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Abstract
Classictechniques for simulatingmolecularmotion, suchas the
Monte Carlo andmoleculardynamics methods,generateindivid-
ual motion pathways one at a time andspendmost of their time
trying to escapefrom the local minima of the energy landscape
of a molecule.Their high computationalcostpreventsthemfrom
being usedto analyzemany pathways. We introduceStochastic
Roadmap Simulation (SRS),a new approach for exploring the ki-
netics of molecularmotion by simultaneouslyexamining multi-
ple pathways encoded compactly in a graph, called a roadmap.
A roadmapis computedby samplinga molecule’s conformation
spaceat random.Thecomputationdoesnot suffer from the local-
minimaproblemencounteredwith existing methods. Eachpathin
the roadmaprepresentsa potentialmotion pathway andis associ-
atedwith a probability indicatingthe likelihoodthat the molecule
follows this pathway. By viewing theroadmapasa Markov chain,
we canefficiently compute kinetic propertiesof molecularmotion
over theentiremolecularenergy landscape.We alsoprove that, in
the limit, SRSconvergesto the samedistribution asMonte Carlo
simulation.To testtheeffectivenessof ourapproach, weapplyit to
thecomputationof thetransmissioncoefficientsfor proteinfolding,
an importantorderparameterthat measuresthe “kinetic distance”
of a protein’s conformationto its native state. Our computational
studiesshow that SRSobtainsmoreaccurateresultsandachieves
several orders-of-magnitude reductionin computationtime, com-
paredwith MonteCarlosimulation.

1. Intr oduction
Many interestingpropertiesof molecularmotion arebestcharac-
terizedstatisticallyby consideringanensembleof pathwaysrather
than an individual one. For example,the “new view” of protein
folding kineticsreplacesa singlefolding pathway with an energy
landscapeandafolding funnel[BOSW95,DC97,DK99,PGTR98].
Proteinsarethoughtto fold in a multi-dimensional funnel by fol-
lowing amyriadof pathways,all leadingto thenativestructure.To
carryout computationalstudiesof molecularmotionin this frame-
work, we needefficientalgorithmsthatcanquickly explorea large
number of pathways. Unfortunatelyclassicsimulationtechniques,
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Figure1: A probabilisti c conformational roadmapsuperimposedon the
contour plot of a hypothetical energy landscape.

suchastheMonteCarlo[KW86] andmoleculardynamics[Hai92]
methods,generateindividual pathwaysoneatatimeandwastealot
of time trying to escapefrom the local minima of anenergy land-
scape.They arecomputationally inefficient if appliedin a brute-
force fashionto deal with many pathways. In this paper, we in-
troduceStochastic Roadmap Simulation (SRS),arandomizedtech-
niquefor samplingmolecularmotionandexploring thekineticsof
suchmotionby examiningmultiplepathways simultaneously.

In SRS,we compactly encode many pathwaysin a directedgraph
calleda probabilistic conformational roadmap (Figure1), or just
roadmap for short. Eachnodeof the roadmapis a randomly sam-
pled conformation of a molecule. Each(directed)edgebetween
two nodes�
	 and ��� carriesa weight 
�	 � , which is the probabil-
ity for the moleculeto transition from � 	 to � � . Every path in
the roadmapcorresponds to a potential motion pathway for the
molecule. A roadmapcontainsmany pathways, with associated
probabiliti es indicating the likelihood that the moleculemay fol-
low thesepathways. In SRS,we constructa roadmap andanalyze
all the pathsin it simultaneouslyto obtainkinetic informationon
themotionof moleculesover theentireenergy landscape.

To analyzea roadmap,we view molecularmotion in theroadmap
asa random walk on a graph. We avoid explicitly simulatingthe
motion andobtainmuchof the sameinformationby applyingal-
gebraicmethodsfrom theMarkov chaintheory[TK94]. Intuitively
this is equivalent to performingmany simulationrunssimultane-
ously for a long time. As anexample,let usconsider theproblem
of computingthe transmissioncoefficients for a protein in a sys-
temdominatedby two stablestates,a foldedoneandan unfolded
one.Thetransmissioncoefficient � for a conformation� is defined
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asthe probabilityof reachingthe folded statebeforethe unfolded
state,startingfrom � [DPG� 98]. This coefficient providesa mea-
sureof the “kinetic distance”between� andthe foldedstate.It is
possibleto compute� in a straightforwardway: for every � of in-
terest,startmany of MonteCarlosimulationrunsfrom � andcount
thenumber of timesthat they enterthe foldedstatebeforetheun-
foldedone[DPG� 98]. However, thesimulationis computationally
expensive,asa largenumberof simulationrunsarerequiredto ob-
tainareasonablyaccurateestimateof � . With SRS,wecanachieve
the sameresultmuchmoreefficiently. This is not a surprise,be-
causeevery pathin a roadmapcanbeinterpretedasa MonteCarlo
simulationrun. However, MonteCarlosimulationfollowsonly one
pathway at a time. It alsoeasilygetsstuckin the local minima of
theenergy landscape, repeatedlysamplingmany similarconforma-
tionswithout obtainingmuchnew information.Our new approach
avoidstheproblemby samplingdirectly from thespaceof all path-
waysandtreatingthemtogetherusingalgebraicmethods.

SRSis amorecoarse-grainedsimulationtechnique thantheMonte
Carlo method. The Monte Carlo methodtendsto focus on one
pathway at a time andhasa higher densityof samplesalong that
particularpathway. In contrast,SRSspreadsthesamplesover the
wholeconformationspace.Thusit is ableto examinemany motion
pathways at onceandextract interestingkinetic propertiesthatare
noteasilyaccessibleby othermethodssuchasMonteCarlosimula-
tion. In addition,we show that,in thelimit, SRSandMonteCarlo
simulationconvergeto thesamesamplingdistribution (Section4).

SRSis inspiredby probabilisticroadmap methodsfor motionplan-
ning [KŠLO96]. The main idea of probabilistic roadmapmeth-
odsis to constructa graphthatcapturestheconnectivity of a high-
dimensional spacevia randomsampling. Singh,et al. first intro-
ducedprobabilisticroadmapmethodsto thestudyof molecularmo-
tion in their work on ligand-proteinbinding[SLB99]. Thesemeth-
odshave sincebeenappliedto protein folding aswell [ASBL01,
SA01]. Theearlierwork treatsa roadmapasa deterministicgraph
with heuristicedgeweightsbasedontheenergy differencebetween
moleculeconformations. In contrast,we usetheprobabilisticcon-
formationalroadmapasa way to capturethe stochasticnatureof
molecularmotion. It enablesus to exploit the knowledge from
Markov chain theoryto processnew queriesthat arebiologically
relevant and to establisha formal relationshipbetweenSRSand
MonteCarlosimulation.

The main contributionsof this work arethe following. SRSpro-
videsa new representation of the stochasticmotion of molecules.
We describehow to constructa roadmap(Section2) andquerya
roadmapefficiently by exploiting toolsfrom theMarkov chainthe-
ory (Section3). Weshow formally thatSRSconvergesto thesame
distribution astheMonteCarlomethod(Section4). Our approach
providesanefficient algorithmfor computing thetransmissionco-
efficientsfor proteinfolding (Sections5 and6). It alsohaspotential
applicationsin otherquestionsregardingthekineticsof molecular
motion(Section7).

2. Stochasticroadmapsimulation
In StochasticRoadmapSimulation,we first constructa roadmap,
asa discreterepresentationof molecularmotion. A roadmaprep-
resentsa large numberof possibleMonte Carlo simulationpaths
simultaneously and enablesus to perform key computationeffi-
ciently.

