
Integrated Perception and Planning in the
Continuous Space: A POMDP Approach

Haoyu Bai David Hsu Wee Sun Lee

Department of Computer Science
National University of Singapore

Singapore, 117417, Singapore

Abstract—The partially observable Markov decision process
(POMDP) provides a principled mathematical model for integrat-
ing perception and planning, a major challenge in robotics. While
there are reasonably efficient algorithms for discrete POMDPs,
continuous models are often more natural for robotic tasks, and
currently there are no practical algorithms that handle contin-
uous POMDPs at an interesting scale. This paper presents an
algorithm for continuous-state, continuous-observation POMDPs.
We provide experimental results demonstrating its potential in
robot planning and learning under uncertainty and a theoretical
analysis of its performance. A direct benefit of the algorithm is
to simplify model construction.

I. INTRODUCTION

Integrated perception and planning is essential for reliable
robot operation and poses a major challenge in robotics.
The partially observable Markov decision process (POMDP)
provides a mathematical model that connects perception and
planning in a principled manner. It has been applied to a range
of robotic tasks, including navigation [24], grasping [13], and
aircraft collision avoidance [2]. However, efficient POMDP
algorithms existing today typically assume discrete models
(e.g., [14], [17], [25]), in which an agent’s states, actions,
and observations are all discrete, while for robotic tasks,
continuous models are often more natural. To our knowledge,
there are currently no practical algorithms that handle con-
tinuous POMDPs at an interesting scale for robotic tasks.
Here we aim to develop an efficient algorithm for continuous-
state, continuous-observation, but discrete-action POMDPs
and apply it to robot planning and learning under uncertainty.

Because of uncertainty inherent in robot control and sensing,
a robot does not know its state perfectly. To choose an action,
it must consider all possible states consistent with actions
taken and observations received. In a POMDP, we capture the
state uncertainty in a belief, which can be represented as a
probability distribution over the robot’s state space. The set
of valid beliefs forms the belief space B. An offline POMDP
algorithm systematically reasons over B and tries to construct
an optimal policy π : B → A, which prescribes to every belief
in B a best action from an action set A.

To apply discrete POMDP algorithms to tasks with con-
tinuous states and observations, a common approach is to
discretize state and observation spaces with a regular grid. This
is difficult to scale up, as the computational cost increases
exponentially for high-dimensional spaces. We avoid such

WAIT

WAIT

GO

CLEAR

HIT

HITCLEAR

......

CLEAR'

CLEAR

HIT

HIT '

WAIT

WAIT

GO

(a) (b)
Fig. 1. Intersection navigation. (a) An autonomous vehicle, in blue, navigates
through an uncontrolled road intersection. It is equipped with a sensor to
measure proximity to obstacles along a set of beams. (b) An example GPG.
CLEAR, CLEAR′, HIT, and HIT′ represent subsets of continuous observations.

fixed discretization. Conceptually we perform probabilistic
sampling to “discretize” state and observation spaces implicitly
during the policy computation. The sampling adapts to the
accuracy of policy computation.

One main challenge with continuous POMDPs lies in rep-
resenting the belief and the policy: the belief is a continuous
probability distribution, and the policy maps such a continuous
probability function to an action. Developing finite representa-
tions for them is difficult. We introduce the generalized policy
graph (GPG) as an alternative policy representation. Each node
of a GPG is labeled with an action. Since the observation space
is continuous, each node has an associated edge classifier,
which is a function that maps an input observation to another
GPG node. Intuitively we can think of a GPG as a finite-
state controller with continuous input. Consider the example
in Fig. 1. Under this policy, the stopped autonomous vehicle
moves forward only after receiving two successive observa-
tions from CLEAR and CLEAR′, respectively.

We construct a GPG by iteratively applying the Bellman
backup equation to an initial policy. This is the same basic
idea of value iteration [28], but we perform backup on a GPG
rather than a value function. To deal with continuous state
and observation spaces, we evaluate the Bellman equation
by Monte Carlo sampling. We also provide a performance
bound on the number of samples required to compute an
approximately optimal policy.

Our algorithm applies without modification to POMDPs
with large discrete state or observation space as well.

One immediate benefit of the new algorithm is simplified
model construction, as it removes the need to discretize states

and observations manually. Consider the example in Fig. 1
again. In a discrete POMDP model, we must choose discrete
locations as the states for the vehicles. We must also construct
observations. One way is to quantize the proximity sensor
readings for each beam. This results in 2K observations for
K beams, even with a two-level quantization. A more sophis-
ticated observation model calculates the maximum-likelihood
vehicle location by preprocessing the sensor readings and
uses the estimated location as the observation. This reduces
the number of observations, but may lose information during
the preprocessing and degrade the quality of the computed
policy (see Section V-B). The new algorithm alleviates the
difficulty of these modeling choices by sampling directly from
the continuous state and observation spaces during the policy
computation.

One way of dealing model uncertainty in a POMDP is
to incorporate unknown model parameters into the state [8],
thus performing planning and learning simultaneously. In this
setting, one added benefit of the new algorithm is that it
handles continuous model parameters directly, without the
need to discretize them a priori [30].

II. RELATED WORK

With continuous states, a main difficulty in POMDP plan-
ning is belief representation. One approach is to restrict to
a parametric class of beliefs, e.g., the Gaussian [6], [22]
or the Gaussian mixture [19]. However, robotic tasks often
involve beliefs with multiple modes and sharp edges, e.g.,
when a robot navigates through long, narrow corridors with
few features. In this case, the Gaussian mixture has difficulty
in scaling up. Other approaches use sampled representations
such as the particle filter [4], [19], [27], or aggregate sampled
beliefs approximately [7]. Our algorithm uses a sampled belief
representation for offline policy computation. For online policy
execution, it exploits the policy graph representation and
does not track the belief explicitly, thus avoiding the belief
representation issue there.

Another difficulty with continuous states is policy repre-
sentation. Instead of representing the policy directly, one may
develop a hierarchical representation for the value function
associated with the policy [5]. The hierarchical representation
would be effective if the value function is sufficiently smooth,
but may have difficulty in scaling up to high-dimensional state
spaces. We thus choose to use the policy graph, which is
more direct and simpler. However, the two approaches are
complementary and may be combined (see Section VII).

Continuous observations cause difficulty in a different way.
A POMDP policy must condition on all future observations.
Clearly it is impossible to enumerate an infinite number of
continuous observations. Earlier work addresses this issue by
aggregating observations, but it requires discrete states for
policy representation [12]. In contrast, our algorithm handles
both continuous states and continuous observations.

Instead of restricting the belief space, a different approach
is to search a restricted policy class, e.g., finite-state con-
trollers [16], [20] or memoryless reactive policies [1]. These

methods, however, cannot guarantee the global optimality of
the computed policy. We show in Section VI that under
reasonable conditions, our algorithm is guaranteed to find an
approximately optimal policy with high probability.

