft propelled
by two thrusters going both forward and backward. Hovercraft is an interesting example
for motion planning, but previous work [LM97, Lyn99] tends to focus on the controllability
issues. Here we use it as an example to evaluate the performance of our planner when the
system is subject to dynamic constraints. We also incorporate damping forces proportional
to the linear and angular velocity of the hovercraft in our test cases.

3.6.1 Implementation Details

The hovercraft is modeled as a symmetric polygonal body P (Figure 3.10), navigatingin a
2-D environment with static obstacles. Let (z,y) bethe position of the center of P, and §
be the orientation of P with respect to the xz-axis of afixed coordinate system. We define
the state of P as (z,y, 0, v,, v,,w), Where (v, v,) isthe linear velocity of P, and w isthe
angular velocity. The lateral distance between two thrustersis L.

The hovercraft has two thrusters providing forces f; and f, along the main axis of the
craft. Althoughwe can use f; and f, as control inputsdirectly, a better set of controlsisthe
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Figure 3.10. A planar model of the hovercraft.

total force u; = f1 + f; and the total torque uy = (f1 — f2)L /2 applied to the craft by the
thrusters. By using u; and us, it ismuch easier to restrict the maximum torque and avoid
setting the craft spinning. The equations of motion for the hovercraft are

T = v, Uy = (ujcost — K,v.)/m
y o= vy, v, = (ursinf — K,v,)/m (3.6)
0 = w w = (ug— K,w)/I,

where m and / are the mass and the moment of inertia of P, and K, and K, are the
coefficients of the damping forces.

Our planner samplesmilestonesin the 6-D state-space of the hovercraft. Theimplemen-
tation of our algorithm for the hovercraft isbasically the same asthat for the non-holonomic
cartsinthe previoussection, except that (3.6) replaces(3.5) in PROPAGATE whenit integrates
the equations of motion.

3.6.2 Reaults

Wetested the planner inanumber of different environments, each containing static obstacles
inal0m x 10 m squareregion. The hovercraft isapproximately 1.5 minlengthand 0.7 m
inwidth.

Threetest scenesare shownin Figures 3.11-3.13. Scene 1 containstwo large obstacles,
representing anchored ships and has lots of free space for the hovercraft to maneuver
(Figure 3.11). It is arelatively simple environment. Scene 2 consists of many small
triangular obstacles distributed in a random fashion (Figure 3.12). The amount of free
space available for maneuvering is much more restricted. Note also that for the computed
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Figure 3.11. Test scene 1 for the hovercraft: a simple environment with two anchored ships as obstacles.
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Figure 3.12. Test scene 2 for the hovercraft: many small obstacles distributed randomly.
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Figure 3.13. Test scene 3 for the hovercraft: a zigzag corridor defined by obstacles.

Table 3.2. Performance statistics of the planner on a hovercraft with simplified dynamics.

Scene Query Time (%C) Nclear Nmil Npro
mean | stdd | mean | sd
1 ab 0.84 | 1.03 46518 31603 || 2345 15698
ac 271 | 3.17 93085 64686 || 4394 32179
b,c 156 | 1.39 69060 40223 || 3368 23763
2 ab 222 | 258 90427 69670 || 3449 33400
ad 355 | 254 | 137382 68358 || 5196 51193
b,c 0.65 | 0.67 42467 29429 || 1714 15776
cd 193 | 1.60 97205 52190 || 3424 37442
3 ab 6.07 | 7.09 | 250635 | 187726 || 6711 | 104567
b,c 1.75 | 1.93 62600 47091 || 3130 21266
b,d 1.06 | 1.93 41884 40202 || 2062 14314

Nelear: NUMber of collision checks Nmi . number of milestones
Npro : NUMber of callsto PROPAGATE
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example shown in the figure, the hovercraft has to perform several maneuvers near the
end of the trajectory (top-left corner of the space) in order to reorient itself and achieve
the final state. Scene 3 includes a query in which the hovercraft must zigzag through a
corridor defined by obstacles (Figure 3.13). Since the corridor does not have enough space
for turning around easily, the hovercraft alternates between forward motion and backward
motionto arriveat thefinal state. It isinteresting to note that the hovercraft exhibits sidewise
motionsduring part of thetrgectory. Sincethe hovercraft doesnot have propellersthrusting
sidewise, it can accomplish this only by taking advantage of dynamics.

Again we ran the planner 30 times independently for every query. The results are
reported in Table 3.2, which has the same format as that of Table 3.1. The typical running
times for our test cases vary between less than a second to several seconds, and it usually
takesafew thousand milestonesto processaquery. Likethe other experimentsthat we have
performed, the standard deviation of the running times are large, because of long execution
timesin asmall number of runs, but overall the planner is very fast.

3.7 Discussion

We have generalized the randomized expansion planner, first used for path planning in
Chapter 2, to solveamuch broader classof problemsthat incorporate kinematic and dynamic
constraints on the motion of objects. Our agorithm represents the motion constraints by
an equation of theform s = f(s, ) and constructs aroadmap of sampled milestonesin the
state space of a moving object. It first picks at random a point in the space of admissible
control functions and then maps the point into the state space by integrating the equations
of motion. Thus the motion constraints are enforced naturally during the construction
of roadmaps. The algorithm is general and can be applied to a wide class of systems,
including onesthat are not locally controllable. We have tested our planner on two systems,
one with non-holonomic constraints and one with dynamic constraints. The experimental
results demonstrate that our planner operates efficiently in state space of moderately high
dimensions (6) and under complex kinematic and dynamic constraints.

In addition, a variant of our algorithm has been implemented on a real robot in an
environment with moving obstacles [Kin00]. The robot system was developed in the
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Figure 3.14. The air-cushioned robot among moving obstacles.

Stanford Aerospace Robotics Laboratory for testing space robotics technology. The air-
cushioned robot moves frictionlessly on a flat granite table (Figure 3.14). It has eight air
thrusters providing omni-directional motion capability, but the force is small compared to
the robot’s mass, resulting in tight acceleration limits. We model the robot as a disc for
planning purposes and describe its motion by (3.4). An overhead vision system estimates
the motion of moving obstacles in the environment and send the information to the planner,
which runs on an off-board computer. The planner is then allocated a short, pre-defined
amount of time to compute a trajectory, as required by the real-time nature of the system,
To deal with moving obstacles, the planner augments the state space with a time axis
and computes a trgjectory for the robot in the state-time space rather than the state space.
Although the planner assumesthat the obstacles move with constant linear velocitiesduring
the planning, the vision modul e continuously monitorsthe obstacleswhiletherobot executes
the computed trajectory. If an obstacle deviates from its predicted trajectory, the planner
re-computes the robot’s trgjectory on the fly. The snapshotsin Figure 3.15 show the robot
executing the motion computed by the planner in one of our experiments. The robot’s goal
isto move from the back middle of the tableto the front middle. Initially the obstaclein the
middleis stationary, and the other two obstacles are moving towardsthe robot (snapshot 1).
The robot dodges the faster-moving obstacle from the left and proceeds toward the goal
(snaphot 2). The obstacle is then redirected twice (in snapshots 3 and 5) to block the
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Figure 3.15. An example of on-line replanning for the air-cushioned robot (courtesy of Robert Kindel).

trajectory of the robot, causing it to slow down and stay behind the obstacle to avoid
collision (snapshots 3-6). Right before snapshot 7, the rightmost obstacle is directed back
towards the robot. The robot waits for the obstacle to pass (snapshot 8) and finally attains
the goa (snapshot 9). Details on the implementation of our planner on this system and
experimental results are available in [HKLROQ].

The success of our planner on this real-time system indicates that the algorithm remains
effective despite many adversarial conditions, including (i) severe dynamic constraints on
the motion of the robot, (ii) moving obstacles, and (iii) various time delays and uncertain-
ties inherent to an integrated system operating in a physical (as opposed to a simulated)
environment.
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Currently the trajectory computed by our planner is not optimized and may include
unnecessary maneuvers. To improve the quality of the tragjectory, the planner may continue
sampling more milestones until it finds several solutions and pick the best one as the find
answer accordingto somecriteria. Thismethodisused intheimplementation of our planner
on the hardware robot test bed described above. It fits well with the real-time nature of the
system. Our planner is every efficient and often does not use up the allocated time to find
the first solution. So it continues sampling new milestones until the end of the time period
and outputs the best solution found. Although thisideais simple to implement and works
reasonably well in practice, it does not have any formal guarantee of optimality. More
sophisticated methods based on calculus of variations can be applied in a post-processing
stage in order to generate alocally optimal trajectory [BLL9Q].