2.1 Conformation space
Theconformation of a moleculecanbespecifiedin variousways.
In a lattice model, we specify the lattice positionsof constituent

atoms. In protein folding, we commonlyuse the backbone tor-
sional angles( � and � ) of a protein. SRS is applicableto all
thesedifferent representations,provided that the conformation of
a moleculecanbe specifiedasa finite numberof parametersthat
uniquelydeterminethe3-D positionof everyatomin themolecule.
Formally, a conformationof � parametersis specifiedby a vector���������
�
������� ����!#"

.

Thesetof all possibleconformationsform theconformation space$
. A point in

$
corresponds to a particularassignment to the pa-

rametersthatspecifytheconformation of themolecule.

The conformationalparametersdeterminethe interactionbetween
atomsof themoleculeandbetweenthemoleculeandthemedium,
e.g., thevanderWaalsandelectrostaticforces.Theseinteractions
give rise to the attractive andrepulsive forcesthat dictatethe mo-
tion of amolecule.SRSassumesthattheinteractionsaredescribed
by anenergy function % � � " , which dependsonly on theconforma-
tion � of themolecule;it doesnot require % to have any particular
propertiesor functionalforms.

2.2 Roadmapconstruction
We encodemany pathways in

$
with a directedgraph & , called

a roadmap. Eachnode of the roadmap& is a randomly sampled
conformationin

$
. Each(directed)edgebetweentwo nodes��	 and� � carriesa weight 
�	 � , which is the probability for the molecule

to transitionfrom �'	 to � � . The probability 
�	 � is 0 if thereis no
edgebetween� 	 and � � . Otherwise,the valueof 
 	 � depends on
theenergy differencebetween��	 and ��� . We thusadopta stochas-
tic view of molecularmotion: 
 	 � representsthe probability that
the moleculewill next move to conformation �(� , given that it is
currentlyin � 	 .
To constructtheroadmap,our algorithmsamples) conformations
independently at randomfrom

$
. For simplicity, we usethe uni-

form samplingdistributionby picking avalueuniformly at random
for eachconformational parameter

� 	 �+*-,/.#��01� �����
from its allow-

ablerange.For everynode��	 , wefind the 2 nearestneighborsof ��	 ,
accordingto a suitablemetric suchasthe RMS or Euclideandis-
tancein

$
. Let 34	 denotethesetof 2 nearestneighborsof � 	 . The

algorithmthencomputesthetransitionprobability 
5	 � betweenev-
ery pair of neighboring nodes� 	 and ��� , where ��� is in 34	 . 
6	 � is
computedbasedon 78%9	 � , % � � � ";: % � �'	 " , theenergy difference
betweentheconformations� 	 and � � . In formula,we have
 	 � ,/< �+.�=?> 3 	 > "1@ ACBD�+: 7E% 	 � = 21F5G "��IHKJ 7E% 	 �MLONCP.�=?> 3Q	 >R� S'T�UV@ W(XYH[Z(@ P
where2 F is theBoltzmannconstant,G is thetemperature,and

> 3\	 >
is thenumberof neighborsof node� 	 , excludingitself. If anode� �
is not in 3M	 , then �'	 and � � aretoo far apartfor theirenergy differ-
enceto beagoodbasisfor estimatingthetransitionprobability, and
we set 
�	 � , N . Finally we definetheself-transitionprobabiliti es:
 	]	 ,^._:a`�#bc 	 
 	 � �
which ensuresthat the transitionprobabilities from any nodesum
up to 1.

The transition probabilitiesthus definedare consistentwith the
Metropoliscriterion usedin Monte Carlo simulation. They allow
us to establisha connection betweenSRSandMonte Carlosimu-
lation formally (seeSection4). In comparison, previouswork uses
roadmaps with heuristicedgeweightsbasedon the energy differ-
ences[SLB99, ASBL01, SA01]. They do not have the samein-
terpretationof the roadmapasrepresentingthe stochasticmotion
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of molecules,and thus cannotbe formally validatedin the same
stochasticd framework thatweusehere.Furthermore,with our inter-
pretation,wecanexploit theknowledge from Markov chaintheory
to efficiently processinterestingqueries(seeSection3).

2.3 Using SRSto study molecular motion
Typically, MonteCarlosimulationgeneratesrandompathsthrough$

in searchof theglobalminimumof theenergy function % . Such
pathsare interestingfor understanding the energy landscapeand
exploring thekineticsof molecularmotion,aswell asdetermining
the native folds of proteinsandthe binding sitesin ligand-protein
docking (see,e.g., [Fer99,KS96]).

A pathgeneratedby Monte Carlo simulationcorresponds to a se-
quenceof randommovesin theconformationspace

$
. Suchapath-

way in
$

canalsobeobtainedby following a sequenceof edgesin
our roadmap& : at node � 	 , we decidewhich nodeto move to next
according to thetransitionprobabilities 
e	 � .
With our choiceof transitionprobabilities, thereis a strongrela-
tionshipbetweenpathsgeneratedby SRS,i.e., pathsin theroadmap,
andpathsgeneratedby Monte Carlo simulation. The maindiffer-
encebetweenSRSand Monte Carlo simulationis the spacethat
they operateon. SRSoperatesonthesetof sampledconformations,
while Monte Carlomethodoperateson theunderlying continuous
conformation space

$
. SoSRScanberegardedasadiscretelysam-

pledversionof MonteCarlosimulation.

In [SKS01],it isarguedthatMonteCarlosimulationcanbeapplied
to the understandingof protein folding kinetics. The relationship
betweenSRSpathsandMonteCarlosimulationpathssuggeststhat
their analysisis applicableto our approachaswell.

However, Monte Carlo simulation focuseson only one pathway
at a time andeasilygetsstuck in the local minima of the energy
function,repeatedlysamplingmany similarconformationswithout
obtainingmuchnew information. SRSconstructsa roadmapcon-
taining many Monte Carlo simulationpathsby samplingdirectly
from the spaceof all pathways. It processesthesepathstogether
usingalgebraicmethods,thusgreatlyreducingcomputation time,
aswewill seein thenext sections.Thecomputationdoesnotsuffer
from thelocal-minimaproblemencounteredin MonteCarlosimu-
lation.

3. First-step analysisand roadmapquery
A roadmap& containsa multitudeof informationabout molecular
motion. Given two nodes�f	 and ��� in & , we caneasilycompute
themostlikely pathway from � 	 to � � by searchingfor aminimum-
weightpathfrom �
	 to � � in agraphsimilar to & but with

:hg[i 
D	 �
asedgeweights.This leadsto resultssimilar to thosein theearlier
work [SLB99, ASBL01, SA01], which usea directedgraphwith
heuristicedgeweightsbasedon energy differences,becausethe
heuristicedgeweightscan be interpretedas probabiliti es. How-
ever, aninsightresultingfrom ourchoiceof transitionprobabilities
is that a roadmapimplicitly definesa Markov chain that captures
the stochasticnatureof molecularmotion. This allows us to take
advantageof powerful tools from the Markov chain theory. We
now focuson onesuchtool, the first-stepanalysis,which will be
usedlaterto studythekineticsof proteinfolding.