Our algorithm computes offline a policy conditioned on
future observations. An orthogonal direction is to perform for-
ward search online (e.g., [11], [18], [23], [29]), which chooses
a single best action for the current belief. It does not compute a
policy and completely avoids the issue of policy representation
for continuous state space. Online search and offline policy
computation can be combined to solve difficult POMDPs, e.g.,
by using approximate or partial policies computed offline as
default policies for online search.

Our algorithm evaluates the Bellman equation by Monte
Carlo sampling. This is the basic idea of approximate dynamic
programming [21] and used in various MDP/POMDP planning
and reinforcement learning algorithms (e.g., [1], [15]).

Our algorithmic approach builds on the policy search al-
gorithm in [9] and the MCVI algorithm [4]. The former is
designed for discrete POMDPs. The latter deals with contin-
uous states, but only discrete observations.

III. POMDPS WITH CONTINUOUS STATES
AND OBSERVATIONS

A. The Model

Formally, a POMDP is a tuple (S,A,O, T, Z,R, γ), where
S, A, and O denote a robot’s state space, action space and
observation space, respectively. At each time step, the robot
takes an action a ∈ A to move from a state s ∈ S to s′ ∈ S; it
then receives an observation o ∈ O. The model for the system
dynamics is specified by a conditional probability function
T (s, a, s′) = p(s′|s, a), which accounts for uncertainty in
robot control, unexpected environment changes, etc.. Similarly,
the observation model is specified by a conditional probability
function Z(s′, a, o) = p(o|s′, a), which accounts for sensing
uncertainty. The function R(s, a) specifies a real-valued re-
ward for the robot if it takes action a in state s. The robot’s
goal is to choose a sequence of actions that maximizes the
expected total reward E

(∑∞
t=0 γ

tR(st, at)
)
, where st and at

denote the system’s state and action at time t. The discount
factor γ ∈ [0, 1) ensures that the total reward is finite, even
when a planning task has an infinite horizon.

As a modeling language, the POMDP is agnostic about
whether S, A, and O are continuous or discrete. The difference
is, however, significant for belief and policy representations.
In our model, both S and O are continuous, but A is discrete.

B. Beliefs

In a POMDP, we capture the robot’s state uncertainty in
a belief, which is a probability distribution over S. Suppose
that b is the current belief on the robot state. If the robot
executes action a and receives observation o, the new belief
bao is calculated according to the Bayes’ rule:

ba(s′) =

∫
s∈S

p(s′|s, a)b(s) ds, (1)

bao(s) = ηp(o|s, a)ba(s), (2)

where η is a normalizing constant. The update uses the
system dynamics model and the observation model to integrate
information from a and o into the new belief. Since S is
continuous, we use a set of particles [28] as a finite belief
representation in the offline policy computation.

C. Policies

One common POMDP policy representation is a policy
graph, which is a directed graph. Each node of a policy graph
is labeled with an action from A, and each edge is labeled
with an observation from O. The policy graph representation
is compact, as its size depends only on the complexity of a
policy and not on the size of the state space S. It has been used
successfully in various algorithms for POMDPs with large
discrete or continuous state space (e.g., [2], [20]).

However, each edge of a policy graph corresponds to a
single observation, and this is unsuitable for POMDPs with
large discrete or continuous observation space. The GPG
generalizes the policy graph to POMDPs with continuous
observation space by representing outgoing observation edges
as a classifier that maps observations to subsequent policy
graph nodes. Formally, a GPG G is a set of nodes. Each
node v = (a, κ) consists of an action a ∈ A and a mapping
κ : O → G.

To execute a policy πG,v represented as a GPG G, we start
at a node v = (a, κ) in G and take the action a. Upon receiving
an observation o, we move to the next node v′ = κ(o). The
process then repeats at the new node v′ = (a′, κ′). We do not
track beliefs explicitly using (1) and (2), but instead represent
beliefs implicitly as histories of actions and observations.

Each node v ∈ G induces an α-function αv : S → R, which
defines the expected total reward of executing πG,v starting
at an initial robot state s ∈ S. If the initial robot state is
uncertain and described as a belief b, the expected total reward
is then

∫
s∈S b(s)αv(s) ds. We define the value of a belief b

with respect to a GPG G as the highest expected total reward,
starting at any node in G:

VG(b) = max
v∈G

∫
s∈S

b(s)αv(s) ds. (3)

IV. ALGORITHM
A. Overview

Our algorithm computes a GPG as an approximation to an
optimal policy. Following the highly successful point-based
approach for discrete POMDPs [14], [17], [25], we sample
a set B of points from the belief space and perform value
iteration asynchronously over B. However, we iterate over a
GPG instead of a value function. It is well known that value
iteration converges under very general conditions.

We start with an initial GPG G0. For each action a ∈ A, we
create a node v = (a, κ) in G0, with κ(o) = v for all o ∈ O.
Basically, G0 corresponds to a set of single-action policies.

We then iteratively apply the Bellman backup equation at a
belief b ∈ B to improve the current GPG G:

HVG(b) = max
a∈A

{
R(b, a)+γ

∫
o∈O

p(o|b, a)VG(bao) do
}
, (4)

Algorithm 1 Perform backup of a GPG G at a belief b.
MC-BACKUP(G, b,M,N,K)

1: for each a ∈ A do
2: κa ← BUILD-CLASSIFIER(G, b, a,N,K).
3: va ← (a, κa).
4: Va ← 0.
5: for i = 1, 2, . . . ,M do
6: Sample a state s from the distribution b(s).
7: Va ← Va + SIMULATE(G ∪ {va}, va, s).
8: a∗ ← arg maxa∈A Va.
9: G′ ← G ∪ {va∗}.

10: return G′

Algorithm 2
BUILD-CLASSIFIER(G, b, a,N,K)

1: Sample a set S′ of N states from the distribution ba(s).
2: Γ← ∅.
3: for each v ∈ G do
4: for each s ∈ S′ do
5: αv(s)← 0
6: for i = 1, 2, . . . ,K do
7: αv(s)← αv(s) + SIMULATE(G, v, s)
8: αv(s)← αv(s)/K
9: Γ← Γ ∪ {αv}.

10: return (S′, G,Γ).

where H denotes the Bellman backup operator and R(b, a) =∫
s∈S R(s, a)b(s) ds. The backup operation looks ahead one

step and chooses the action that maximizes the sum of the
expected immediate reward R(b, a) and the expected value of
the next belief with respect to G. The result is a new GPG
G′ with one new node v = (a∗, κa∗) added to G, where a∗ is
the maximizer in (4) and κa∗ is the associated edge classifier
that maps an observation o to a node in G. To execute the
corresponding policy πG′,v , we start at v and take action a∗.
After receiving an observation o, we move to the node κa∗(o)
in G and follow πG,v from then on.

It is important to note that our algorithm does not explicitly
represent the value function VG. It performs lazy evaluation of
VG through sampling, whenever needed.

We now elaborate on the backup and the belief space
sampling procedures in the next two subsections.

B. Monte Carlo Backup and Classifier Construction

To perform backup of G at b using (4), it involves integrat-
ing over continuous state and observation spaces. Our algo-
rithm performs the evaluation approximately through sampling
(Algorithm 1 and 2).