CHAPTER
Expansive Spaces

Experimental results in the preceding chapters have demonstrated that our planners are
capable of solving difficult motion planning problems efficiently in environments with
complex geometry and possibly various kinematic and dynamic constraints. However,
some important questions cannot be answered by experiments alone. Our planners sample
milestones at random; do they always find a trgectory if one exists? How does the
performance of the planners depend on the complexity of environments?

There have been afew attempts aimed at providing theoretical justification for the good
performance of randomized motion planners [LL96, BKL*97, HLS99], but the success of
these algorithms is still better observed than understood. In this chapter, we analyze the
performance of our randomized plannersformally. In particular, we show that our planners
are probabilistically complete* by giving bounds on the number of milestones needed in
order to find atrajectory with high probability, if one exists. In fact, these bounds state that
if asolution trgjectory exists, the failure probability of our planners decreases exponentially
as more milestones are sampled. So a small number of milestones are sufficient to capture
the connectivity of the configuration (or state) space and answer the queries.

In the rest of the chapter, we first introduce the notion of expansive spaces, which is
intended to characterize the difficulty of sampling a good set of milestones (Section 4.1).
We then illustrate the usefulness of the expansiveness definition in two analyses: uniform

*Recall that a motion planner is probabilistically complete if the probability of finding a trajectory
converges to 1 quickly whenever such atragjectory exists.
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Figure 4.1. A free space with a narrow passage.

sampling for the all-pairs path planning problem (Section 4.2) and control-driven random-
ized expansion for motion planning under kinematic and dynamic constraints (Section 4.3).
We end the chapter with some comments on the importance of these results (Section 4.4).

4.1 EXxpansiveness

To analyze the performance of our planners, we first need to characterize the complexity
of the free space F. Aswe have seen in the experiments, the presence of narrow passages
in F poses significant difficulty for randomized planners. As a ssimple example, consider
a path planning problem in the free space shown in Figure 4.1. Assume that there is no
kinematic or dynamic constraints on motion. Let us say that two pointsin F see each other,
or are mutually visible, if the straight-line segment between them lies entirely in . The
visibility set of a point p € F isthen the set of pointsin F that p sees. The free space
in Figure 4.1 consists of two subsets S| and S, separated by a narrow passage. Few points
in S, see alarge fraction of S, and therefore the probability that a randomized planner
picks a milestone in S; whose visibility set contains a large fraction of S, is very small.
This makesit difficult to connect milestonesin S; and milestonesin S,.

More generally, let the lookout of asubset S C F bethe set of pointsin S that can see
alarge fraction of the points path-connected to .5, but outside of S. In our example, the set
S1 has a very small lookout: few pointsin S; see alarge fraction of S, (Figure 4.2). The
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Figure4.2. Lookout sets. The set .S; hasasmall lookout, because only asmall subset of pointsin Sy near the
narrow passage can see alarge fraction of .S;. The areas with dashed boundaries indicate visibility sets.

example suggests that we can characterize narrow passages by the size of lookout sets. If
JF contains a subset that has a small lookout, the planner may have difficulty sampling a set
of milestones that correctly captures the connectivity of the free space.

Path planning is, of course, aspecia case of the kinodynamic motion planning problem
considered in Chapter 3. The basic issues are the same in both cases, but for kinodynamic
motion planning, the notion of visibility (connecting milestones with straight-line paths) is
inadequate. Our kinodynamic motion planner generates a different kind of roadmaps, in
which trajectories between milestones may be neither straight nor reversible. Thisleads us
to generalize the notion of visibility to that of reachability.

Given two points p and p’ in the free space F, p’ is reachable from p if there exists
a control function wu: [a,b] — € that induces an admissible trgjectory from p to p'. If
p’ remains reachable from p by using « € U,, a piecewise-constant control with at most
¢ constant segments as defined in Section 3.4, then we say that p’ is locally reachable,
or /-reachable, from p. Let R(p) and R,(p) denote the set of points reachable and
(-reachable from p; we call them the reachability set and the /-reachability set of p. For
any subset S C F, the reachability (¢-reachability) set of S isthe union of the reachability
(¢-reachability) sets of all pointsin S

R(S)=UR(p) ad Re(S)= U Relp).

peES pES



74 Chapter 4. Expansive Spaces

Figure 4.3. Thelookout of aset S.

Formally we define the lookout of a subset S € F asthe set of al pointsin S whose
(-reachability setsoverlap significantly with their reachability setsoutside of .S (Figure4.3):

Definition 4.1 Let 5 beaconstantin (0, 1]. The 3-lookout of aset S C Fis

B-LookouT(S) = {p € 5| p(Re(p) \ 5) = B(R(S)\ 5)},
where 1(.S) denotesthe volume of aset S C F.
Thefree space F isexpansiveif the reachability set of every point in F has alarge lookout:

Definition 4.2 Let o and 3 be constants in (0,1]. For apoint p € F, theset R(p) is
(o, 3)-expansive if for any connected subset S C R(p),

p(B-LOOKOUT(S)) > a p(.S).

The free space F is («, 3)-expansiveif for every point p € F, R(p) is(«, 3)-expansive.

To better grasp these definitions, think of S as the /-reachability set of a set M of
sampled milestones. If o and 3 are both large, then it is easy to pick additional pointsin S
so that adding them to M results in expanding S significantly. In fact, we will show that
with high probability, the /-reachability set of the sampled milestones expands quickly to
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S

Figure4.4. A free space punctured by many small obstacles.

cover most of R (sinit ), the reachability set of theinitial state; hence, if the goal stateliesin
R (sinit), the planner will find an admissible trajectory quickly with high probability.

Let uslook again at the path planning examplein Figure 4.1. Since there are no motion
congtraints, R(p) is simply the connected component of F containing p, in this case, the
entire free space F, because F is a single connected component. The /-reachability set
R.(p) of pisthevisibility set of p. The lookout of S; isasmall subset of 5; located near
the passage between S, and S,. Soif 3 islarge, the relative volume o of the lookout, will
be small. We can increase the value of «, by choosing a smaller value for 3, but o and 3
cannot both be made large simultaneously.

As another interesting illustration of the definition, consider the environment shown
in Figure 4.4. The free space F is punctured by many small obstaclesin a strip near the
middle of F. The subsets 5, and S, to the left and right of the strip are connected through
many narrow passages. By increasing the number of obstacles and decreasing their sizes,
we can create many narrow passages whose clearances become arbitrarily small, yet o and
3 remain large. Consequently thisis arather simple environment for the randomized path
planner according to our characterization; we have verified through experiments that it is
indeed the case.

The parameters o and 3 measure the extent to which the spaceisexpansive. Thesmaller
these parameters are, the less expansive the free space is. We will show, in the following
sections, that the cost of sampling agood set of milestonesincreasesas o and 3 get smaller.



76 Chapter 4. Expansive Spaces

The notion of expansiveness defined hereis entirely consistent with the more restrictive
version for path planning (see [HLS99]). Asshown inour example, if /-reachability setsare
specialized to visibility sets, we get back to the old definition. However, the new definition
ismore genera and is useful for analyzing motion planning under kinematic and dynamic
constraints as well.

Let M beasequenceof randomly-sampled milestonespg, p1, p2, ... and R; = U;;o Re(p;)
be the /-reachability set of first : milestonespg, p1, . . ., p;. A milestone p; isalookout point
if p; liesinthelookout of R;,_;. Lemma4.1 states that the /-reachability set of M spansa
large volume if it contains enough lookout points.

Lemmad4.l Let X = R(p) for some p € F. If a sequence M of randomly-sampled
milestonespy = p, p1, p2, - - - containsk lookout points, then u (R, (M)) > (1 — e~ F)u(X).

Proof. Without lossof generality, assumey (') = 1. Letp;,, pi,, .. ., p;, bethesubsequence
of lookout pointsin M. For: = 1,2, ..., we have

p(Ri) = p(Rizt) + p(Re(pi) \ Riz1). (4.1)
Thus u(R;) > u(R;) forany « > j. In particular,
1(Re(M)) = Re(Rs,), (4.2)

for al k.
Using (4.1) with : = 1 in combination with the fact that p;, isalookout point, we get

N(le) > M(Rik—l) + BM(‘X \ Rik—l)'

Let v; = p(R;). Since u(X \ Ri,—1) = p(X) — p(Ri,—1) = 1 — v;,—1, We have v;, >
vi,—1 + B (1 —v;,_1), which can be rewritten as

Vi, 2 Vi, + B (1 - Uik—l) + (1 - 5)(0’%—1 - Uik—l)' (43)

Notethat i, — 1 > 1,4 (Figure4.5), and thusv;,_y —v;,_, > 0. It then followsfrom (4.3)
that
Vi 2 Vi, + B (1 - Uik—l)'
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Figure4.5. A sequence of sampled milestones.