Considera roadmap& representingthe motion of a proteindur-
ing the folding process.Let j be a setof nodesin & that lie in
the folded state. In other words, they are structurallysimilar to
the native fold. The set j is an exampleof a macrostate, which
is definedasa setof roadmapnodesthat sharea commonprop-
erty. A macrostateis an abstractionthat combinesa setof nodes

kmlk]n k]o k[pVqsr

t lml
t l[n t l[o t l p k]ut l[u

Figure2: Thefirst-stepanalysis.

into a singleentity. Now supposethatwe areinterestedin finding,
for every node �f	 in & , the expectednumber of transitionsthat it
takesto go from � 	 to thefoldedstate,i.e., any nodein j . Denote
this numberby vw	 . Thenaive approach to compute v�	 would be to
performmany Monte Carlo simulationruns,startingfrom � 	 and
averagethe number of stepstaken by eachrun to get an estimate
of v 	 . This approachhasa high variancein theestimate,dueto the
stochasticnatureof the simulationprocedure and thusrequiresa
large numberof simulationruns for eachnode ��	 in order to get
reasonable results.In contrast,thefirst-stepanalysissolvesfor allv(	 simultaneously, without theneedfor explicit simulation.

The first-stepanalysisproceeds by conditioning on what happens
afterthefirst step.Supposethatwe startat somenode � 	sxy j and
performonestepof transition.First vz	 is increasedby one. Then,
in the next step,we reacheither the folded stateor anothernode� � xy j . In the former case,we simply stop. In the latter case,
the expectednumber of stepsfrom thenon is given by v � , by the
definition. More formally, we have the following systemof self-
consistentequations:v+	 ,^.-{ `|(}�~'� 
�	 �\� N { `|(} b~#� 
6	 �\� v�� � for every �
	 xy j �

(1)

In thesecond termof (1), 
�	 � is multipliedby zero,becausewestop
assoonaswereachthefoldedstate.SeeFigure2 for anillustration.

The linear systemin (1) containsoneequationandoneunknown
for eachnode� 	 not in j . A uniquesolutionto (1) is guaranteedto
exist, becausetheroadmap& containsonly onestrongly-connected
component by construction, andso the Markov chainrepresented
by & is ergodic[TK94]. By solvingthelinearsystemalgebraically,
we obtain v 	 for all thenodessimultaneously, without any explicit
simulation.

Sincethereareusuallymany nodesin theroadmap,thelinearsys-
tem is largeandis solved with an iterative method.A simpleone
is theJacobiiteration[PTVP92]. Let v �]� �	 be thevalueof vw	 at 2 th
iteration.Weset v �[���	 , N for all

*
andrepeatedlyapplyv �[� � � �	 ,^.�{ `| } ~'� 
 	 � � N { `|(} b~'� 
 	 � ��v �]���� �

until the iterationconverges,i.e., �Rv �]� � � � : v �]��� � ����� for some
small pre-selectedconstant � . The convergencerateof the Jacobi
methodis slow, but a bettermethodsuchasGauss-Seidelor suc-
cessive overrelaxation(SOR)canbe usedinsteadto improve the
performance[PTVP92]. In addition,every nodein & is, by con-
struction,connectedto at most 2 neighboring nodes, for somepre-
selectedvalueof 2 . Usually 2 is muchsmallerthanthetotal num-
berof nodes ) . We canexploit this featureandrun a sparsematrix
orderingalgorithm(see,e.g., [GL89, GMS92]) to producea lin-
earsystemthat hasa banded, sparsestructure,which cangreatly
improve therunningtimeof iterative solvers.
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Thefirst-stepanalysisis actuallymoregeneralthanthesimpleex-
ample� suggestshere.For instance,wemayhavemultiplemacrostates
andwantto know theprobabilityof reachingonemacrostatebefore
theothers.Wewill discusshow to usethefirst-stepanalysisto deal
with this in Section5.

4. Formal link betweenSRSand Monte
Carlo simulation

So far, we have presentedthe roadmapandthe first-stepanalysis
as an efficient way to representmolecularmotion pathways and
extract interestinginformationfrom them. Beforeapplying these
techniquesto relevant biological questions,we would like to for-
malizetherelationshipbetweenSRSandMonte Carlosimulation,
a classictechnique for studyingmolecularmotion. We prove that
SRSandMonteCarlosimulationconvergeto thesamedistribution.
Theproof hasseveral implications.First, it validatesour intuition
that thequality of resultsfrom SRSimprovesastheroadmap size
increases.Second,it providesthebasisfor analyzingtheapproxi-
mationerrorfor any givenroadmapsize.Finally, it givesusthefor-
maljustificationfor usingourprobabilisticedgeweights
5	 � , rather
thantheheuristicedgeweightsin theearlierwork usingroadmaps.

4.1 Stationary distrib ution
To establishtheproof, we now briefly describetheconcept of the
stationary distribution of a Markov chain.

Every roadmap& definesa Markov chain, which hasan associ-
atedlimiting distribution � obtainedasfollows: Performa random
walk on & , startingat a nodein & . At eachstepof the random
walk, make a move to the next nodeaccordingto the transition
probabilities 
�	 � . If we let the randomwalk continue infinitely,
thenunderthe condition that the roadmapis ergodic, the starting
nodebecomesirrelevant: in thelimit, eachnode� 	 is visitedwith a
fixedprobability � 	 according to � , regardlessof thestartingnode.
So � describesthe limiting behavior of all possiblesimulatedran-
dom walks on the roadmap.Sincethe roadmap& representsthe
motion of molecules,for eachnode ��	 in & , �5	 givesthe fraction
of thetime thatthemoleculespendsat ��	 in thelimit.

The limiting distribution � canbe shown to satisfy the following
self-consistentequations[TK94]:�;	 , ` � �1�f
5��	 � for all

*��
(2)

With the additionalconstraints� 	E��N for all
*

and � 	 � 	 ,�.
,

the solution to (2) is guaranteedto be a well-definedprobability
distribution. Equation(2) saysthat, in the limit, thedistribution �
no longerchangesfrom onestepof the randomwalk to the next.
For this reason,� is called the stationary distribution. Now we
arereadyto relatethestationarydistribution of SRSto thelimiting
distribution of MonteCarlosimulation.

4.2 Limit behavior of SRS.
Considera moleculemoving through the conformationspace

$
governed by the energy function % . In the limit, the probability
distribution of conformationsvisited by the moleculeis given by
theBoltzmanndistribution � [Lea96].Specificallythedensity� at
a particularpoint � of

$
is� � � "�, .��� @�AVB��+: % � � "(= 21F�G "��

(3)

where
� � ,^���-@ ACBD�+: % � � "(= 2 F G " ��� is a normalizationconstant,

alsoknown asa partitionfunction.

It is well-known that thelimiting distribution of MonteCarlosim-
ulation is � , the Boltzmanndistribution [Lea96]. This meansthat
if we allow the Monte Carlo simulationto continueinfinitely, the
sampledconformationswill distribute accordingto � . We would
like to answerthesamequestionfor SRS.Whatis thelimit behav-
ior of SRS?

Notethat theconformationspace
$

is continuous. Thus(3) repre-
sentsa probability density function over

$
. To computethe prob-

ability for a setof conformations,we needto integratethedensity
function � over the set. More formally, let ��� $

be any subset
of theconformationspace.In the limit, theprobability thata con-
formationin � is sampledby a MonteCarlosimulationprocessis

� � � "�,¡ �¢ � � � " ��� �
Now considera roadmapwith stationarydistribution � given by
(2). Thefirst questionis how to estimatetheprobability of theset� using the roadmap. The roadmapcontainsa set of discretely
samplednodesfrom

$
. So the estimatecan be obtainedby the

summingthestationarydistribution � over all thenodes� 	 that lie
in theset � . Somenodesin theroadmapmayhave moreneighbors
thanothers,andso we normalizethe sumby

> 3?	 > , the numberof
neighborsof node � 	 . In formula,wehave� � � "6, .� `|�£+~ ¢ � � � 	 "> 3 	 > �
where

� , � 	 � � � 	 "(=Y> 3 	 > is a normalizingconstant.