First, we construct an edge classifier κa for each a ∈ A
(Algorithm 1, line 2). By substituting (3) into (4), it is clear
that κa must map an observation o to the best node v∗ ∈ G,
implying that v∗ maximizes∫

s∈S
bao(s)αv(s) ds = η

∫
s∈S

ba(s)p(o|s, a)αv(s) ds. (5)

To evaluate the above integral, we sample a set S′ of states
according to the distribution ba. For each v ∈ G and each

sample s ∈ S′, we estimate the value of αv(s) with a set of
Monte Carlo simulations. The procedure SIMULATE(G, v, s)
starts at the initial state s and the node v = (a, κ) in G. To
simulate taking action a in state s, it samples a state s′ from
the distribution T (s, a, s′) = p(s′|s, a) and an observation o
from the distribution Z(s′, a, o) = p(o|s′, a). The process
then repeats from the state s′ and the node κ(o) ∈ G. The
simulation length is chosen so that the estimation error is
sufficiently small, as a result of the discount factor γ. We
collect all the estimates together in

ΓS′,G = {αv | αv : S′ → R and v ∈ G}

which basically contains sampled values of a set of α-
functions. The tuple (S′, G,ΓS′,G) provides all the information
necessary for constructing the classifier κa:

κa(o) = arg max
v∈G

∑
s∈S′

p(o|s)αv(s), (6)

in which the sum approximates the integral in (5). The values
in Γ serve as the classifier coefficients.

Geometrically, κa maps an observation o to a n-dimensional
feature vector [p(o|s1), p(o|s2), . . . , p(o|sn)] for si ∈ S′ and
then performs the classification in this feature space. Keep in
mind, however, that the feature space is attached to a specific
belief ba, though we do not make the dependency explicit to
simplify the notation.

Although a finite number of samples are used to construct
κa, our analysis provides a uniform error bound on the clas-
sifier’s performance for any o from a continuous observation
space (Theorem 1).

After constructing κa for each a ∈ A, we perform another
set of Monte Carlo simulations to find the best action a∗ and
the associated classifier κa∗ (Algorithm 1, line 3–8), resulting
in a new GPG node (a∗, κa∗).

Algorithm 1 summarizes the backup procedure, which takes
O(|A||G|NK + |A|M) simulations. Of the three parameters
M , N , and K that control the number of simulations and sam-
ples, N dominates the running time. It also controls the quality
of the computed policy, as it determines the representational
complexity and the accuracy of classifiers.

C. Belief Space Sampling

There are several approaches to sample the belief space
[14], [17], [25]. For space limitation, we give a very brief
description here, as it is not the main focus of this work. One
approach is to spread samples evenly over the belief space
B to cover it [17]. This is practical only if B is sufficiently
small. Instead, we build a belief tree with an initial belief b0
as the root. Each belief b at a tree node has upper and lower
bounds on its value. The lower bound is the value of b with
respect to the current policy. To compute the upper bound,
we relax the model, for example, by assuming the states are
fully observable and solving the resulting MDP. To sample
new beliefs, we traverse a single path down the tree in the
direction that tends to shrink the gap between the upper and
lower bounds at the root b0. We then expand the leaf node

TABLE I
THE SIZE AND EXECUTION SPEED OF COMPUTED POLICIES.

Task N |G| Speed (KHz)
LQG 50 1024 25.5
intersection navigation 500 20 1.7
acrobot 100 825 14.8

N : number of samples for each α-function in the classifier
|G| : number of GPG nodes

Speed : policy execution speed in the number of GPG nodes
processed per second

and add a new belief node to the tree. To perform backup, we
retrace this path back to the root and invoke MC-BACKUP at
each node along the way. See [14] or [25] for details.

V. EXPERIMENTS

We evaluated our algorithm on three tasks. In linear-
quadratic-Gaussian (LQG) control, we can solve for the opti-
mal policy analytically and use it to calibrate the performance
of the new algorithm. In intersection navigation, we investigate
the benefit of sampling the observation space O during the
policy computation, rather than discretizing O a priori. Finally,
in acrobot, we use the algorithm for Bayesian reinforcement
learning in order to handle model uncertainty.

A. LQG Control

An LQG system is basically a POMDP with linear system
dynamics, Gaussian noise, and a quadratic reward function.
Our simple LQG problem is given by

xt = −xt−1 + ut−1 + wt

yt = xt + vt

where xt, ut, and yt are the state, the action, and the obser-
vation at time t, and wt ∼ N (0, 10) and vt ∼ N (0, 10)
represent zero-mean Gaussian system noise and observation
noise. The goal is to minimize the infinite-horizon average cost
C = limN→∞

1
N

∑N
t=0

(
x2
t + u2

t

)
. A linear feedback policy

has the form ut = λx̂t, where x̂t is the estimated mean state
at time t and λ is the control gain. The optimal policy has
λ∗ = 0.618.

To recast the problem as a POMDP, we choose 17 equally
spaced actions in the range [−24, 24] and set the discount
factor to 0.99 to approximate the infinite-horizon cost function.
The state space and the observation remain unchanged. The
computed policy contains 1, 024 policy graph nodes.

We evaluated the POMDP policy and several linear feed-
back policies with different λ by performing 10,000 simula-
tions for each. Fig. 2 shows their costs and behaviors. The
POMDP policy computation neither exploits the linearity of
system dynamic nor possesses prior knowledge of the linear
form of the optimal policy. Nevertheless, it discovers a policy
that has a roughly linear form, up to action discretization and
has a cost close to the minimum.

Table I shows the size of policies computed for this and the
other two tasks, and their execution speed. The running times
are obtained on a PC with a 2.83 GHz CPU and 4 GB memory.
In case of multiple policies computed, Table I shows the results
for the largest policy. The results confirm one main benefit

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
control gain(λ)

200

220

240

260

280

300

320

340
co

st
(C

)

LQG
POMDP

40 20 0 20 40
estimated state(x̂)

20

10

0

10

20

co
n
tr

o
l(
u
)

λ=0.4

λ=0.5

λ=0.618

λ=0.8

λ=0.9

POMDP

(a) (b)
Fig. 2. Comparing the LQG POMDP policy and the linear feedback policies.
(a) Policy costs estimated from 10, 000 simulations. The dashed line indicates
the cost of the POMDP policy. The curve plots the cost of linear feedback
policies with different control gain λ. The standard errors of the estimated
costs are all less than 1 and not visible on the plots. (b) Policy behaviors. For
the POMDP policy, we plot the mean of the belief and the action associated
with each policy graph node.

of the policy graph representation, very fast policy execution,
which is important for some applications.

B. Intersection Navigation

Recall the example in Fig. 1. The autonomous vehicle R, in
blue, stops at the intersection and waits for the other vehicle R′

to clear before proceeding. R′ cannot be localized accurately,
as the measurements from R’s proximity sensor are noisy. R
wants to go through the intersection as fast as possible, while
maintaining safety. So it must carefully balance exploration
and exploitation by hedging against the noisy observations.