Setting wy, = v;, leadsto therecurrencewy, > wi_q + 5 (1 — wy_y ), which hasthe solution
k-1 ]
wp > (1= B)fwo+ B (1 =Y =1— (1= B)*(1 — wp).
7=0

Using the factsw, > 0and 1 — 8 < e™?, weget w;, > 1 — e~#*. Combined with (4.2), it
yields
H(RAM)) 21— e,

4.2 Uniform Sampling for All-Pairs Path Planning

Our first use of expansiveness is to examine the efficiency of uniform sampling for the
al-pairs path planning problem. Since we deal only with path planning in this section, it is
sufficient to consider the more restrictive setting of connecting milestoneswith straight-line
paths and visibility sets.

Recall that the agorithm for the all-pairs problem proceeds in two stages (see Sec-
tion 2.4). The pre-computation stage builds a probabilistic roadmap G that captures the
connectivity of the free space. With uniform sampling, we build G by picking new con-
figurations uniformly at random and connecting pairs of collision-free configurations with
straight-line paths in the free space. The query-processing stage first connects the initial
and the goal configuration to (G and then searches (& for a path.

A good probabilistic roadmap & for the all-pairs problem should satisfy two require-
ments. First, it provides adequate coverage of the free space: the visibility set of the
milestonesin G should cover all but asmall fraction of the free space F. Asaresult, query
configurations can be easily connected to milestonesin . Second, G must correctly repre-
sent the connectivity of the free space, meaning that there is a one-to-one correspondence
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between the connected components of ' and those of F.
Adeguate coverage of the free space depends on a property of the free space called
¢-goodness [BKL*97]:

Definition 4.3 Let ¢ be aconstant in (0, 1]. A free space F is e-good if for every p € F,
w(V(p)) > eu(F), where V(p) isthevisibility set of p.

A set of milestones provides an adequate coverage for an e-good free space F if the volume
of the pointsin F not visible from any of these milestonesis at most (¢/2)u(F) [BKL*97].
For an e-good free space F, every connected component of F hasvolumeat least ei.(F). So
if aset of milestones provides an adequate coverage of F, then every connected component
of F contains at least one milestone. It has been shown that uniform random sampling
generatesa set of milestonesthat provides an adequate coverage of F with high probability;
the number of milestones needed grows proportional to (1/¢)In(1/evy), where v is the
probability that sampling uniformly at random fails to generate a set of milestones that
provides an adequate coverage of F [BKL*97].

Here we would like to show that in addition to providing an adequate coverage, a set
of uniformly-sampled milestones generates a probabilistic roadmap ' whose connectivity
conformsto the connectivity of the free space. By using the additional property of expan-
siveness, Theorem 4.1 establishes that with high probability, no two connected components
of (¢ lie in the same connected component of F. So there is a one-to-one correspondence
between the connected components of G and those of F. Combined with the earlier result
in [BKL*97], Theorem 4.1 implies that a PRM planner with uniform sampling finds a path
between any two given configurationsin F with high probability, if such apath exists.

In the rest of this section, we assume that the free space F is e-good and that every
connected component of F is («, 3)-expansive. We call such a space F an (e, a, 3)-
expansive space. Our proof begins with the definition of the linking sequence of a point
p € F (Figure 4.6).

Definition 4.4 The linking sequence of a point p € F is a sequence of points p, =
P, p1, P2, ... and asequence of sets Vo = V(po), Vi, Vo, ... C F such that for al : > 1,
pi € B-LooKOUT(V;_y) and V; = V,_; U V(p;).

Note that the sets V;, Vi, Vs, ... are completely determined by the sequence of points
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Figure 4.6. The linking sequence of p.

Pos P1, P2, - - -, and so for brevity, we refer to just the sequence of points pg, p1, p2, . .. asthe
linking sequence of p.

The following two lemmas underscore the significance of this definition. Lemma 4.2
states that the visibility sets associated with a linking sequence spans a large volume if
it is sufficiently long. Lemma 4.3 estimates the probability that a set M of uniformly-
sampled milestones contains a linking sequence of a given length for some milestone in
M. Together they imply that with high probability, a relatively short linking sequence of
uniformly-sampled milestones spans a large volume.

Lemma 4.2 Suppose that F' is a connected component of F. Let u;, = (V) denote the
volume of the kth set 1}, determined by a linking sequence po = p, p1, p2, ... for a point
peF . Fork>p"11Ind ~1.39/8, ur > (3/4)u(F").

Proof. Thisresult is an obvious consequence of Lemma4.1. For path planning problems,
the reachability set R(p) of apoint p € F issimply F', the connected component of F
that contains p. By the definition of alinking sequence, every point p; isalookout point; a
linking sequence of length £ contains & lookout points. Thus it follows from Lemma 4.1
that u, > (3/4)p(F'),if k> g7 In4. O

Lemma 4.3 Let M bea set of n milestones chosen independently and uniformly at random
fromthe free space F. Let r = 1/ac. Given any milestone p € M, there exists a linking
sequencein M of length & for p with probability at least 1 — re=(*—+=1/,

Proof. Assume, for convenience, that 1 (F) = 1. Let L; be the event that there exists
a linking sequence in M of length : and L; be the event that there does not exist such a
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sequence. Then

PI’( 2) = PI’(IZ |IZ'_1)PI’(ZZ'_1) —|— PI’(ZZ | Li_l)Pr(Li_l)
§ Pr(fi_l) + PI’(ZZ | Li—l)-

Wewould liketo estimate Pr(L; | L;_;). Namely, given that there exists alinking sequence
Po = p,p1,P2,---,pi—1 IN M with length ¢ — 1, what is the probability that M contains
no linking sequence of length : for p? All we need is that M contains no point lying in
(3-LOOKOUT(V;_; ). Notethat p, py, ps, . . ., p;—1 are conditioned and we cannot expect them
to liein 3-LookouT(V;_; ). However, the remaining » —  pointsin M are unconditioned
and chosen uniformly and independently from F. Since V(p) = Vv, C Vi_1, we have

p(Vier) > p(V(p)) > ¢,
because F is e-good. Further, since F is (¢, «, 3)-expansive, we obtain
p(B-LOOKOUT(V;_1)) > au(Viey1) > ae =1/r.

It follows that the probability that A does not contain a point in F-LOOKOUT(V;_;) is at
most
(1 . 1/T)n—i < e—(n—i)/r‘

Hence we have
Pr(L;) < Pr(Li_y) + e (n=i)/r

and

T . 1 k-1 . ek/?” _ 1
Pr(Ly) < 3 e (nmlr = e=(n=D/r N7 gifr — o=(n=1)/r ir _q"
=1 i=0 e _

Noting that e'/" — 1 > 1/r, we obtain the desired bound

Pr(L;) < se~(n=k=1)/r

So with probability at least 1 — re~(*~*=1/7 M contains alinking sequence of length & for
p. O
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We are now ready to state our main result. It relates the notion of linking sequences
to a set of randomly-sampled milestones. Suppose that a set M of milestones are sampled
uniformly at random from F. Let G be the probabilistic roadmap obtained by taking al
the milestonesin M as vertices and introducing an edge between any two milestonesin M
that can see each other. For every connected component F; in F, let M; C M be the set of
milestones belonging to F ;, and '; be the subgraph of G containing the set M of vertices.

Theorem 4.1 Let v be a constant in (0,1]. Suppose a set M of 2n 4+ 2 milestones, for
n > 8In(8/eay)/ea 4+ 3/, is chosen independently and uniformly at random from the
free space F. Then, with probability at least 1 — ~, each of the roadmap graphs &; isa
connected graph.