If SRSrepresentsthestochasticmotionof moleculeswith thesame
limit behavior asMonte Carlo simulation,thenthe limit distribu-
tionsof thesetwo methodsshould converge. In otherwords,asthe
roadmapsizeincreases,� � � "

shouldapproach � � � "
for any subset� in

$
. This is statedformally in Theorem1.

THEOREM 1. Let � be any subset of the conformation space
$

with relative volume ¤ � � " L¥N . For any � L¥N , ¦ L¥N , and § L¥N ,
there exists 3 , such that in a roadmap with 3 uniformly sampled
nodes, the difference between the probability � � � "

and the estimate� � � "
from the roadmap is given by�+._: ¦ " � � � "�: �Q�¨� � � " � �+.9{ ¦ " � � � "e{ � � (4)

with probability at least
._: § .

Furthermore, if �h�^© H[i\� � � ='01� ¤ � � "(= � � � and ¦ª� � � =C� � � {0#"
, then the number of roadmap nodes 3 required is given by

3 , ©¬« AQ­�® 0�g[i���¯�= § " � @ ACB��+: % � � "(= 2 F G " ��°¤ � � " � �� � � {±.#�g[iD��¯�= § " � @ ACB��+: % � � "(= 2 F G " ��° � � � {¨0#"+²³�� �� ¤ � � "+´ ¦ � {±.¬µ¶�
where � ·6� ° ,¸Z(¹VB | · � � "6:ºH]iCJ | · � � " .

PROOF. SeeAppendix A.

Thefirst partof theabove theoremsaysthat,with high probability,
thestationarydistribution � associatedwith aroadmapcanapprox-
imate� , theBoltzmanndistributionto any desiredlevel of accuracy
characterizedby therelative error ¦ andtheabsoluteerror � . Since
Monte Carlo simulationapproaches � in the limit, too, it follows
from Theorem1 that both SRSandMonte Carlo simulationcon-
vergeto thesamelimit distribution.
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Figure3: Error in SRSestimatesof thestationarydistribution.

Figure3 illustratestheresultof Theorem1. It shows thattheerror
in our roadmap estimatesof the stationarydistribution decreases
with increasingroadmapsizes,aspredictedby the theorem.Fig-
ure 3 was obtainedby evaluating our roadmapestimatesof sta-
tionary distribution on a syntheticenergy landscapein a 2-D con-
formationspace.Thespaceis divided into 100 equally-sizedbins» 	 �+*-,/.#��01� ��������. N#N . We generatedroadmapsof increasingsizes
and computed the stationarydistribution � � » 	 " on the roadmap.
The Boltzmanndistribution � � » 	 " for eachbin

» 	 wasestimated
by Monte Carlo integration. Figure3 shows the averageerror in
our estimates,i.e.,

�+.f=�. N#N " � � �(�	 c � > � � » 	 "6: � � » 	 "�> .
The secondpart of Theorem1 dealswith the convergencerateof
the roadmapestimate.For any desiredlevel of approximation (a
given absoluteerror � , relative error ¦ , and confidencelevel § ),
the numberof milestonesrequiredis polynomial in

.�= � , .f= ¦ , andg[iD�+.f= § " . Thesizeof theroadmapalsodependspolynomially onthe
rangeof valuesfor theBoltzmannfaeector � @ ACBD�+: % � � "(= 2 F G " ��° ,
thepartitionfunction

�6�
, andtheinverseof therelative volumeof

the setof interest
.�= ¤ � � "

, wherethe relative volume ¤ � � "
is de-

finedastheratio of thevolumeof theset � to thetotal volumeof$
.

OuranalysisindicatesthatSRSandMonteCarlosimulationsample
pointsfrom thesamedistribution in thelimit. It doesnot,however,
compare thepathsgeneratedby thesetwo methods. In Section2.3,
we explainedintuitively the connectionbetweenthe pathsin SRS
and thosein Monte Carlo simulation. Although this connection
hasnot beenprovenformally, it seemsclearthat,asthenumberof
milestonesincreases,a path in the roadmapwill correspond to a
pathin MonteCarlosimulationwith infinitesimalstepsizesin the
limit.

We have described,in the foregoing sections,how to constructa
roadmapandperformqueriesusingthefirst-stepanalysis,andhave
shown therelationshipbetweenSRSandMonteCarloSimulation.
Now wearereadyto applySRSto interestingbiologicalquestions.

5. Computing the transmissioncoefficients
for protein folding

Proteinfolding is theoneof the mostmarvellousprocessesin na-
ture. Undersuitableconditions, mostproteinsgo througha series
of geometrictransformationsand assumeunique3-D structures,
calledthenative folds, which allow themto performintricatebio-
logical functions.Sincethepioneering work of Anfinsen[Anf73],
therehasbeenlarge,on-going effort on predictingthenative struc-
ture of a protein,given its aminoacid sequence (see[KS96] for a
survey). Equally interesting,however, is to understandthefolding

processitself: Whatgeometrictransformationsdoestheproteingo
throughduring the folding? Which conformations are“closer” to
thenative structurealongthefolding pathway?

To addressthis kind of questions,the transmissioncoefficient has
beenintroducedasanorderparameterfor proteinfolding [DPG� 98].
It givesan indicationon how far away a conformationis from the
native structurekinetically. For a folding processdominatedby
two stablemacrostates,a folded state j and an unfolded ¼ , the
transmissioncoefficient � for a given conformation� is the prob-
ability of arriving in j beforearriving in ¼ , startingfrom � . If� is in ¼ , then � , N . If � is in j , then � ,½.

. More impor-
tantly, thetransmissioncoefficient measuresthe“kinetic distance”
betweenagivenconformationandthefoldedstate(or theunfolded
state):from any conformation � with � L¾N � ¿ , theproteinis more
likely to fold first thanto unfold first, andtherefore� is closerto
thefoldedstate[DPG� 98]. Thetransmissioncoefficient is not as-
sociatedwith any particularfolding pathway, but dependson many
pathways from onestateto another. It thusdescribesthe average
behavior of a folding processfrom a givenconformation.

Using SRS,we caneasilycompute transmissioncoefficients. Let�'	 �(*�,À.#�R0��������
bethesamplednodesin theroadmap, and �+	 bethe

transmissioncoefficient of �f	 . After constructingtheroadmap,we
apply the first-stepanalysisto establishthe following relationship
for every node�f	 not in j or ¼ :��	 , `| } ~'� 
�	 �\� .�{ `| } ~
Á 
6	 �\� N { `�#b~'�-Â �'b~
Á 
6	 �\����� � (5)

Equation(5) is obtainedby conditioningon thefirst transition.Af-
ter onestepof transition,we have threepossibilities. In the first
case,wereachanodein j , thefoldedstate.Sowehavereachedj
before¼ with probability 1. In thesecondcase,wereachanodein¼ . Sowe have reached¼ before j , andtheprobability of reach-
ing j before ¼ is 0. Finally, if we reacha node �R� in neither j
or ¼ , thenthe probability depends on the valueof �Ã� . Again, the
linearsystemin (5) canbesolvediteratively to obtainthetransmis-
sion coefficients for all the nodesin the roadmapsimultaneously
without explicit simulation.