Our main objective here is to investigate the effect of
observation modeling on the policy and not necessarily a
high-fidelity model for vehicle navigation. We make a few
simplifications to stay on the main issue. Assume that the
vehicles move within a lane. The state space S = [−10, 10]
encodes the position of R′, which is sufficient to decide the
action of R. The initial belief on the position of R′ is uniform
over [−10, 0]. R has two actions. WAIT keeps R stopped.
GO moves R forward through the intersection. There is no
emergency stop in our simple model. If R goes through the
intersection successfully, it gets a reward 1. If a collision
occurs, it gets a large penalty Rp. Hence the reward function

R(s, a) =

 0 if a = WAIT
1 if a = GO and s /∈ [−1, 1]
−Rp if a = GO and s ∈ [−1, 1]

.

We tested two observation models. The first one follows
the standard beam model for proximity sensing [28]. An
observation o = (h1, h2, . . . , h30) consists of readings along
30 beams equally spaced over 160◦ field of view. We quantize
each reading hi into a binary value: hi = 1 indicates that the
ith beam hits R′, and hi = 0 indicates that the beam does not.
There are false positives, due to unexpected obstacles, and
false negatives, due to, e.g., total reflection or glass. Let h∗i
denote true value for the ith beam. Our test uses a high-noise
environment with p(hi = 1|h∗i = 1) = 0.7 and p(hi = 0|h∗i =
0) = 0.9. The beam model assumes that readings along the
beams are independent: p(o|s, a) =

∏30
i=1 p(hi|s, a) [28].

The main difficulty with the beam model above is the
high-dimensional observation space. With 230 observations,

TABLE II
PERFORMANCE COMPARISON OF POMDP POLICIES WITH TWO

DIFFERENT OBSERVATION MODELS FOR INTERSECTION NAVIGATION.

Rp Observation |G| Time Accident Rate
10 beam 14 2.61±0.0095 0.0029±0.00053

ML 78 4.65±0.0015 0.0160±0.00014
100 beam 20 3.12±0.014 0.0009±0.00030

ML 72 10.95±0.0037 0.0034±0.00005
1000 beam 18 5.03±0.030 0.0002±0.00014

ML 41 12.92±0.00029 0.0004±0.000021

|G| : number of GPG nodes
Time : time to cross the intersection

10 8 6 4 2 0 2

s

0.00

0.05

0.10

0.15

0.20

10 8 6 4 2 0 2

s

0.00

0.05

0.10

0.15

0.20

b(
s)

10 8 6 4 2 0 2

s

0.00

0.05

0.10

0.15

0.20

Fig. 3. Posterior beliefs b1, b2, and b, from left to right.

no POMDP algorithm can cope. To avoid direct reasoning
with the high dimensional observation space, our second
model calculates the maximum-likelihood (ML) location x
of R′ from o = (h1, h2, . . . , h30), with x discretized into
bins X = {−10,−9, . . . , 9, 10}. Specifically, we have x =
ζ(o) = arg maxx∈X p(x|o) = arg maxx∈X p(o|x)p(x)/p(o),
where the prior p(x) is uniform over X . We then use x as
the observation for the POMDP model, resulting in only 21
observations in total. This drastic reduction in the number of
observations, however, comes at a cost, as we see next.

For the beam model, our new algorithm was the only option
available to solve the resulting POMDP. For the ML model,
we used the MCVI algorithm [4], which is specialized for
continuous-state, discrete-observation POMDPs.

We solved several POMDP models with different values
for the collision penalty Rp and evaluated each computed
policy with 1, 000, 000 simulations. The results are reported
in Table II. Clearly the new algorithm with the beam model
achieved consistently better results with lower accident rate
and faster crossing time.

The performance gap results from information loss during
the maximum-likelihood calculation. To understand this, con-
sider a particular state s = −4 and choose two high-probability
beam observations o1 and o2 from p(o|s = −4) such that
ζ(o1) = ζ(o2) = x. That is, we have the same ML location
estimate for both o1 and o2 and cannot differentiate them in
the ML observation model. Now consider the posterior beliefs
b1, b2, and b (Fig. 3) for o1, o2, and x in their respective
models, after R executes a single WAIT action and receives
the observation. The posterior beliefs all have the same general
shape. However, a careful comparison of b1 and b2 reveals a
small secondary peak for b2 in the region [−1, 1], indicating
the likely presence of R′ in the intersection. A good policy
must handle this low-probability, but critical event properly.
Otherwise the vehicle will either get into an accident or
unnecessarily wait. However, the ML model provides the same
observation x whether it is actually o1 or o2, and the posterior
belief b does not have a secondary peak. In general, there

Fig. 4. The acrobot is a two-link articulated robot actuated
only at the joint connecting the two links and thus unactuated.
It resembles a gymnast swing on a high bar. In the standard
acrobot, each link has mass m = 1.0 and length ` = 1.0.

are 230 beam observations, but only 21 ML observations.
Many beam observations map into the same ML observation
and cannot be differentiated in the ML model. This loss of
information is a main contributor of the performance gap.

C. Acrobot with Model Uncertainty

Acrobot is a well-studied underactuated system (Fig. 4). In
the swing-up task, the acrobot must get its tip above the height
1.95 and achieve the almost fully stand-up configuration. Our
acrobot variant assumes that a key model parameter, the mass
m of the acrobot’s second link, is not known exactly, thus
introducing model uncertainty.

This task is particularly challenging, because the acrobot
dynamics is sensitive to m. An open-loop control policy
that successfully swings up an acrobot with m = 1.0 fails
completely on an acrobot with m = 1.01 [3]. To succeed,
a control policy must simultaneously learn the acrobot’s un-
known parameter and plan the actions under an uncertain
model. We apply the model-based Bayesian reinforcement
approach [8] and formulate the task as a POMDP.

The POMDP state is s = (q1, q2, q̇1, q̇2,m), where q1, q2 ∈
[−π, π], q̇1 ∈ [−4π, 4π], and q̇2 ∈ [−9π, 9π] represent the
joint angels and the angular velocities of the two links (Fig. 4).
All the state variables, including m, are continuous. The
acrobot can apply a torque τ ∈ {−1, 0,+1} at the elbow joint.
We use the system dynamics equations in [26] and assume no
action noise. An observation consists of the two joint-angle
values under Gaussian noise with variance 0.1. The angular
velocities q̇1 and q̇2 and the model parameter m cannot be
observed directly. The reward is 10 if the acrobot reaches
the specified height, and 0 for other states and actions. The
discount factor is 0.95. The initial belief for m is uniform over
[0.95, 1.05].

Our new algorithm can solve this POMDP without a priori
discretization of the state and observation spaces. State space
discretization is difficult in general, because it introduces mod-
eling errors that are difficult to quantify. It is exacerbated here
by the acrobot’s sensitive non-linear dynamics. Observation
space discretization is also difficult, as it may lose information
and degrade the quality of the computed policy (Section V-B).
We will see further evidence of the difficulty here.

We solved the acrobot POMDP with different values for
the sampling parameter N and evaluated each resulting policy
with 10, 000 simulations. For comparison, we also evaluated
an oracle policy, for which the model parameter m and the
system state are fully observable. Table III shows that a
relatively small N is sufficient to produce a good policy in
this case. Increasing N consistently improves the results, as N
controls the accuracy of edge classifiers and, in turn, policies.