Proof. Again assume, without loss of generality, that () = 1. Suppose that we sample a
total of 2r + 2 milestonesfrom F. Consider any two milestones p and ¢ in M; for some ;.
Dividetherest 2n milestonesinto two subsets, M’ and M"”, of n milestoneseach. It follows
from Lemma 4.3 that any milestonein {p} | M’ has alinking sequence of length & in M’
with probability at least 1 — re~(*=*)/7, The same holds for any milestone in {¢}J M".
Let Vi(p) and V4 (q) be the visibility sets determined by the linking sequences of length &
for the two milestones. By Lemma 4.2, both sets have volume at least (3/4)u(F;) if we
choose k = 1.5/, and hence they must have a non-empty intersection with volume at least
(1/2)u(F ;). Weknow that ;(F;) > ¢, becausein an -good space, the visibility region of
any point in F; must have volume at least ¢. Since the n milestonesin M" are sampled
independently at random, it followsthat with probability atleast 1 — (1—¢/2)* > 1—e™"/2,
thereis amilestone + € M” that liesin the intersection (see Figure 4.7). Note that both
p and ¢ have a path to « consisting of straight-line segments bending only at the linking
sequence points, which of course belong to the set of milestones M. This meansthat there
isapath from p to ¢ through = using only the edges of the roadmap graph £;.

Let B denote the event that p and ¢ fail to be connected. Event B occurs if the setsin
the linking sequences of p and ¢ do not intersect or no point of A" liesin the intersection,
and therefore Pr(B) < 2re~("=®)/" 1 ¢=7</2 Choosing n > 2k and recalling r = 1/ae,

tFor clarity of exposition, we have chosen adlightly larger value of n than necessary. Using amore refined
estimate of n will complicate the technical detailsin the following proof.
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Figure 4.7. Linking sequencesfor p and q.

we have
Pr(B) < 2re™? 4 ¢7m/2 < ope™/¥ 4 720 < e,

A graph R; failsto beaconnected graph if any pair of nodesp, ¢ € M; fail to be connected.
The probability is at most
()

—n/2r

(;‘) Pr(B)

In’re

IN

2re—(n—4r Inn)/2r

IA

ore A

IN

Y

where the last inequality followsfrom the observation that /2 > 4r Inn for n > 8r In 8r.
Now requiring also that n > 8r In(8r/~), we have

2re—n/4r —21In(8r/v)

2re
< 2r(y/8r)?

< 7

IN

Clearly it is sufficient to choose n > 8rIn(8r/v) + 2k. Substituting r = 1/ae and
k = 1.5/ into the expression for n, we obtain the desired result. O

Theorem 4.1 provides an upper bound on the number of milestones needed to build
a good roadmap with high probability using uniform random sampling. Interestingly the
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Figure4.8. An (e, a, §)-expansive free spacewith e, o, 8 ~ w/W.

bound does not explicitly mention the dimension of the configuration space, because the
definition of expansiveness is based solely on the visibility properties of the configuration
space, which are stated in terms of volumes of subsetsin F. However, the dependence on
the dimension of C isimplicit in the size of the parameters ¢, o, and 3. To illustrate this
point, consider the example in Figure 4.8. The free space consists of two squares, .S; and
S5, connected by anarrow corridor. Each square has sides of length 1/, and the rectangul ar
corridor has length W and width w with w < W. Up to a constant factor, each of the
parameterse, o, and 3 isonthe order of w /W . Indeed, the pointswith the smallest visibility
set arelocated in the corridor. Each such point has avisibility set of volume approximately
3wW. Since the volume of the free spaceis (2W + w)W, € = 3wW/((2W + w)W) ~
w/W . Furthermore, only a small subset of S; with volume approximately wW, contains
points, each of which sees a set of volume approximately 2wW in S;\F, and therefore
a~ wW/W? ~ w/W and 8 ~ 20W/(W + w)W) ~ w/W. In the n-dimensiona
version of this example, two hyper-cubes, each having volume W", are connected by a
hyper-parallelepipedic corridor that has size w in & dimensions (1 < £ < n — 1) and size
W intherest n — k dimensions. The parameterse, a, and 3 areall on the order of (w/W)*.
Therefore the number of milestones needed to build agood roadmap is exponentia in & for
thisexample.

An alternative bound for the number of milestones needed can be obtained from the
path-clearance assumption [BKL*97]. Consider a collision-free path between any two
configurations ¢ and ¢’ in the same connected component of 7. Let L. be the length of the
path and 4 be its clearance, which is defined as the minimum distance from all the points
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on the path to the boundary of F.

Theorem 4.2 Let~ beaconstantin (0, 1], and b bethe constant 2= (B, )/ 1(F), where B4
denotesthe unit ball inR™. Wth probability at least 1 —~, aroadmap of (1/b6") In(2L/~0d)
milestones contains a connected component which has two milestones m and m’ such that
g seesm and ¢’ seesm/’.

In the n-dimensional version of the examplein Figure 4.8, the maximum clearance of a path
going through the narrow passageisawaysw/2 for any integer k suchthat 1 < & <n —1.
The bound in Theorem 4.2 is always exponentia in n, even if the passage is wide in most
dimensions. Our new bound based on expansiveness yields a number of milestonesthat is
only exponential in k.

Note al so that a straight path between two configurations of F for one parameterization
of the configuration space C may not be a straight path for another parameterization of
C. So the visibility properties in F, hence the values of ¢, «, and 3, depend on how C
is parameterized, though the connectivity of F does not depend on this parameterization.
Choosing aparameterization of C yielding the largest values of ¢, «, and 3 remains an open
problem.

4.3 Single-Pair Problems

In Chapters 2 and 3, We looked at two single-query planners, one for the path planning
problem (Section 2.4) and the other for motion planning under kinematic and dynamic
constraints (Section 3.4). Neither of the two planners pre-computes a roadmap. Instead
they try to build a small roadmap on the fly in order to answer the given query.

Our kinodynamic motion planner is a generalization of the path planner in Section 2.4.
It picks new milestones by integrating randomly-sampled controls rather than connecting
milestones with straight-line paths. If we restrict the set of available controls to generate
straight-line paths only, these two algorithms are very similar. So we consider only the
analysis of the more general case, but the result applies to the path planner as well.
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4.3.1 Ideal Sampling

To simplify the presentation and focus on the most important aspects of the planner, let us
assumefor now that we have an ideal sampler IDEAL-SAMPLE that picksapoint uniformly at
random from the ¢-reachability set of existing milestones. If itissuccessful, IDEAL-SAMPLE
returns a new milestone p’ and a trgjectory from an existing milestone p to p’. With ideal
sampling, the planning algorithm can be stated as follows:

Algorithm 4.1 Randomized expansion with IDEAL-SAMPLE.

1. Initidizeatree T with pg = sinit; Ro  Re(po)-

2. repeat

3. Invoke IDEAL-SAMPLE( R;), which samples a new milestone p’ and returns a trajec-
tory from an existing milestone p to p’ if the trajectory is admissible.

4. if p’ # nil then

5. Insert p’ into T'.

6. Create a directed edge e from p to p/, and store the trgjectory with e.

7. Riy1 < RiURy(p); 1 1+ 1.

8. if p € ENDGAME then exit with SUCCESS.

This agorithm is similar to Algorithm 3.1, except that the use of IDEAL-SAMPLE replaces
lines 3-5 in Algorithm 3.1.

4.3.2 Bounding The Number of Milestones

Let ¥ = R(sinit) be the set of all points reachable from s;,;; under piecewise-constant
controls. Our kinodynamic planner determines whether the goal liesin X by sampling a
set of milestones; it terminates as soon as a milestone falls in the endgame region. The
running time of the planner is thus proportional to the number of sampled milestones. In
this subsection, we give abound on the number of milestones needed in order to guarantee
amilestone in the endgame region with high probability, if the intersection of the endgame
region and X' is non-empty.

Let M be a sequence of milestones po = Sinit, p1, P2, - - - generated by Algorithm 4.1.
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We know from Lemma 4.1 that the /-reachability set of M spans a large volume if M
contains enough lookout points. Lemma 4.4 belows gives an estimate on the probability
of this event. Combining the results from these two lemmas, we conclude that with high
probability, the /-reachability set of a relatively small number of milestones spans alarge
volumein X'.

The following results assume that X is («a, 3)-expansive. For convenience, let us scale
up all the volumes so that x(X') = 1.

Lemma 4.4 A sequence of » randomly-sampled milestones generated by Algorithm 4.1
contains & lookout points with probability at least 1 — ke=>"/*,

Proof. Let M be the sequence of milestones and I, be the event that M contains & lookout
points. We divide M into & groups of n/k consecutive milestones. Let I; denote the event
that the ith group contains at least one lookout point. Since the probability of M having
k lookout points is greater than the probability of every group having at least one lookout
point, we have

Pr(L) > Pr(Li N Ly...N L),
which implies .