6. Results
We now show the computedresultson two examples. The first
oneis basedon arelatively simplesyntheticenergy landscape,and
the secondone, on a real protein. We compare the resultsfrom
SRSwith thoseobtainedfrom MonteCarlosimulation,a standard
methodfor computingtransmissioncoefficients,anddemonstrate
thatSRSreducestherunningtime by severalordersof magnitude
and is moreaccurate.A main reasonfor us to usethe synthetic
datais that Monte Carlo simulationwould take excessive amount
of computation time on a fast workstationif a real protein were
used,andso we cannotperformextensive comparison. Our pre-
liminary implementationof SRSsolveslinearsystems(5) with the
Jacobimethodanddoesnot exploit the sparsityof linearsystems.
Thecomputationaladvantageof SRScouldbefurtherincreasedby
usinga betterlinearsystemsolver.

The syntheticenergy landscapelies in a 2-D conformationspace.
It is constructedusing a linear combinationof radially symmet-
ric Gaussians.Thecenters,thedecayrates,andtheheightsof the
Gaussiansarechosenat random. Thereis alsoa paraboloidcen-
teredat theorigin. Thelandscapehastwo globalminima.

In thefirst test,weusedSRSto compute� for 101samplednodesin
theconformationspace,with a roadmapof 10102nodes,andthen
usedMonte Carlo simulationto compute the resultsfor the same
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Figure4: Thecorrelation of transmissioncoefficientscomputedby Monte
Carlo simulation andSRSon synthetic data.

nodes. In theMonteCarlosimulation,we performed500indepen-
dent runs for eachnode. In eachstepof the simulation,we pro-
posea new conformation ��Ä in a neighborhoodaroundthecurrent
conformation � andacceptor reject � Ä according to the Metropo-
lis criterion. Eachsimulationrun stopsas soonas it is within a
smallneighborhoodof aconformationin thefoldedor theunfolded
state.Theresultscomputedwith thetwo methodsareplottedalong
thehorizontalandverticalaxesrespectively (Figure4). Thefigure
shows that all the points lie closeto the diagonal line, indicating
that the resultsfrom the two differentmethodsarein goodcorre-
spondence.

To examinethe accuracy of our computedresults,we conducted
further testsby varying thenumberof nodessampledby SRSand
the numberof independentMonte Carlo simulationrunsfor each
node. In eachtest,we summarizethecorrespondencebetweenthe
resultsfrom thetwo methodsby their (normalized)correlationco-
efficient,which is definedasÅ ��Æ��zÇ�"�, È Æ;ÇVÉ�: È ÆeÉ È ÇVÉÊ � È Æ � É6: È Æ5É � " � È Ç � É�: È ÇVÉ � "
for two vectors

Æ
and

Ç
, where È � É denotestheoperationof taking

theexpectation.Notethatthemagnitudeof Å is alwaysbetweenN
and

.
, with N indicatingnocorrelationand1 indicatingperfectcor-

relation. Figure5 shows the resultsof theseadditionaltests.The
horizontal axisof thegraphis thenumberof nodesin theroadmap,
andtheverticalaxisis thecorrelationcoefficient Å . Thegraphcon-
tainsthreecurves,eachcorresponding to a differentnumber of in-
dependentMonteCarlosimulationrunspernode.Thethreecurves
show a generallysimilar trend. Initially Å improvesratherquickly
asthenumberof nodesin theroadmapincreases.Thecurvesthen
flattenout aftera certainpoint. It is not immediatelyclearwhether
they will reach1, which would indicateperfectcorrelation.SinceÅ measuresonly the relationshipbetweenthe two methods,and
we do not know the groundtruth, thesegeneraltrendsdo not tell
us whetherthe discrepancy is dueto the inaccuracy in SRSor the
varianceinherentin MonteCarlosimulation.However, we canget
a hint by comparing the threecurves. For a roadmapof a given
size, Å generallyimprovesaswe increasethe numberof indepen-
dentMonteCarlosimulationruns.Thisseemsto indicatethatSRS
givesthe moreaccurateresults:whenwe increasethe numberof
independentMonte Carlo simulationruns per node,the variance
of Monte Carlosimulationdecreases, andthe resultsget closerto
thoseobtainedfrom SRS.

We alsocomparedtherunningtime of thetwo methods. Thecom-
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Figure5: Thechangeof correlation coefficient Ë asthenumberof nodes
in theroadmapincreases.Thethreecurvescorrespond to MonteCarlosim-
ulation with ÌhÍÏÎRÐ�Ð#Ñ+Ò�Ð�Ð#Ñ�ÎRÐ�Ð�Ð independentruns for eachnode. As Ì
increases,thecorrelationbetween theresults from thetwo methodsusually
improves.

Table1: Runningtimesof 100MonteCarlosimulationrunsperconforma-
tion onthesynthetic energy landscape.Firstandthird rowsgive thenumber
of conformationsprocessed.Second andfourth give therunningtimes.

No. Conf. 10 20 30 40 50
Time (sec.) 866 1588 2356 3191 4026

No. Conf. 60 70 80 90 100
Time (sec.) 4913 5621 6404 7203 8077

putationtime of SRSconsistsof two parts: the time to construct
theroadmapandthetime to solve a linearsystemof equations. On
arealprotein,thefirst part is dominatedby thetime to evaluatethe
energy of samplednodes. The secondpartdependson the sizeof
the linearsystem,which, in turn, depends on thenumber of nodes
in the roadmap. The running time of Monte Carlo simulationis
dominatedby the time to compute the energy of sampledconfor-
mations.

In our current implementation,the roadmapconstructionpart of
SRSwascodedin C++, and the linear systemsolver, in Matlab.
Monte Carlo simulationwas implementedentirely in C++. The
timing resultsreportedherewereobtainedon a 1GHzPentium-III
PC with 1GB of memory. In a typical run on the synthetic land-
scape,SRStook 8 secondsto constructa roadmapof about10,000
nodes,and750 secondsto solve the linear systemandobtainthe
transmissioncoefficients for all the nodes. The running timesof
Monte Carlo simulationis tabulatedin Table 1. It is clear from
Table1 that the runningtime of Monte Carlo simulationis linear
with respectto thenumber of conformationsprocessed.Although
we did not try the Monte Carlo simulationon all 10,000confor-
mations,it is not difficult to infer that the running time would be
around800,000 seconds.

In additionto thesyntheticdata,we alsotestedour algorithmon a
realprotein,repressorof primer(ROP).ROPis afour-helix bundle.
We studyonemonomerin isolationasin [STD95].

The3-D structureof ROPis obtainedfrom theProteinDataBank
[B � 77]. Themonomer consistsof 56 residuesforming two Ó he-
licesconnectedby aloop. Ourimplementationspecifiestheconfor-
mationof themonomerwith a vector-basedrepresentation[SB97,
ASBL01]. Theproteinis representedby two vectorsconnectedby
a loop. As in [ASBL01], therearesix conformationalparameters
in total. Our energy functionusestheH-Pmodel[STD95]consist-
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Figure6: The correlation of the transmission coefficients of ROP com-
puted by SRSandMonteCarlosimulation.

ing of two terms: onemeasuringthe hydrophobic interactionand
theothermeasuringtheexcludedvolume. In bothSRSandMonte
Carlosimulation,we discardconformationsthatviolatesterichin-
dranceconstraints.