Fig. 5 visualizes a particular edge classifier κ from the
policy with N = 100. Each point in the plot represents an

TABLE III
THE PERFORMANCE OF ACROBOT POMDP POLICIES WITH DIFFERENT

VALUES OF SAMPLE PARAMETER N .

Policy N |G| Average Height
oracle - - 1.97± 0.0000
POMDP 100 825 1.90± 0.0021

50 871 1.87± 0.0027
25 591 1.86± 0.0029
10 815 1.84± 0.0031
5 123 1.78± 0.0036
3 244 1.66± 0.0144

0.06 0.05 0.04 0.03 0.02 0.01 0.00
q1

0.06

0.04

0.02

0.00

0.02

q 2

v0

v1

v2

v3

v4

v5

Fig. 5. Visualization of an edge classifier κ. Each point is a sampled
observation o and colored according to the output GPG node κ(o).

observation o collected from a simulation trace going through
κ. The point is colored according to the output GPG node
κ(o). The observations fall into 6 classes, with very different
sizes. The smallest one has width about 0.001. To obtain the
same result with a regular discretization of the observation
space, we have to use very fine resolution, roughly 0.001, in
order to capture the small classes sandwiched between large
ones. The resulting 1, 000, 000 observations are beyond the
reach of any discrete POMDP algorithm.

This example confirms again the difficulty of observation
discretization. In practice, some observation discretization or
aggregation is probably necessary. However, a priori dis-
cretization without a good understanding of its effect should
be avoided. The new algorithm helps to reduce the need for
aggressive discretization.

VI. ANALYSIS

In this section, we analyze the approximation errors of our
algorithm as a result of Monte Carlo sampling and provide a
bound on its performance.

The analysis consists of four main steps showing that
1. given G, b and a, Algorithm 2 produces a classifier with

uniformly bounded error for every observation o ∈ O
with high probability, if sample sizes N and K are
sufficiently large;

2. for a given node v ∈ G, the same error integrated over
all observations remains bounded, due to the uniform
bound from the previous step (Theorem 1);

3. given G and b, the approximation error for a single
backup (Algorithm 1) is bounded with high probability
if M , N , and K are sufficiently large (Theorem 2);

4. finally, the accumulated approximation error after many
backup steps is bounded with high probability, provided
the sampled beliefs B approximate B well (Theorem 3).

We then conclude that the computed GPG converges to an
optimal policy when M , N , and K are sufficiently large.

In the following analysis, we assume R(s, a) ≤ Rmax and
Z(s, a, o) = p(o|s, a) ≤ Pmax for all s ∈ S, a ∈ A, and o ∈ O.

Define V (b, a, o, v) to be the expression in (5):

V (b, a, o, v) =

∫
s∈S

ba(s)p(o|s, a)αv(s) ds. (7)

Given belief b and a ∈ A, the optimal classifier κ∗ba(o)
produces a node v that maximizes V (b, a, o, v). By (6),
Algorithm 2 computes a classifier κba(o) that produces a node
maximizing a sampled approximation of (7)

V̂ (b, a, o, v) =
1

|S′|
∑
s∈S′

p(o|s, a)αv(s). (8)

We define the error in step 1 as |V (b, a, o, κba(o)) −
V (b, a, o, κ∗ba(o))|, for a fixed observation o. In step 2, we
integrate over all o ∈ O. Define

V (b, a, κ) = R(b, a) + γ

∫
o∈O

V (b, a, o, κ(o)) do. (9)

The error for step 2 is then |V (b, a, κba)− V (b, a, κ∗ba)|.
To analyze this error, we need to characterize the complexity

of observation functions using a notion called the covering
number. Let X denote a set of points in Rn. Given ε > 0,
a finite subset Y ⊂ Rn covers X , if for every x ∈ X , there
exists y ∈ Y with ‖x−y‖ < ε, where ‖x−y‖ = 1

n

∑n
i=1 |xi−

yi|. The covering number C(ε,X) is the minimum number of
points required to cover X .

Now consider a set of observation functions, Fa = {fa,o |
fa,o(s) = p(o|s, a), o ∈ O} for some action a ∈ A. Let s̄ =
(s1, s2, . . . , sN) be a sequence of N states sampled uniformly
at random from S, and Fa|s̄ = {(f(s1), f(s2), . . . , f(sN)) |
f ∈ Fa}. In our analysis, we bound the complexity of
observation functions by the maximum covering number

CZ(ε,N) = max
a∈A

sup
s̄∈SN

C(ε,Fa|s̄). (10)

Let

ρN(ε, τ) = 2048(PmaxRmax)
2

ε2(1−γ)2

(
ln
(

4|G|CZ
(ε(1−γ)

32Rmax
, N
))
− ln τ

)
.

The following theorem bounds the error between the optimal
classifier and the approximate classifier computed.

Theorem 1. Given a policy graph G, b ∈ B, a ∈ A, a set
S′ of N states sampled independently from S according to
p(s|b, a), and a permissible class1 of observation functions,

p(|V (b, a, κba)− V (b, a, κ∗ba)| > ε) ≤ τ (11)

for any ε, τ > 0, if N ≥ ρN(ε, τ).

The theorem assumes that the observation space O = [0, 1]n,
i.e., an n-dimensional unit hypercube with the Euclidean
metric. To simplify the presentation, we ignore the error of
estimating α(s) with K Monte Carlo simulations (Algorithm
2). This error can be made arbitrarily small with sufficiently
large K.

For the approximation error to converge to 0, Theorem 1
requires that for any ε > 0, CZ(ε,N)e−Cε

2N → 0, as N →∞,

1Measurability conditions that usually hold in practice (see [10]).

intersection navigation acrobot

0 100 200 300 400 500 600
N

400

450

500

550

600

650

700

Av
er

ag
e

to
ta

l r
ew

ar
d

0 20 40 60 80 100 120
N

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Av
er

ag
e

to
ta

l r
ew

ar
d

Fig. 6. Empirical convergence rates with respect to N . A solid line indicates
the average total reward obtained from 100,000 simulations. A dashed line
indicates the best-fit curve a/

√
N + b.

for a constant C. This condition is satisfied by many common
classes of functions (see [10]), e.g., the set of Gaussian func-
tions G = {go(s) | go(s) = e−(s−o)2 , s ∈ [0, 1], o ∈ [0, 1]}.
Consider two functions from G: e−(s−o)2 and e−(s−(o+ε))2 .
By the Mean Value Theorem, for any ε > 0,

|e−(s−o)2 − e−(s−(o+ε))2 | = |ε · 2(s− c)e−(s−c)2 | ≤ ε, (12)

for some c ∈ (o, o + ε). Since (12) holds for any s,
we have C(ε,N) ≤ 1/ε. Finally, it is easy to show that
C(ε,N)e−Cε

2N ≤ (1/ε)e−Cε
2N → 0 as N →∞.