Pr(L) < Pr(LiULy...UL) < ZPI‘(E-).

=0
Each milestone picked by IDEAL-SAMPLE has probability « of being a lookout point, and
thus Pr(;), the probability of having nolookout point intheith group, isat most (1 —«)"/*.
Hence
Pr(L)=1-Pr(L)>1—Fk(1 - oz)”/k.

Notethat (1 — a)*/* < e2/k. Sowe have Pr(L) > 1 — ke=e/%, 0

The main result, stated in the theorem below, establishes a bound on the number of mile-
stones needed in order to guarantee a milestonein the endgame region with high probability.

Theorem 4.3 Let g > 0 be the volume of the endgame region in X and ~ be a constant in
(0,1]. A sequence M of n milestones generated by Algorithm 4.1 contains a milestone in
the endgame region with probability at least 1 — v, ifn > (k/a) In(2k/v) + (2/g) In(2/7),
wherek = (1/5)1In(2/g).
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Proof. Let us divide the sequence M of milestones py = Ssinit, p1, - - -, pn INLO two SUb-
sequences M; and M, so that M; contains the first n; samples and M, contains the rest
ny = n — ny samples.

By Lemma4.4, M, contains % lookout pointswith probability at least 1 — k(1 — a)™/*,
If there are k lookout pointsin A, then by Lemmad4.1, the /-reachability set R,( M, ) has
volumeat least 1 — ¢/2, provided

k= (1/8)In(2/g).

Asaresult, R,( M, ) have anon-empty intersection of volume at least ¢/2 with the endgame
region, and so does every set R; for: > ny, where R; is the /-reachability set of the first :
milestonesin M.

The procedure IDEAL-SAMPLE picks a milestone uniformly at random from the /-
reachability set of existing milestones, and therefore a milestone p; € M, falls in the
intersection with probability (¢/2)/u(Ri-1). Since u(R;—1) < p(X) =1 for dl ¢, and all
the milestones are sampled independently, A, contains a milestonein the intersection with
probability at least 1 — (1 — g/2)" > 1 — e~"29/2,

If M failsto have amilestone in the goal, then either the /-reachability set of AM; does
not have alarge-enough intersection with the goal (event A) or no milestone of M, falsin
the intersection (event B). From the preceding discussion, we know that Pr(A) < /2 if
n1 > (k/a)In(2k/v), and Pr(B) < v/2if ny > (2/g)In(2/~). Choosingn = ny + ny =
(k/a)In(2k/v) 4+ (2/g)In(2/~) guarantees that Pr(A U B) < Pr(A) + Pr(B) < ~.
Substituting & = (1/3) In(2/g) into the expression for n, we get the final result

> In(2/g), 2In(2/g) N

2
af3 By g

2
In —.
8

4.3.3 Approximating IDEAL-SAMPLE

The above analysis assumes the use of IDEAL-SAMPLE, which picks a new milestone
uniformly at random from the the /-reachability set of the existing milestones. One way
to implement IDEAL-SAMPLE would be rejection sampling [KW86], which throws away
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a fraction of samples in regions that are more densely sampled than others. However,
rejection sampling is not efficient: many potential candidates are thrown away in order to
achieve the uniform distribution.

So instead, our planners try to approximate the ideal sampler. The approximation is
much faster to compute, but generates slightly less uniform distribution. Recall that to
sample a new milestone p’, we first choose a milestone p from the existing milestones and
then sample in the neighborhood of p. Every new milestone p’ thus created tends to be
relatively closeto p. If we selected uniformly among the existing milestones, the resulting
distribution would be very uneven; with high probability, we would pick a milestonein an
aready densely-sampled region and obtain a new milestone in that sameregion. Therefore
the distribution of milestonestends to cluster around the initial configuration (or state). To
avoid this problem, we associate with every milestonep aweight w(p), which isthe number
of milestonesin a small neighborhood of p, and pick an existing milestone to expand with
probability inversely proportional to w(p). So it is more likely to sample a region with a
smaller number of milestones. Thedistribution=,(p) o 1/w(p) contributesto thediffusion
of milestones over the free space and avoids oversampling.

To give a concrete example, let us put a uniform grid on the state space and assume
that the neighborhood of p is the grid cell containing p. Due to the weighting, every
cell covered by the /-reachability set of existing milestones is sampled with the same
probability (Figure 4.9a). Note that milestones inside the same cell are chosen with equal
probability. This, however, causes the distribution to be slightly non-uniform, because
the /-reachability sets of close-by milestones may overlap. As a result, some regions
are sampled more frequently than others. The grid cell shown in Figure 4.9b contains
two milestones. Points in region C' are more likely to be sampled than those in A or B.
However, milestones with overlapping /-reachability setsare more likely to be closeto one
another than milestones with no such overlapping. Therefore, it isreasonable to expect that
weighting the milestones keeps the problem from worsening as the number of milestones
grows. Furthermore we may limit the maximum number of milestonesin each cell to avoid
excessive overlapping of /-reachability sets.

There is another issue that is specific to our planner for kinodynamic motion planning.
In line 4 of Algorithm 3.1, we select « uniformly at random from 2/, and integrate the
equations of motion with « to obtain a new milestone p’ in R,(p). The distribution of p’
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Figure 4.9. Approximating IDEAL-SAMPLE by weighting milestones. (@) Each of the four grid cellsis
chosen with equal probability regardless of the number of milestonesin it. Every milestone is picked with
probability proportional to the number in the cell containing the milestone. (b) All milestones within a cell
are chosen with equal probability. So a point in region C', where the ¢-reachability sets of p and ¢ intersect,
issampled twice aslikely asapointin A or B.

in R(p) is not uniform in general, because the mapping from ¢/, to R,(p) may not be
linear. In some cases, one may pre-compute a distribution =,, such that picking « from ¢4,
with probability m,,(«) yieldsauniformdistribution of p’ in R,(p). In other cases, rejection
sampling can be used locally. First pick several control functionsw;,: = 1,2, ... at random,
and compute the corresponding p;. Then throw away some of them to achieve a uniform
distribution among the remaining ones, and pick aremaining p’ at random.

4.3.4 Choosing Suitable Control Functions

To sample new milestones, our kinodynamic planner (Algorithm 3.1) picks at random a
piecewise-constant control function « from #,. Every v € U, has at most ¢/ constant
segments, each of which lastsfor atime duration lessthan 4,,,.x. The parameters/ and .«
are chosen according to the properties of each specific moving object.

In theory, ¢ must be large enough so that for any p € R(sinit), Re(p) has the same
dimension as R (sinit). Otherwise, R,(p) has zero volumerelative to R (sinit ), and R(sinit)
cannot be expansive even for arbitrarily small values of o and 3. This can only happen
when some dimensions of R (si,i¢) are not spanned directly by basis vectors in the control
space 2, but these dimensions can then be generated by combining severa controlsin (2
using Lie-brackets[BL93]. The mathematical definition of aLie bracket can be interpreted
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as an infinitesimal “maneuver” involving two controls. Spanning all the dimensions of
R(sinit) May require combining more than two controls of 2 by imbricating multiple Lie
brackets. At most n — 2 Lie brackets are needed, where n is the dimension of the state
space. Henceit is sufficient to choose / = n — 2.

In general, the larger 7 is, the greater « and 3 tend to be. So according to our analysis,
fewer milestones are needed; on the other hand, the cost of integration and collision
checking, when generating a new milestone, becomes more expensive. The choice of §,,.x
is somewhat related. A larger ¢,,... may result in greater o and 3, but also lead the planner
to integrate longer trajectories that are more likely to be inadmissible. Experiments show
that / and ¢,,.x can be selected in relatively wide intervals without significant impact on
the performance of the planner. However, if the values for ¢ and 4,,.x are too large, the
approximation to IDEAL-SAMPLE becomes very poor.

4.4 Discussion

Theboundsgivenin Theorems4.1 and 4.3 provide ameasure of the amount of work that the
planners should do in order to build a good roadmap with high probability in an expansive
space. Unfortunately we cannot compute this number effectively in advance, because it is
difficult to calculate the values of ¢, «, and 3, except for very simple spaces. One may be
tempted to use Monte Carlo techniguesto estimate these values, but it seemsthat areliable
estimate would take as much time as building a satisfactory roadmap. Nevertheless these
results areimportant. First, they tell usthat the failure probability of our planners decreases
exponentialy with the number of milestones sampled. Second, the number of milestones
needed increases only moderately when ¢, «, and 3 decrease, i.e., when the space becomes
less expansive.