Here,thefoldedmacrostatecontainsall conformationswithin 3 Å
of thenative fold accordingto theRMSdistance,andtheunfolded
macrostate,all theconformationswithin 10Å of thefully-extended
conformation.

Weexaminedthetransmissioncoefficientsfor ROPat39randomly
selectedconformationsusingboth SRSandMonte Carlo simula-
tion. In SRS,we computedthe estimatesfor increasingroadmap
sizes. In Monte Carlo simulation,we performedup to 300 inde-
pendent runsat eachof the39 conformationsto get theestimates.
As in thecasefor syntheticdata,we computedthecorrelationco-
efficient for increasingnumber of MonteCarlosimulationrunsper
node. The results,shown in Figure6, suggestconclusionssimi-
lar to thoseobtainedfrom synthetic data.First, theSRSestimates
improverapidlyastheroadmapsizeincreases.Second,thecorrela-
tion tendsto increaseaswe performmoreMonteCarlosimulation
runsper node, indicatingthat variancein Monte Carlo simulation
is thelikely causefor thediscrepancy.

Thetotal timeto generatearoadmapwith
¿ N#N#N nodesandcompute

the transmissioncoefficientsfor all the nodes in the roadmapwas
about onehour. In comparison,it took an averageof three days
of computation time on thesamemachinein orderto execute300
MonteCarlosimulationrunsrequiredto estimatethetransmission
coefficient at just one conformation. To generatethe resultsfor
Figure6, the Monte Carlo simulationprocedure spentaboutone
hundreddaysof computationtime,asopposedto onehourneeded
by SRSfor all 5000conformations.

The above resultsindicatethat, to computethe transmissioncoef-
ficients � for only a few nodes(say10), we mayuseMonte Carlo
simulation. SRSis not applicablein this case,becausethe num-
berof nodesis too smallto generateaccurateresults.On thehand,
if we want � for many nodesspreadover the entireenergy land-
scape,which is the more typical situation,SRSis far more effi-
cient. It computes� for all thenodes simultaneously, thusoffering
aspeedupof severalordersof magnitudein runningtimeaccording
to our experiences.

7. Discussion
Wehaveintroduced stochasticroadmapsimulationasanew frame-
work for studyingmolecularmotion. A roadmapcompactly en-
codesan ensembleof pathways, andthe first-stepanalysisallows

usto efficiently extract from theroadmapinterestingkinetic prop-
ertiesof molecularmotion. A salientfeatureof SRSis that it ex-
aminesall the pathsin a roadmap togetherusingalgebraicmeth-
odsratherconsideringthemoneat a time asclassicmethodssuch
asMonte Carlo simulationwould do. SRSalsoavoids the local-
minimaproblemencounteredwith existing methods.It thusgains
tremendouscomputationalefficiency for suitableproblems.

SRSis closelyrelatedto Monte Carlosimulation.Every pathin a
roadmapcanbe interpretedasa possibleMonte Carlo simulation
run. In additionto that,weprovedthat,in thelimit, SRSandMonte
Carlosimulationconvergeto thesamedistribution.

We have appliedSRSto thecomputationof thetransmissioncoef-
ficientsfor proteinfolding in orderto testits effectiveness.Trans-
missioncoefficientscanbeobtainedfrom MonteCarlosimulation,
but thelong computationtime requiredis pointedout asoneof the
main obstaclesto its generalutility [DPG� 98]. We have shown
in our computational studiesthatSRSreducestherunningtime by
several ordersof magnitude,compared with Monte Carlo simula-
tion, andobtainsmoreaccurateresults.

In [DPG� 98], Du et al. suggestthat the transmissioncoefficient
canserveasthebestpossiblemeasureof kineticdistancefor asys-
tem. However, overwhelmedby thecomputationalburdenof stan-
dardsimulationmethods,they wrote,“To conclude, we stressthat
we do not suggestusingthetransmissioncoefficient asa transition
coordinate for practicalpurposesasit is very computationally in-
tensive.” Our computational studiessuggestthat SRSmakes the
computationof the transmissioncoefficient viable, which would
potentiallyenableits usein practice.

Ourpreliminarywork indicatesthatSRSisapromisingnew method
for studyingmolecularmotion,but many interestingquestionsre-
mainto beexplored.

We would like to find betterwaysfor constructingroadmaps.Cur-
rently we usetheuniform distribution to sampletheconformation
space

$
of a molecule. As the dimensionof

$
getshigher, it be-

comesincreasinglymoredifficult to obtainbiologically interesting
conformations with uniform sampling.Therearetwo waysto deal
with this issue. First, we may usea moreefficient representation
(e.g., the vector-basedrepresentationin Section6) to reducethe
dimensionof

$
. Second,we mayconstruct bettersamplingstrate-

giesthat favor low-energy regionsin
$

. If thenodesof a roadmap
aresamplednon-uniformly, we mustmake appropriateadjustment
whenassigningtransitionprobabilities sothatSRSconvergesto the
samedistribution asMonteCarlosimulationdoes.

Themosttime-consumingpartof thefirst-stepanalysisis solvinga
linearsystemof equations.Thelinearsystemsolver in our current
implementationisstill crude.A betteriterativemethodthatexploits
thesparsestructureof alinearsystemwill certainlyfurtherimprove
theefficiency of SRS.

Evenmoreinterestingis theapplicationof SRSto otherimportant
questionson molecularmotion,suchastheorderof eventsin pro-
tein folding. Do secondary structureelements(SSE) form first as
sub-unitsbeforethey organizeinto a tertiarystructure?Whendoes
a particularSSEappear?We alsoplanto useSRSfor studyingthe
kineticsof ligand-proteinbinding. Our hypothesisis that thereare
energy barriersaroundbinding conformations.If a ligand is in a
bindingconformation,it mustovercometheenergy barrierin order
to escape.The conformationthat puts the ligand at the catalytic
sitehasthe highestenergy barrier, andit takesthe longesttime to
escapefrom it. Theroadmapcombinedwith thefirst-stepanalysis
offersa naturaltool to compute theescapetimesandthusidentify
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potentialcatalyticsites.WebelievethatSRSwill playanimportant
role inÔ studyingtheseandotherinterestingbiologicalquestions.

Acknowledgments: This work hasbeenpartially funded by an NSF-ITR
grantanda grantfrom Stanford’s Bio-X program. Apaydinwassupported
by theD.L. CheritonStanford GraduateFellowship. Brutlag wassupported
National HumanGenomeResearch Institute grant HGF02235. Guestrin
wassupported by a SiebelScholarshipandby theSloanFoundation. This
paper hasgreatly benefitted from discussionswith D. Koller, V. Pande,A.
Singh,andJ.Snoeyink.

References
[Anf73] C.B. Anfinsen.Principlesthat govern the folding of

proteinchains.Science, 181:223–230, 1973.

[ASBL01] M.S. Apaydin, A.P. Singh, D.L. Brutlag, and J.C.
Latombe.Capturingmolecularenergy landscapeswith
probabilistic conformational roadmaps.In Proc. IEEE
Int. Conf. on Robotics and Automation, 2001.

[B � 77] F.C. Bernstein et al. The protein data bank: A
computer-based archival file for macromolecular
structure.Journal of Molecular Biology, 112(3):535–
542,1977.

[BOSW95] J.D. Bryngelson, J.N. Onuchic,N.D. Socci,andP.G.
Wolynes. Funnels,pathways, and the energy land-
scapeof proteinfolding: A synthesis.Proteins: Struc-
ture, Function, and Genetics, 21(3):167–195,1995.