In our setting, when the covering number CZ(ε,N) grows
slowly with ε and N , the approximation error decreases at
the rate of O(1/

√
N) approximately. Figure 6 shows the

empirical convergence rates for the intersection navigation
and acrobot swing-up tasks. They correlate well with the
theoretical analysis.

Theorem 1 bounds the error of a classifier computed for a
given action. Algorithm 1 then performs backup and constructs
the best policy graph node by selecting from the |A| candidate
action-classifier combinations by Monte Carlo simulation.
Simulation introduces additional error in the backup.

In step 3, we bound the error of approximate backup:
|HV (b) − ĤV (b)|, where HV (b) denotes the exact backup
using (4) and ĤV (b) denotes the approximate backup pro-
duced by Algorithm 1. Let

ρM(ε, τ) =
(PmaxRmax)2

2ε2(1− γ)2

(
ln 2− ln τ

)
.

The following theorem bounds the error of a single step of
point-based backup, as computed in Algorithm 1. The error
has two parts, one part from errors in step 1 and 2 and
the other part from Monte Carlo evaluation of the classifiers
(Algorithm 1, line 5–7).

Theorem 2. Given a policy graph G, a belief b ∈
B, and a permissible class of observation functions,
MC-BACKUP(G, b,M,N,K) produces an improved policy
graph such that for any ε, τ > 0,

p(|HV (b)− ĤV (b)| > ε) ≤ τ

if N ≥ ρN(ε/5, τ/2|A|) and M ≥ ρM(ε/5, τ/2|A|).

Finally, in step 4, we combine all sources of error. We
analyze the case where the algorithm runs synchronous MC-
backup on a sampled belief set B ⊂ B for t iterations. Let
δB = supb∈Bminb′∈B

∫
s
|b(s) − b′(s)|ds denote the largest

distance for any belief in B to its nearest point in the set

B where backup is performed. We bound the approximation
error between the value function on the t-th iteration Vt and
the optimal value function V ∗. The result is similar to that for
the MCVI algorithm [2].

By bounding the error propagation across the backup itera-
tions, we obtain the following theorem:
Theorem 3. Given a POMDP with a permissible class of
observation functions, choose N ≥ ρN(ε/5, τ/2|A||B|t),
M ≥ ρM(ε/5, τ/2|A||B|t), and perform t iterations of syn-
chronous MC-backup over a sampled belief set B ⊂ B. Then
for every b ∈ B and every ε, τ > 0,

|V ∗(b)− Vt(b)| ≤
ε

1− γ
+

2RmaxδB
(1− γ)2

+
2γtRmax

1− γ
,

with probability at least 1− τ ,

Theorem 3 shows that the approximation error comes from
three main sources: MC-backup, the approximation of the
belief space by a finite set of belief, and the finite number
of back-up iterations. The error from MC-backup can be
reduced by increasing the number of samples in the Monte
Carlo sampling. The approximation of the belief space can
be improved by using more belief points, and error decreases
exponentially with the number of back-up iterations.

VII. CONCLUSION

This paper presents a new algorithm for solving POMDPs
with continuous states and observations. These continuous
models are natural for robotic tasks that require integrated
perception and planning. We provide experimental results
demonstrating the potential of this new algorithm for robot
planning and learning under uncertainty. We also provide a
theoretical analysis on the convergence of the algorithm.

Our algorithm uses sampling instead of fixed discretization
to handle continuous state and observation spaces. Sampling
opens up a range of new opportunities to scale up the algorithm
for complex robot planning and learning tasks. Currently our
algorithm performs a huge number of Monte Carlo simula-
tions. It often takes hours to compute a policy for tasks at
a scale similar to those in our experiments. Some of these
simulations are redundant, and we are looking for ways to
reuse simulations. We will apply standard techniques to prune
the dominated α-functions and the GPG, thereby reducing
the simulations needed. We will also explore parallelization
to increase the practical performance of the algorithm.

Acknowledgments D. Hsu is supported in part by MoE AcRF grant
2010-T2-2-071 and National Research Foundation Singapore through
the SMART IRG program. W.S. Lee is supported in part by the US
Air Force Research Laboratory under agreement number FA2386-12-
1-4031.

REFERENCES

[1] J.A. Bagnell, S. Kakade, A. Ng, and J. Schneider. Policy search by
dynamic programming. In Advances in Neural Information Processing
Systems (NIPS), volume 16. The MIT Press, 2003.

[2] H.Y. Bai, D. Hsu, Mykel J. Kochenderfer, and W.S. Lee. Unmanned
aircraft collision avoidance using continuous-state POMDPs. In Proc.
Robotics: Science and Systems, 2011.

[3] H.Y. Bai, D. Hsu, and W.S. Lee. Planning how to learn. In Proc. IEEE
Int. Conf. on Robotics & Automation, 2013.

[4] H.Y. Bai, D. Hsu, W.S. Lee, and V.A. Ngo. Monte Carlo value iteration
for continuous-state POMDPs. In D. Hsu et al., editors, Algorithmic
Foundations of Robotics IX—Proc. Int. Workshop on the Algorithmic
Foundations of Robotics (WAFR). Springer, 2010.

[5] S. Brechtel, T. Gindele, and R. Dillmann. Solving continuous POMDPs:
Value iteration with incremental learning of an efficient space represen-
tation. In Proc. Int. Conf. on Machine Learning, 2013.

[6] A. Brooks, A. Makarendo, S. Williams, and H. Durrant-Whyte. Para-
metric POMDPs for planning in continuous state spaces. Robotics &
Autonomous Systems, 54(11):887–897, 2006.

[7] J.C. Davidson and S.A. Hutchinson. Hyper-particle filtering for stochas-
tic systems. In Proc. IEEE Int. Conf. on Robotics & Automation, 2008.

[8] M.O.G. Duff. Optimal Learning: Computational procedures for Bayes-
adaptive Markov decision processes. PhD thesis, University of Mas-
sachusetts Amherst, 2002.

[9] E.A. Hansen. Solving POMDPs by searching in policy space. In Proc.
AAAI Conf. on Artificial Intelligence, pages 211–219, 1998.

[10] D. Haussler. Decision theoretic generalizations of the PAC model for
neural net and other learning applications. Information and Computa-
tion, 100(1):78–150, 1992.

[11] R. He, E. Brunskill, and N. Roy. Efficient planning under uncertainty
with macro-actions. J. Artificial Intelligence Research, 40(1):523–570,
2011.

[12] J. Hoey and P. Poupart. Solving POMDPs with continuous or large
discrete observation spaces. In Proc. Int. Jnt. Conf. on Artificial
Intelligence, pages 1332–1338, 2005.

[13] K. Hsiao, L.P. Kaelbling, and T. Lozano-Pérez. Grasping POMDPs. In
Proc. IEEE Int. Conf. on Robotics & Automation, 2007.

[14] H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces.
In Proc. Robotics: Science and Systems, 2008.

[15] M. Lagoudakis and R. Parr. Reinforcement learning as classification:
Leveraging modern classifiers. In Proc. Int. Conf. on Machine Learning,
2003.