CHAPTER

Optimized Robot Placement
In a Workecell

The efficiency of randomized motion planners makes them useful as a primitive, which we
can use to accomplish more complex tasks. Although sometimes a direct invocation of
motion planners does not solve the problem completely, the general idea of constructing
the connectivity of configuration space via random sampling may nevertheless be helpful.
In this chapter, we demonstrate the utility of randomized path planning in a practical
application, the robot placement problem in the context of virtual prototyping.

Today robots are widely deployed in almost very manufacturing industry, but program-
ming their motion remains atedioustask, because CAD systemsusually have little support
for dealing with objects in motion. To bridge the gap, virtua prototyping systems have
been introduced to provide tools for checking collision among moving parts, computing
and simulating motion, etc., in order to help designers analyze how objects move or are
moved during manufacturing and maintenance.

Randomized path planning has been used in virtual prototyping before as a tool for
assembly maintainability studies [CL95]. Here we would like to consider a more complex
problem: robot placement in aworkcell. Specifically our goal isto find abaselocation for a
robot manipulator so that specified tasks are executed as efficiently as possible. We present
an algorithm that combines randomized motion planning with local iterative optimization
to compute simultaneously a base location and a corresponding collision-free path that are
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optimized with respect to the execution time of tasks.

51 Overview

Therobot placement problem considered hereis motivated mainly by its applicationsin the
manufacturing industry, where the base placement of a manipulator has abig impact on the
cycletime of tasks executed, e.g., spot welding, inspection, and part transfer. An automated
means to determine the best placement can both increase the throughput of workcells and
reduce set-up time. Our agorithm can also be used to position mobile manipulators,
which are manipulators mounted on mobile bases. For many mobile manipulators, the
base remains stationary while the mounted manipulator isin motion, because of operational
constraints and increased control complexity [Ser95]. Thus positioning the mobile base for
efficient operation of such asystem isthe same problem asthat for a fixed-base manipul ator.

A minimum requirement for the base placement of a manipulator is that the reachable
workspace of the manipulator covers all the task points. Furthermore the robot should be
placed to enable efficient task execution. Previouswork on this problem usually considers
thefirst and sometimesal so the second criterion, but few systemstakeinto account obstacles
inthe environment at the sametime, partly because planning acollision-free path for arobot
with many dofsis a difficult problem. However, robots share the space with part feeders
and various other devicesin aworkcell, and must avoid collision with them while in motion
(see Figure 5.1 for an example). We therefore believe that it is essential to consider the
impact of obstacles on the placement of robots.

Our robot placement algorithm first computes a collision-free path for an initial base
location, using the randomized path planner described in Chapter 2. It then deforms
the computed path to obtain a locally optimal one and iteratively moves the base to better
locations. At eachiteration, it perturbsthebaselocation and recomputesanew collision-free
path. If the path planner were invoked every time, the computation would be prohibitively
expensive. However, locally optimal paths for two different base locations are usualy
“close” to each other in the configuration space of the manipulator base and joints, if the
two base locations are close. Exploiting this spatial “coherence’, we use the path found in
the previousiteration as a starting point for finding anew path in the current iteration. This
allows us to save considerable computation time.
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Figure 5.1. A robot spot-welding the side-panel of a car. It has to maneuver among fixturing devices and
reach underneath the side-panel in order to access weld-points.

5.2 Redated Work

The robot placement problem requires optimizing not only the motion of the robot but
also its base location. Several variants of the problem have been proposed in the litera-
ture. Sergji considers the placement of a seven-dof Robotics Research arm by analyzing
its reachability [Ser95]. Kolarov presents an algorithm that places a robot made up of
telescoping links amid obstacles in a planar environment [Kol95]. Ozedou formulates the
base placement problem as that of kinematic synthesis and solves it with generic opti-
mization techniques [Oue97]. These work addresses the placement problem mainly from
the reachability point of view. The algorithm proposed by Feddema places a manipulator
for minimum-time joint-coordinated motion [Fed96], but it assumes an environment with
no obstacles. Hwang and Watterberg's formulation of the placement problem [HW96] is
more closely related to ours. Their algorithm discretizes the space of all base locations and
uses a path planner to search the space exhaustively in order to find the optimal solution.
They report that the exhaustive search took 50 hours on a grid of 175 base locationsfor an
environment with relatively simple geometry.

5.3 Configuration-Space Formulation

Assume, for the moment, that the base of a manipulator M is fixed. The configuration
of M isthenitsjoint angles. Let C be the configuration space of M. A pathinC isa
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Figure 5.2. The base placement problem in the configuration space. The robot is atwo-dof planar arm with
joint angles ¢; and ¢2. The base of the robot lies on aline parameterized by z. (a) Schematic drawing of the
configuration space of the robot base and joints. Shaded parts indicate obstacles. (b) Cross section for the
optimal baselocation z. It contains the optimal path 5.

continuous mapping ~: [0, 1] — C. The cost of a path can be measured in many ways, the
most important ones being the time and energy that it takes for a manipulator to execute the
path.

If the end-effector frame (position and orientation) of M is T, then for a given base
location x, we can solve for a configuration of the manipulator joints that achieves 7' via
inverse kinematics (1K). The solutions define a mapping ¢: X — C from the space X of
al base locations to the space C of manipulator joint configurations. Since the IK solution
is not unique in general, the mapping can be one-to-many. However, for the simplicity of
presentation, we assume that the IK solution isunique, when it exists. Our algorithm easily
generalizesto deal with multiple IK solutions.

In abase placement problem, we are given an initial end-effector frame 7,,;; and a goal
end-effector frame 7,,.1. Givenabaselocation z, et ¢;,;¢ () and g,..1( ) bethelK solutions
for Tini and 1,1, respectively. Our objective isto find the best base location z € X such
that the path between the giic(Z) and geoai(z) has the minimum cost. We can write this
more compactly as

mip min L(3),

where L(~) isthecost of apath v, and I, denotesthe set of al collision-freepaths such that
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foreach v € I';, v(0) = ginite(z) and y(1) = ggom(x). Figure 5.2 illustrates the statement
for a planar robot with two one-dof revolute joints. The base of the robot is assumed to
be constrained on aline. So the configuration space of the robot base and joints is three-
dimensional. For each fixed base location, there is atwo-dimensional cross section of joint
angles. Finding the best base placement z is equivalent to finding the cross section that
contains the optimal path.

5.4 TheBase Placement Algorithm

Our agorithm for robot placement makes use of two sub-algorithms. The first one is a
randomized path planner. Given aafixed baselocation z, the planner generatesacollision-
free path v between two configurations giyit (=) and g,..1(z). Thepath~ often containsmany
unnecessary turns because of the random stepstaken by the planner and must be optimized.
The second sub-algorithm takes~ asinput and computes alocally optimal piecewise-linear
path. The restriction to piecewise-linear pathsis not severe, since any reasonable path can
be well-approximated by apiecewise-linear one. Using thesetwo building blocks, the robot
placement algorithm iteratively searches for the best base location.

Our agorithm does not represent configuration-space obstacles (C-obstacle) explicitly.
Instead, a collision checker determineswhether aconfiguration isfree or not. To determine
whether a path is collision-free, we can discretize it into a sequence of configurations
and regard the path free if al these configurations are free. Problems may arise if the
discretization is not fine enough, but as explained in Section 2.5, they can be dealt with by
making use of the distance information returned by the collision checker.

In the following, we first look at the overall algorithm and then discuss the choice of
the two sub-algorithms.

Searching for the optimal placement In principle, given a path-planning and a path-
optimization algorithm, we can search for a good base location by brute force. At each
candidate base location, simply call the path planner to get a collision-free path and then
optimize it. However, this would be very expensive computationally due to the repeated
invocation of the path planner.

Notice, however, that if B, isthe C-obstaclefor amanipulator placed at «, for sufficiently
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small Az, B, A, canbeobtained from B, by asmall deformation. Thereforeacollision-free
path for a manipulator placed at = islikely to be collision-freein C,, A, the configuration
space for the manipulator placed at « + Ax. If not, we may hope to transform the path into
acollision-free one by a small deformation.

Using this observation and a fast path optimization routine, we can quickly recompute
an optimal path at each new base location and iteratively move the base towards the best
location. The algorithm is described in the pseudocode below. It selects new base locations
by randomly sampling the neighborhood of the best one found so far.

Algorithm 5.1 Robot placement.