[DC97] K.A. Dill and H.S. Chan. From levinthal to path-
ways to funnels.Nature Structural Biology, 4(1):10–
19,1997.

[DK99] C.M. Dobsonand M. Karplus.The fundamentalsof
protein folding: Bringing togethertheoryandexper-
iment. Current Opinion in Structural Biology, 9:92–
101,1999.

[DPG� 98] R. Du, V. Pande, A.Y. Grosberg, T. Tanaka,
and E. Shakhnovich. On the transition coordinate
for protein folding. Journal of Chemical Physics,
108(1):334–350, 1998.

[Fer99] A. Fersht.Structure and Mechanism in Protein Sci-
ence: A Guide to Enzyme Catalysis and Protein Fold-
ing. W.H. Freeman& Company, New York, 1999.

[GL89] A. George andJ. Liu. The evolution of the minimum
degreeorderingalgorithm.SIAM Review, 31(1):1–19,
1989.

[GMS92] J.R. Gilbertand,C. Moler, and R. Schreiber. Sparse
matrices in matlab: Design and implementation.
SIAM Journal on Matrix Analysis and Applications,
13(1):333–356,1992.

[Hai92] J.M.Haile.Molecular Dynamics Simulation: Elemen-
tary Methods. JohnWiley & Sons,New York, 1992.

[Haj88] B. Hajek. Cooling schedules for optimal annealing.
Mathematics of Operations Research, 13(2):311 –
329,1988.

[Hoe63] W. Hoeffding. Probability inequalities for sum of
bounded randomvariables.Journal of the American
Statistical Association, 58:13–30, 1963.

[KS96] A. Kolinski andJ.Skolnick. Lattice Models of Protein
Folding, Dynamics and Thermodynamics. Chapmann
& Hall, New York, 1996.
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Appendix

A. Proof of Theorem1
In thefirst setof theproof, we show a closedform solutionto the
stationarydistribution on theroadmap:

LEMMA 2. For any set � , the stationary distribution on the
roadmap can be rewritten as:� � � "�, � 	 ~ ¢ @ ACBD�+: % � �'	 "(= 2 F G "� � @ ACBD�+: % � � � "(= 21F5G " �

PROOF. First,notethatarandom walk onagraphwith our tran-
sition probabilities
�	 � hasa stationarydistribution:� 	 , �eÕ � � 	 "1@�AVBD�+: % � � 	 "(= 21F�G "(= �9Ö P (6)

where
�9Ö

is a normalizationconstantand �VÕ � � 	 " is the station-
ary distribution for a randomwalk on a graphwith the samecon-
nectivity, but with the energy dependent

@ ACB��+: 7E% 	 � = 21F;G "
term

8



removed from the transitionprobabilities 
e	 � (for a derivation of
thisstatement,seefor example[Haj88]). Wewill denotethesenew
transitionprobabilities by 
 Ä	 � .

Now notethat for the caseof our roadmaps, 
 Ä	 � becomesan uni-
form distribution over theneighbors:
 Ä	 � , < �× Ø £ × if Ù y 3Q	N otherwise

P
where 3M	 is thesetof neighborsof node

*
; and 
 Ä	Ú	 , N . Notethat

in our roadmaps node
*

is connectedto Ù (Ù y 3 	 ) if andonly if
node Ù is connectedto

*
(
* y 3-� ). In suchgraph, the stationary

distribution �5Õ is trivially givenby:�5Õ � � 	 "Û, > 3Q	 >� Õ P (7)

where
� Õ is anormalizationconstant.

Now, returningto ourdefinitionof stationarydistribution in aset �
from Section4: � � � "�, .� ` 	 ~ ¢ � 	> 34	 > �
Substitutingin Equations(6) and(7):� � � "6, .� Ä ` 	 ~ ¢ @ ACBD�+: % � � 	 "(= 21F5G "��
We can computethe normalizationconstant

� Ä by the constraint� � $ "�,^.
, yielding:� Ä ,¾` � @�AVBD�+: % � � � "(= 21F�G "��

Thus,proving thelemma.

Theremainderof our proof will requiretheapplicationof Hoeffd-
ing’s inequality. We presentherethe simplified versionof the in-
equalityneededfor theproof:

LEMMA 3 (HOEFFDING’ S INEQUALITY [HOE63]). Let Ü be
a random variable distributed according to 
 � Ü "

such that Ü yÝ Þ5�(ßRà
. Let Ü � ����� ��� Üeá be ) independent, identically distributed

samples from 
 � Ü "
and the empirical mean Ü , �á � 	 Ü 	 , then:
 � Ü : % Ý Ü à � � " �¥â�ã\ä
åzæç+èVé �

and
 � % Ý Ü à�: Ü � � " �¥â ã ä
åzæç+èVé � (8)

For simplicity of presentation,assumewithout loss of generality
thatthevolumeof theconformationspaceis one: ¤ � $ "�,^.

, where
thevolumeof somesetj is denotedby ¤ � j "

, i.e., ¤ � j "
represents

theproportion of thetotal volumeof
$

occupiedby j .

Theorem1 holdsfor any confidencelevel § L¾N . In theproof, we
will divide this § in threeparts: § � L±N , § � L¸N and § ´ L¸N , such
that § � { § � { § ´ �O§ asour proof will requirethreeapplications
of Hoeffding’s inequality.

Our first lemmawill boundthenumberof pointsthatfall in theset
of interest� :

LEMMA 4. For a uniformly sampled roadmap of 3 points, for
any � � L±N , let ê be the number of roadmap points that fall in the
set � , then: ¤ � � "�: � � � ê3 �ë¤ � � "�{ � � P (9)

with probability at least
._: § � , where § � � 0 â ã Ø�ì æ í .

PROOF. Application of Hoeffding’s inequality, wherethe ran-
dom variable Ü is the indicatorthat a point falls in the set � . By
the law of largenumbers, % Ý Ü à�, ¤ � � "(= ¤ � $ "Y, ¤ � � "

. Theem-
pirical mean Ü , ê = 3 and Ü is an indicator, thus, Ü y Ý N ��.�à .
Theproof is concludedby applyingLemma3.

Wewould like to have,with highprobability, at leastonemilestone
in the � . (This constraintcanbe relaxed, but the proof becomes
morecomplicated.)Thus,we mustchoosethenumberof nodes3
suchthat ê LÀN with probabilityat least

.s: § � . Using the con-
straintin Lemma4, we know that ê �ïî 3 � ¤ � � "6: � �R"zð . Thus:3 �òñ .f=1� ¤ � � "�: � ��"zó��
For theremainder of theproof, we canassume,with probability at
least

._: § � , that ê LON .

For thenext stepof theproof, we will needa definition: for some
set j�ô $

, let’sdefinetheBoltzmann integral in thissetas:Ó � j "�,¾  � @�AVBD�+: % � � "(= 21F�G " ��� �
Notethat Ó � $ "

correspondsto thepartitionfunction
� �

. Underthis
definition,we canwrite theBoltzmanndistribution as:� � j "Û, Ó � j "Ó � $ " �
We will denotetherangeof a function · as ��·6��° ,^Z(¹VB | · � � "Û:H[iVJ | · � � " . Our next lemmaimpliesthatwe canestimatetheBoltz-
mannintegral with samples:

LEMMA 5. For any set j , let Üe	 be õ uniformly sampled points
in j , for any � LON , then:Ó � j "�: ��� ¤ � j " � ¤ � j "õ ` 	 @ ACB��+: % � Ü 	 "(= 21F�G " �¨Ó � j "({ ��� ¤ � j " P

(10)
with probability at least

._: § , where§ � 0�@ ACBªö : õ¾� �� @�AVBD�+: % � � "(= 2 F G " ��°�÷ �
PROOF. Define a randomvariable Ü ,ø@�AVBD�+: % � � "(= 2�F�G "

,
note that % Ý Ü à8, Ó � j "(= ¤ � j "

. The proof is concluded by ap-
plying Hoeffding’s inequality.