[16] N. Meuleau, L. Peshkin, K.E. Kim, and L.P. Kaelbling. Learning
finite-state controllers for partially observable environments. In Proc.
Uncertainty in Artificial Intelligence, pages 427–436, 1999.

[17] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In Proc. Int. Jnt. Conf. on Artificial
Intelligence, pages 477–484, 2003.

[18] R. Platt Jr, R. Tedrake, L.P. Kaelbling, and T. Lozano-Pérez. Belief
space planning assuming maximum likelihood observations. In Proc.
Robotics: Science and Systems, 2010.

[19] J.M. Porta, N. Vlassis, M.T.J. Spaan, and P. Poupart. Point-based
value iteration for continuous POMDPs. J. Machine Learning Research,
7:2329–2367, 2006.

[20] P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances
in Neural Information Processing Systems (NIPS), volume 16, pages
823–830. The MIT Press, 2003.

[21] W.B. Powell. Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, 2007.

[22] S. Prentice and N. Roy. The belief roadmap: Efficient planning in linear
POMDPs by factoring the covariance. In Proc. Int. Symp. on Robotics
Research, 2007.

[23] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online planning
algorithms for POMDPs. J. Artificial Intelligence Research, 32(1):663–
704, 2008.

[24] N. Roy and S. Thrun. Coastal navigation with mobile robots. In
Advances in Neural Information Processing Systems (NIPS), volume 12,
pages 1043–1049. The MIT Press, 1999.

[25] T. Smith and R. Simmons. Point-based POMDP algorithms: Improved
analysis and implementation. In Proc. Uncertainty in Artificial Intelli-
gence, 2005.

[26] R. S. Sutton and A. G. Barto. Reinforcement learning. MIT Press, 1998.
[27] S. Thrun. Monte Carlo POMDPs. In Advances in Neural Information

Processing Systems (NIPS). The MIT Press, 2000.
[28] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT

Press, 2005.
[29] J. van den Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized

path planning for robots with motion uncertainty and imperfect state
information. In Proc. Robotics: Science and Systems, 2010.

[30] Y. Wang, K.S. Won, D. Hsu, and W.S. Lee. Monte Carlo Bayesian
reinforcement learning. In Proc. Int. Conf. on Machine Learning, 2012.

APPENDIX

To prove the theorems 1–3, we need the following re-
sult [10], which bounds the error in the sampled means of
a set of functions.

Theorem 4. Let F be a permissible class of bounded functions
over a set S, with 0 ≤ f(s) ≤ B for all f ∈ F and s ∈
S. Let s̄ = (s1, . . . , sn) be a sequence of n points drawn
independently at random according to any distribution over S
and

F|s̄ = {(f(s1), . . . , f(sn)) | f ∈ F}.
Then for any ε > 0,

p
(
∃ f ∈ F : |Ês̄(f)− E(f)| > ε

)
≤ 4E

(
C(ε/16,F|s̄)

)
e−ε

2n/128B2

where Ês̄ =
∑n
i=1 f(si)/n.

We now apply Theorem 4 to show that the error
|V (b, a, o, κba(o)) − V (b, a, o, κ∗ba(o))| is bounded uniformly
for all o ∈ O with high probability (Theorem 1). We start
by introducing the function classes under consideration. For
every a ∈ A, let

Fa = {fa,o | o ∈ O and fa,o(s) = p(o|s, a) for all s ∈ S},

which contains all observation functions for a fixed a ∈ A.
Define the covering number

Ca(ε,N) = sup
s̄∈SN

C
(
ε,Fa|s̄)

)
,

where Fa|s̄ consists of a set of vectors, each obtained by
evaluating a function f ∈ Fa over a sequence s̄ of N points
sampled from S according to the distribution ba(s). Similarly,
for a ∈ A and v ∈ G, let

Fa,v = {fa,o,v | o ∈ O and
fa,o,v(s) = p(o|s, a)αv(s) for all s ∈ S}

and Fa,G =
⋃
v∈G Fa,v . Define

Ca,G(ε,N) = sup
s̄∈SN

C
(
ε,Fa,G|s̄)

)
.

Our first lemma establishes the the relationship between Fa
and Fa,G in terms of covering numbers.

Lemma 1. Ca,G(ε,N) ≤ |G| Ca(ε(1−γ)
Rmax

, N).

Proof: For a fixed α-vector α, consider any two vectors
x, x′ ∈ Fa|s̄ and the two corresponding vectors y, y′ ∈ Fa,v|s̄,
where yi = xiαi and y′i = x′iαi for i = 1, 2, . . . , N . Recall the
covering metric defined earlier: ‖x−x′‖ = 1

N

∑N
i=1 |xi−x′i|.

We have

‖y − y′‖ =
1

N

N∑
i=1

|xiαi − x′iαi|

≤
(

max
i=1...N

|αi|
) 1

N

m∑
i=1

|xi − x′i|

≤ Rmax

1− γ
‖x− x′‖.

Therefore, if a point set covers Fa|s̄ at the scale ε, a corre-
sponding point set covers Fa,v|s̄ at the scale (Rmax/(1−γ))ε.
Since Fa,G|s̄ =

⋃
v∈G Fa,v|s̄, we get

Ca,G(ε,N) ≤ |G| Ca(
ε(1− γ)

Rmax
, N),

where |G| is the number of nodes in G.
The next lemma bounds the error in the approximate max-

imum of a sequence of numbers.

Lemma 2. Let x1, x2, . . . , xn be a set of real numbers, and
x̂1, x̂2, . . . , x̂n be their approximations with |xi − x̂i| < ε
for i = 1, 2, . . . , n. Let j = arg maxi=1...n xi and k =
arg maxi=1...n x̂i. Then |xj − xk| < 2ε.

Proof: |xj − xk| = xj − x̂j + x̂j − xk
≤ xj − x̂j + x̂k − xk
≤ |xj − x̂j |+ |x̂k − xk|
< 2ε

Proof (Theorem 1): The expected value of a function
fa,o,v with respect to belief ba is

E(fa,o,v) =

∫
s∈S

fa,o,v(s)ba(s) ds =

∫
s∈S

ba(s)p(o|s, a)αv(s) ds,

and its approximation with a set S′ of points sampled accord-
ing to ba is

Ê(fa,o,v) =
1

|S′|
∑
s∈S′

fa,o,v(s).

To bound the approximation error using Theorem 4, we need
a class of bounded positive functions. Since −PmaxRmax/(1−
γ) ≤ fa,o,v(s) ≤ PmaxRmax/(1− γ), we shift fa,o,v by a con-
stant amount to f ′a,o,v so that 0 ≤ f ′a,o,v(s) ≤ 2PmaxRmax/(1−
γ). We apply Theorem 4 to the shifted functions and then
transfer the result back to Fa,G. Then, for any ε′ > 0,

p(∃ o ∈ O, v ∈ G : |Ê(fa,o,v)− E(fa,o,v)| > ε′)

≤ 4Ca,G(ε′/16, N) e−ε
′2N/128(2PmaxRmax

1−γ)2

≤ 4|G|CZ
(
ε′(1− γ)

16Rmax
, N

)
e−ε

′2(1−γ)2N/512(PmaxRmax)
2

,

(13)

where the inequality in the last line follows from Lemma 1
and the definition of CZ in (10). Now, for every a ∈ A, o ∈ O,
and v ∈ G,

|V (b, a, o, v)− V̂ (b, a, o, v)| ≤ ε′

with high probability, by definition. For every a ∈ A and
o ∈ O,

|V (b, a, o, κba(o))− V (b, a, o, κ∗ba(o))| ≤ 2ε′ (14)

with high probability, by Lemma 2, as κ∗ba(o) maximizes
V (b, a, o, v) over all nodes v in G and κba(o) maximizes the
sampled approximation of V (b, a, o, v).