1. Find a collison-free path for an initial base location x,, and optimize it to obtain a
piecewise-linear path v = (vy,v2,...,v,), Where vy = Ginit(z0), V2, .., Vp_1,0n =
Jgoal( o) arethe vertices of ~.

2. if acollision-free path v isfound

3. then z <+ z.

4, else return FAILURE.

5. repeat

6. x' + x + Ax for somerandom Az.

7. Compute ginit(z") and ggoai(z’) for the base location «’ using the manipulator 1K. If

Ginit(2") OF ggoai(z’) isin collision, then continue to the next iteration (line 6).

8. if the path (ginic(z’), va, - . ., Vo1, Geoat(2’)) IS cOllision-free

9. then 7" « (ginit(2'), v2, . .., Va1, Geoar(2')).

10. else Sample K" new configurationsin each of theneighborhoodsof vy, vs, ..., v,_1,
for some constant K.

11. Try to find a path +' between gini¢(z") and ggoai (") through the new config-
urations. Continue to the next iteration (line 6) if no collision-free path is
found.

12. Optimize~'.

13.  if L(y') < L(vy) then = « 2/; v < +'.
14. until the termination condition is satisfied.
15. return z and~.
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In lines 1011 of the algorithm, we find a collision-free path at the new base location
by randomly sampling in the neighborhood of the path for the previous base location.
Thisdeformation technique issimple to implement and usually quite effective. However, at
certain critical locations, no local deformation is sufficient to obtain anew path. Inthiscase,
we call the planner to replan anew path, but replanning does not happen very frequently in
practice.

The termination condition in line 14 can be implemented in various ways. A ssimple
one is to keep track of the improvement between successive iterations and terminate if
the improvement falls below some threshold. We also bound the maximum number of
iterations.

Note that the outcome of the algorithm may depend on the initial location z, and the
initial path computed by the randomized path planner. To alleviate the impact of this bias,
one may run the algorithm several times with different values for x, and initial paths, and
keep the best resullt.

Randomized path planning The goal here is to find a collision-free path between two
given configurations gini; and ¢, for a fixed base location. Although the obstacles that
we consider are stationary, the base location of the robot changes between iterations, and
therefore pre-computing aroadmap is not useful. The path planner described in Section 2.4
is a good candidate for the solution. Unlike most other PRM planners, it is intended for
single-query problems and builds only a small roadmap necessary to process the query. It
is also very efficient in general. Of course, other fast path planners may be used as well.
Note that if a manipulator has multiple IK solutions, we can easily extend our planner by
considering multiple ginit and ggoar-

Optimizing a path The specific choice of a path-optimization algorithm depends on the
robot and the cost measure used. To fit into the overall algorithm, path optimization must
be very fast becauseit is performed at every candidate base location.

A straightforward method for path optimization is to start with some initial path ~,
sample a large number of free configurations in the neighborhood of ~, find the best path
going through these configurations, and repeat the same operation on the new path. This
method is very general and can handle many different cost functions, but it can be quite
slow.
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Here we define the cost of apath to be the timethat it takesa manipulator to execute the
path, assuming that all joints can achieve maximum velocity in negligible amount of time.
As shown in Section 2.6, under this definition, the cost 1. of a piecewise-linear path v =
(v1,v9, ..., v,) IS L(y) = 05! 7(vi, vig1), Where T(v;, v;4 ) i the time needed to travel a
straight-line path between v; and v; ;. Sincethe function r satisfies the triangle inequality,
we can use ADAPTIVE-SHORTCUT for path optimization, which is much more efficient than
the general techniquedescribed in the above paragraph. However, in practice, thisdefinition
of path cost does not take into account manipulator dynamicsand is only an approximation
to the time that it takes a manipulator to execute a path. It is a good approximation if the
manipulator can reach the maximum speed quickly. If dynamics must be considered, we
have to resort to the general technique or some other path optimization methods based on
calculus of variations, but they are likely to be much slower than ADAPTIVE-SHORTCUT.

5.5 Computed Examples

We haveimplemented our algorithmin C++ and tested it on several datasets. Four examples
in our test suite are shown in Figure 5.3. They vary in the complexity of workspace and
motion needed to complete the specified tasks. Scene 1 is a simple blocks-world, and
the motion required of the robot is straightforward. Scene 2 is much more complex in
terms of both the workspace geometry and the motion required. The robot has to go
through openings in the window and sun-roof of the car in order to reach the task-points.
Scene 3 hasrelatively ssmple geometry, but in one of the tasks (p2), the robot hasto execute
complicated maneuvers in order to pull the big end-effector through a small rectangular
hole. Scene 4 isalarge CAD model containing about 72,100 triangles. The robot has to
maneuver among fixturing devices and reach under the side-panel of acar in order to access
the task-points. Scenes 1-3 were synthesized for testing; scene 4 was derived from CAD
data provided to us by General Motors. For each of these scenes, we specify a number of
tasksin the form of a pair of initial and goal end-effector frames (Cartesian frames at the
wrist-point of the robot), labeled by pl, p2, or p3in the figures.

Two types of robot are used in the tests. Scene 1 and scene 2 use a PUMA robot that
has six dofs and about 460 triangles describing its geometry. Scene 3 and scene 4 use a
modified version of a FANUC-200 robot. We have replaced the four-bar linkage of the
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Scene 1 Scene 2

Scene 3 Scene 4

Figure 5.3. Four test scenes for the robot placement problem.
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Table 5.1. Running time and cost of paths for the tested scenes.

Scene Ntri Task Tplan Nplan Topt Nopt C1ini1: Ci-opt Cﬁnal
(sec) (sec) (sec.) | (sec.) | (sec)
1 560 | p1 0.3 309 | 151 | 9955 | 1.36 | 052 | 0.32
p2 0.3 362 88| 7016 | 1.08 | 048 | 0.39
p3 0.3 353 90| 6831 126 | 077 | 050

2 21400 | p1 34 2831 | 398 | 17647 || 225 | 151 | 1.16
p2 4.2 3806 | 31.7 | 10053 || 257 | 153 | 1.08
p3 165 | 14794 | 341 | 10255 || 280 | 169 | 144
3 1368 | pl 4.4 4331 | 255 | 17859 || 1.13 | 0.84 | 0.48

p2 || 197.0 | 210829 | 55.4 | 23566 || 2.17 | 143 | 130
4 72100 | p1 114 7425 | 1074 | 24436 || 1.78 | 118 | 0.82
p2 251 | 28263 | 133.6 | 19453 || 1.24 | 0.79 | 0.59

FANUC-200 by asimple revolute joint in order to ssimplify the IK solution. The geometry
of therobot ismostly preserved. The modified robot hassix dofsand about 1, 260 triangles.

Theresultsof our experimentsare shownin Table5.1. Therunning timeswere collected
on an SGI Indigo 2 workstation with an 195 MHz MIPS R10000 processor and 384 MB
memory. In al the tests, our algorithm took only a few minutes to finish the computation,
and less than a minute for ssimpler problems. The cost of the paths was reduced by about
50% by choosing a good base location and optimizing the path.

Column 2 of the table lists the total number of triangles contained in all the objectsin
the environment, including therobot. It givesan ideaof the complexity of the environment.
Columns 4 and 5 give the running time and the number of collision checks needed to find
an initial collision-free path. For ease of implementation, we used the Scheme 2.2 with
uniform sampling strategy for path planning. The algorithm performed reasonably well
in these examples. All problems except for one were solved in less than 30 seconds. In
the case where the planner took a long time, the robot must pull the welding-gun (end-
effector) throughasmall hole, avery challenging situation for arandomized motion planner.
Columns 6 and 7 show the running time and the number of collision checks spent searching
for the best base placement and acorresponding collision-free path. Therunning timesrange
from afew seconds to 2-3 minutes. Recall that at each new base location, the algorithm
must find a new collision-free path and optimizeit. Both operations require alarge number
of collision checksand are very costly. The computation time was significantly reduced by
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Figure 5.4. Reduction in path cost for the test cases.

exploiting the spatial coherencein the configuration space aswe have discussed previously.

The last three columns of the table list respectively the cost of theinitial path, the cost
of the optimized path at the initial base location, and the cost of the path at the best base
location found. The same data are shown in a bar graph (Figure 5.4). The horizontal axis
of the graph represents the ten test cases, and the vertical axis representsthe path cost. By
comparing the costsin columns 8 and 9 of Table 5.1, we see that ADAPTIVE-SHORTCUT was
able to reduce the cost of paths by about 25-60%. Finding a good base location further
reduced the cost by additional 10-30%.