We will apply Lemma5 twice, first for computingthe Boltzmann
integral in theset � , obtainingthebound:Ó � � "�: � � ¤ � � " � ¤ � � "ê ` 	 ~ ¢ @ ACBD�+: % � Üe	 "(= 2 F G " �¨Ó � � "({ � � ¤ � � " P

(11)
with probabilityat least:

._: § � , where§ � � 06@ ACB ö : êª� ��� @ ACB��+: % � � "(= 21F�G " � °�÷ �
Thesecondbound concernstheintegral over thewholespace:Ó � $ "�: � ´ � .3 ` � @ ACB��+: % � Ü � "(= 21F;G " �¨Ó � $ "�{ � ´ P (12)

with probabilityat least:
._: § ´ , where§ ´ � 06@ ACBªö : 3h� �´� @ ACB��+: % � � "(= 2 F G " ��°�÷ �

In the remainderof this proof, we will assumethat equations(9),
(11)and(12)hold, i.e.,theargumentholdswith probabilityat least.Y:¨� § ��{ § �Û{ § ´ " � ._: § .
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Next, note that from Lemma2 the stationarydistribution on the
roadmapù canberewritten as:� � � "�, � 	 ~ ¢ @ ACBD�+: % � Üe	 "(= 2 F G "� � @ ACB��+: % � ÜC� "(= 2 F G " �
Applying thebound on Equation(9) we get:ö ¤ � � "�: � �ê = 3 ÷ � 	 ~ ¢ @ ACBD�+: % � Üe	 "(= 2 F G "� � @ ACB��+: % � ÜC� "(= 2 F G "�¨� � � " �ö ¤ � � "D{ � �ê = 3 ÷ � 	 ~ ¢ @�AVB��+: % � Ü 	 "(= 21F�G "� � @ ACBD�+: % � ÜC� "(= 2 F G " P
rearranging:ö ¤ � � "�: � �¤ � � " ÷ ¤ � � "(= ê¡� 	 ~ ¢ @ ACBD�+: % � Ü 	 "(= 21F5G ".�= 3À� � @ ACBD�+: % � ÜC� "(= 2 F G "�¨� � � " �ö ¤ � � "e{ � �¤ � � " ÷ ¤ � � "(= ê^� 	 ~ ¢ @ ACB��+: % � Üe	 "(= 2 F G ".f= 3 � � @�AVB��+: % � Ü � "(= 21F;G " �
We cannow applytheboundsin Equations(11) and(12):ö ¤ � � "�: � �¤ � � " ÷ Ó � � "�: � � ¤ � � " ¤ � � "Ó � $ "�{ � ´�¨� � � " �

ö ¤ � � "e{ � �¤ � � " ÷ Ó � � "e{ � � ¤ � � "Ó � $ "�: � ´ �
This expressioncanberewrittenas:�+._: ¦ " Ó � � "Ó � $ " : �ú� � � � " � �+.�{ ¦ " Ó � � "Ó � $ " { � P
which finally leadsusto thestatementof our theorem:�+.Y: ¦ " � � � "�: �4�¨� � � " � �+.�{ ¦ " � � � "e{ � P
where � and ¦ imposethefollowing constraints:� � � �'� ¤ � � "�{ � �R"Ó � $ "6: � ´ P (13)¦ � � � Ó � $ "�{ � ´ ¤ � � "¤ � � "e� Ó � $ "�: � ´ " � (14)

In addition to thesetwo constraints,we have the constraintsim-
posedby theconfidencelevels § � , § � and § ´ :3 � g]iD�û0#= § � "� � � P (15)3 � g]iD�û0#= § ��" � @�AVBD�+: % � � "(= 21F�G " � °� ¤ � � "�: � ��" � �� {¸. P (16)3 � g]iD�û0#= § ´ " � @�AVBD�+: % � � "(= 2 F G " ��°� �´ P (17)§ � § ��{ § ��{ § ´ � (18)

Givenany � LON , ¦ L±N and § LON , we canuseconstraints(13) —
(18) to obtainthe requirednumber of nodes3 in the roadmapto
satisfythetheorem.

To obtaina simplerconvergence rate,we cansimplify thesecon-
straintsby imposing: � �-, � �?, � ´ ,�ü�4�¨� and § �-, § �_, § ´ ,§ = ® .

Let’s first considerthe � constrainton Equation(13), which can
now bewrittenas: � � ü� � ¤ � � "e{Àü� "Ó � $ "�:�ü� �
Rearranging,we have that:ü�4� �fÓ � $ "¤ � � "e{ � : ü� �¤ � � "e{ � �
Finally, recallthat ¤ � � " � .

,
ü�4�±� and,for a non-trivial approxi-

mationschema,�4� .
. Thus,we concludethat:ü�4� � � Ó � $ "6: � "0 �

(19)

Usinga similar manipulationof the ¦ constrainton Equation(14),
we canwrite: ü�Q� Ó � $ " ¤ � � " ¦Ó � $ "D{ ¤ � � " � ¦ {¸.�" �
Noting that ¤ � � " � .

and,in a non-trivial approximationschema,¦8� .
, we cansimplify theconstraintas:ü�4� Ó � $ " ¤ � � " ¦Ó � $ "D{ë0 �

(20)

Wecannow considertheconstraintson 3 givenbyEquations(15)—
(17). Notethat for thecaseof � �\, � �ý, � ´ ,þü� and § �\, § �M,§ ´ , only theconstraintin Equation(16) will bebinding. This con-
straintcannow bewrittenas:3 � g]iD��¯�= § " � @�AVB��+: % � � "(= 2 F G " ��°� ¤ � � "�:¡ü� "'ü� � {¥.#�
Substitutingtheconstraintson

ü� givenby Equations(19) and(20),
we canobtainthevalueof 3 :3 , ©¬« A < ÿ g[i���¯#= § " � @ ACBD�+: % � � "(= 2 F G " � °Ý 0 ¤ � � "�: � � Ó � $ "�: � "wà � � � Ó � $ "6: � " � {¥.#�

g[iD��¯�= § " � @ ACB��+: % � � "(= 2 F G " ��°� .Y:���� � $ �� � $ � � ��� ¦���¤ � � " ´ ��� � $ �� � $ � � ��� � ¦ �
{±.
	 ��

�

�

We can further simplify this equationsby makingsomeassump-
tionson � and ¦ . Assumingthat:�Q� Ó � $ "0 P �4� ¤ � � "Ó � $ " P ¦E� Ó � $ "Ó � $ "�{O0 �
Applying theseconstraintsto the denominatorof the equationfor3 above andsimplifying, weobtaina final bound:3 , ©¬« A < ® 0�g[i���¯�= § " � @ ACBD�+: % � � "(= 21F�G " � °¤ � � " Ó � $ " � � � {±.#�g[i���¯#= § " � @ ACBD�+: % � � "(= 21F�G " � ° � Ó � $ "�{¨0#"(²³ Ó � $ " � ¤ � � " ´ ¦ � {±.��h�
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