Next, we integrate the error in (14) over all observations
and get

|V (b, a, κba)− V (b, a, κ∗ba)|

≤
∫
o∈O
|V (b, a, o, κba(o))− V (b, a, o, κ∗ba(o))|do

≤ 2ε′µ(O),

where µ(O) denotes the measure of O. Since O is assumed to
be an n-dimensional unit hypercube, we have |V (b, a, κba)−
V (b, a, κ∗ba)| ≤ 2ε′.

Finally, we set ε = 2ε′, τ to be error bound in (13), and
work out the number of samples required in term of ε and τ :

N ≥ 2048(PmaxRmax)2

ε2(1− γ)2

(
ln

(
4|G|CZ

(ε(1− γ)

32Rmax

))
− ln τ

)
.

Proof (Theorem 2): First, we bound the error between
the optimal value V (b, a, κ∗ba) and its sampled approximation
V̂ (b, a, κba), which is obtained by running M simulations
(Algorithm 1, line 5–7):

|V (b, a, κ∗ba)− V̂ (b, a, κba)|
≤ |V (b, a, κ∗ba)− V (b, a, κba)|+ |V (b, a, κba)− V̂ (b, a, κba)|

We bound the first term above using Theorem 1. Choose N ≥
ρN(ε/5, τ/2|A|) and get

|V (b, a, κ∗ba)− V (b, a, κba)| > ε/5 (15)

with probability at most τ/2|A|. We bound the second term
using Hoeffding’s inequality. Choose M ≥ ρM(ε/5, τ/2|A|)
and get

|V (b, a, κba)− V̂ (b, a, κba)| > ε/5 (16)

with probability at most τ/2|A|. Then, by the union bound,

p
(
∀a ∈ A : |V (b, a, κ∗ba)− V̂ (b, a, κba)| > 2ε/5

)
≤ τ. (17)

Next, let a∗ = arg maxa V (b, a, κ∗ba) denote the optimal ac-
tion and â = arg maxa V̂ (b, a, κb,a) denote the approximately
optimal action. Applying Lemma 2 to (17), we get

p
(
|V (b, a∗, κ∗ba∗)− V (b, â, κ∗bâ)| > 4ε/5

)
< τ.

Finally,

|HV (b)− ĤV (b)| = |V (b, a∗, κ∗ba∗)− V (b, â, κbâ)|
≤ |V (b, a∗, κ∗ba∗)− V (b, â, κ∗bâ))|

+ |V (b, â, κ∗bâ)− V (b, â, κbâ)|
≤ 4ε/5 + ε/5

The inequality in the last line holds with probability at least
1− τ , provided that (15) and (16) hold for all actions a ∈ A,
with the same probability. Hence

p
(
|HV (b)− ĤV (b)| ≤ ε

)
> 1− τ.

To prove Theorem 3, we need a Lipschitz condition [4].

Lemma 3. Suppose that a POMDP value function V can be
represented as or approximated arbitrarily closely by a set
of α-functions. For any b, b′ ∈ B, if ‖b − b′‖1 ≤ δ, then
|V (b)− V (b′)| ≤ Rmax

1−γ δ.

Proof (Theorem 3): This proof is similar to the one for
Theorem 2 in [4]. Let λt = maxb∈B |V ∗(b) − Vt(b)| be the
maximum error of Vt(b) over the sampled beliefs in B. We
first bound the maximum error of Vt(b) at any arbitrary belief
b ∈ B in terms of λt. For any point b ∈ B, let b′ be the closest
point in B to b. Then
|V ∗(b)− Vt(b)| ≤ |V ∗(b)− V ∗(b′)|

+ |V ∗(b′)− Vt(b′)|+ |Vt(b′)− Vt(b)|
Applying Lemma 3 twice to V ∗ and Vt, respectively, and
observing that |V ∗(b′)− Vt(b′)| ≤ λt, we get

|V ∗(b)− Vt(b)| ≤
2RmaxδB

1− γ
+ λt. (18)

Next, we bound the error λt. For any b′ ∈ B,

|V ∗(b′)− Vt(b′)| ≤|HV ∗(b′)− Ĥb′Vt−1(b′)|
≤|HV ∗(b′)−HVt−1(b′)|

+ |HVt−1(b′)− Ĥb′Vt−1(b′)|, (19)

where Ĥb′ denotes MC-backup at b′. The inequality in the first
line in (19) holds, because by definition, V ∗(b′) = HV ∗(b′),
V ∗(b′) ≥ Vt(b

′), and Vt(b′) ≥ Ĥb′Vt−1(b′). It is well known
that the backup operator H is a contraction. The contraction
property and (18) together imply

|HV ∗(b′)−HVt−1(b′)|

≤ γ|V ∗(b)− Vt(b)| ≤ γ
(2RmaxδB

1− γ
+ λt−1

)
. (20)

Theorem 2 guarantees that a single MC-backup operation at a
belief b′ has small approximation error with high probability,
if N and M are sufficiently large. To obtain Vt, we perform
t iterations of synchronous MC-backup over the set B. Thus
there are |B|t MC-backup operations in total. Applying the
union bound together with Theorem 2, all |B|t MC-backup
operations achieve

|HVt−1(b′)− Ĥb′Vt−1(b′)| < ε (21)

with probability 1−τ , if we choose N ≥ ρN(ε/5, τ/2|A||B|t)
and M ≥ ρN(ε/5, τ/2|A||B|t). We then combine (19–21)
together with the definition of λt and get

λt ≤ γ
(2RmaxδB

1− γ
+ λt−1

)
+ ε.

For any initial policy graph, the error is bounded by

λ0 ≤ 2Rmax/(1− γ).

After solving the recurrence relation, we have

λt =
(1− γt)ε

1− γ
+

2γ(1− γt)RmaxδB
(1− γ)2

+
2γtRmax

1− γ

≤ ε

1− γ
+

2γRmaxδB
(1− γ)2

+
2γtRmax

1− γ
Substituting it into (18) gives us the final result.

	Introduction
	Related Work
	POMDPs with Continuous States and Observations
	The Model
	Beliefs
	Policies

	Algorithm
	Overview
	Monte Carlo Backup and Classifier Construction
	Belief Space Sampling

	Experiments
	LQG Control
	Intersection Navigation
	Acrobot with Model Uncertainty

	Analysis
	Conclusion
	References
	Appendix