5.6 Discussion

This chapter presents an algorithm that computes a locally optimal base location and a
corresponding collision-free path for arobot manipul ator to move between two end-effector
frames in minimum amount of time. We have tested this algorithm on both synthesized
examples and real-life CAD data from the automotive industry. Experiments show that
the algorithm can significantly reduce the cycle time by choosing a good base location
and optimizing the path, and therefore improve the productivity of a workcell. In all
our experiments, the computation was completed in a few minutes. The efficiency of
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our algorithm, we believe, derives from two factors. The first one is the use of a fast
randomized path planner, which has enabled us to give a more realistic formulation of the
robot placement problem that takes into account obstacles in the environment. The second
factor isthe spatial coherence of collision-free pathsfor base locations close to one another.
By taking advantage of spatial coherence, we avoid paying the high computational cost of
recomputing a collision-free path at each new base location from the scratch.

Currently our algorithm only considers a minimum-cost path between two end-effector
frames. Animmediate extension of the problemisto consider multiple end-effector frames.
Given aset of end-effector frames and a partial order on them so that some frames have to
be visited before others, we would like to find a path that visits each frame exactly once and
obeys the partial order. Thisis closely related to the traveling salesman problem [L*85],
which hasbeen studied extensively. Despiteitsdifficulty, many heuristic and approximation
algorithms are available.

Our agorithm was originally developed for the base placement problem, but the ap-
proach can potentialy be applied to kinematic synthesis problems, in which one tries to
find a small set of parameters to configure a robot. Application of the algorithm to this
more general class of problemsis an interesting direction for future research.
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Conclusion

Motion planning is a provably hard computational problem; there is strong evidence that
a complete algorithm will take time exponentia in the number of dofs of a moving ob-
ject [Rei79]. A fundamental challenge in motion planning is to design algorithms that
are general and can efficiently handle a large number of dofs under complex motion con-
straints. In recent years, random sampling has emerged as an important framework for
motion planning. In addition to being able to deal with many dofs, randomized motion
planning agorithms are often simple to implement.

6.1 Summary of Main Results

We have presented efficient randomized algorithms for single-query motion planning. Our
planners incrementally construct a roadmap in the free space by random sampling. Two
specific planners have been discussed in detail. One considers the ssmpler problem of
path planning, in which the only requirement is that the motion of moving objects remains
collision-free. The other extends the basic idea to solve kinodynamic motion planning
problems, which take into account non-holonomic and dynamic constraints on the motion.
In the latter case, our algorithm encodes the motion constraints by a control system, a
system of differential equations that characterizes all possible movements of an object M
at each state. To sample new milestones, it first picks at random a control function « in
the space of admissible control functions and maps « to a point in the state space of M by
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integrating the control system with «. Our planners have been tested extensively with both
synthesized examples and real-life CAD data from the industry, and have demonstrated
strong performance on rigid-body and articulated objects with up to 18 dofs. The typical
running times of our planners range from less than a second in simple cases to tens of
secondsin very difficult ones.

Unlike most PRM other methods, which are intended for processing many queries
in a static environment, our planners do not perform expensive pre-computation and are
able to handle environments that are frequently changing. This makes them particularly
useful in practical applications. We have given three examples: assembly maintainability
checking, motion synthesis for animated characters, and kinodynamic motion planning for
an integrated real-time robot system in dynamic environments. In the first two cases, the
environments have complex geometry with up to 200,000 triangles, and the final motion
of the object requires delicate maneuvers in order to avoid collision with obstacles. To
our knowledge, some of these problems are very difficult to solve, if they can be solved at
al, with traditional PRM methods. In the third case, our planner for kinodynamic motion
planning is integrated with a real-time robot system developed for testing space robotics
technology. The robot operates in an environment with moving obstacles. Our planner
computes an acceleration-bounded, collision-free trgjectory for the robot under real-time
constraints.  Although the planner assumes that the obstacles move with constant linear
velocities, avision system continuously monitorsthe motion of the obstacles. If an obstacle
deviates from its predicted trajectory, the planner re-computes the robot’s trgjectory on the
fly.

The complexity of path planning problemsistraditionally measured by the dimension of
theinput configuration space aswell asthe number and the maximum degree of polynomials
describing obstacle boundaries. However, experimentsin thiswork and el sewhere indicate
that the most significant impact on the running time of randomized path planners comes
from narrow passages in the free space. To explain the experimental results, we have
introduced the notion of expansive spaces, which is based on the volumes of certain subsets
in the free space. We have proven that in an expansive space, our planners find a solution
with probability that converges to 1 at an exponential rate, if a solution exists. Also the
number of milestones needed to process a query increases only moderately when the space
becomes less expansive. The notion of expansive spaces is important, because it provides
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the analysistools for us to understand under what conditions randomized motion planning
algorithms work well.

An efficient motion planner can aso be used as a building block for accomplishing
more complex tasks. We have demonstrated this on the robot placement problem in
workcell design. Although in this case, adirect invocation of path planners does not solve
the problem, the basic idea of constructing the connectivity of the configuration space
via random sampling remains useful. By combining our randomized path planner with
local iterative optimization, our algorithm computes simultaneously a base location and a
corresponding collision-free path that are optimized with respect to the execution time of
tasks. The availability of a fast randomized path planner has enabled us to give a more
realistic formulation of the robot placement problem, which takes into account both the
motion of the robot and obstaclesin the environment.

6.2 FutureWork

The main outstanding issue with randomized motion plannersis the narrow passage prob-
lem [Lat0Q]: if the free space F contains narrow passages, randomized motion planners,
including ours, must sample a large number of milestones in order to have one fall into
the narrow passage and establish connections between different parts of 7. One heuris-
tic for dealing with this problem is to sample more densely on or near obstacle bound-
aries[ABD*98, BOvdS99], because narrows passages often lie close to the obstacle bound-
aries. However, the boundaries may be very complex due to the geometric interaction
between the moving object and the obstacles. The effectiveness of this idea has only been
demonstrated in relatively simple examples. Another approach isto accept, as milestones,
samples whose penetration distance into the obstacles is small, thus effectively widening
the narrow passages and making it easier to connect different parts of . The difficulty
with this approach isthat in general, penetration distance is difficult to define and compute
effectively. A satisfactory solution to the narrow passage problem has so far eluded us,
better and maybe more specialized sampling strategies may be needed to addressthisissue.

The experiments also indicate that the running time distribution of our randomized
motion planners has a long and thin tail, caused by a small number of runs taking time
much longer than the average. 1t would beinteresting to investigate techniquesfor reducing
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the variance of running times. Thisis especially important for our single-query planners,
because they are intended to be used interactively or in real time. Large variances in the
running times are highly undesirable in these settings.

To date, most of the work on randomized motion planning has been empirical. We
have introduced the notion of expansive spaces as a new way to characterize the difficulty
of motion planning problems. However, the parameters for an expansive space cannot be
easily determined except for very simple spaces, and so we cannot decide, in advance, the
number of milestones needed for agiven query. It isimportant to continue looking for new
tools to analyze the efficiency of randomized motion planners. If we cannot measure the
performance of these algorithms quantitatively, we will not be able to compare, improve,
and thus advance our understanding of them.

Today, more than ever before, computers are being used as a tool to interact with the
physical world, either area one or a simulated version of it. The rapid advancement of
hardware technology allows us to represent more and more detailed models of complex
physical objects in computers. Generating motion for them becomes an essential task in
these environments. Random sampling has made motion planning less dependent on the
number of dofs; it has opened up the possibility to study the motion of large systems
under complex physical constraints. Many interesting questions are waiting to be explored.
How can we synthesize realistic motion for life-like animated characters? How can we
control and coordinate the motion of alarge group of independent robots? Related to this
guestion is motion planning of reconfigurable robots made up of hundreds or thousands of
identical modules. Also, how can we generate motion for deformable objects? We need
to develop representations that not only model the physics of deformation correctly, but
also are compact enough for efficient motion generation. The complexity of these new
problems stems from the interaction between a very large number of dofs and the desire to
generaterealistic motion under physical constraints. The presenceof constraintsmay reduce
the number of dofs; on the other hand, they make the structure of the space more intricate.
Random-sampling techniquesdevel oped for many-dof articul ated objectsareagood starting
point for answering these questions, but new representations and computational techniques
arelikely to be needed. Asisusually the case with knowledge, “what we know is not much;
what we do not know isimmense.”*

*P-S. Laplace.
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