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Abstract

Classictechniqgues for simulatingmolecularmotion, such as the
Monte Carlo and moleculardynanics methods,generatandivid-
ual motion pathways one at a time and spendmost of their time
trying to escapefrom the local minima of the enegy landscap
of amolecule. Their high compuationalcost preventsthemfrom
being usedto analyzemary pathways We introduce Sochastic
Roadmap Smulation (SRS),a new approah for exploring the ki-
netics of molecularmotion by simultaneouslyexamining multi-
ple pathways encodkd compactlyin a graph, called a roadmap.
A roadmapis computedby samplinga molecule$ conformdion
spaceat random. The computationdoesnot suffer from the local-
minimaproblemencouneredwith existing method. Eachpathin
the roadmaprepresents potentialmotion pathway andis associ-
atedwith a probability indicatingthe likelihoodthat the molecule
follows this pathway. By viewing the roadmapasa Markov chain,
we canefficiently compue kinetic propertiesof molecularmotion
over the entiremolecularenegy landscapeWe alsoprove that,in
the limit, SRScorvergesto the samedistribution as Monte Carlo
simulation.To testthe effectivenesof our approachwe applyit to
thecomputatiorof thetransmissiorcoeficientsfor proteinfolding,
animportantorder parametethat measureshe “kinetic distance”
of a proteins conformationto its native state. Our compuational
studiesshav that SRSobtainsmore accurateresultsand achieres
several orders-of-magitude reductionin computationtime, com-
paredwith Monte Carlosimulation.

1. Intr oduction

Mary interestingpropertiesof molecularmotion are bestcharac-
terizedstatisticallyby consideringan ensemblef pathwaysrather
thanan individual one. For example,the “new view” of protein
folding kineticsreplacesa singlefolding pathway with an enegy
landscap andafolding funnel[BOSW95,DC97,DK99, PGTR98].
Proteinsarethoughtto fold in a multi-dimensionafunnel by fol-
lowing amyriad of pathways, all leadingto the native structure.To
carry out compuationalstudiesof molecularmotionin this frame-
work, we needefficientalgorithmsthatcanquickly explorealarge
numker of pathways. Unfortunatelyclassicsimulationtechniques,
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Figure1: A probatlistic conformatonal roadmapsuperimposedon the
contaur plot of a hypotheical enegy landscape.

suchasthe Monte Carlo[KW86] andmoleculardynamics[Hai92]
methodsgeneraténdividua pathwaysoneatatimeandwastealot
of time trying to escapdrom the local minima of anenegy land-
scape. They are computationallyinefficient if appliedin a brute-
force fashionto dealwith mary pathways. In this paper we in-
troduceStochastic Roadmap Smulation (SRS),arandomizedech-
niguefor samplingmolecularmotion andexploring thekineticsof
suchmotionby examiningmultiple pathways simultaneously

In SRS,we compatly encodt mary pathwaysin a directedgraph
called a probabilistic conformational roadmap (Figure 1), or just
roadmap for short. Eachnodeof theroadmagps arandanly sam-
pled conformation of a molecule. Each (directed)edgebetween
two nodesw; andwv; carriesa weight P;;, which is the probabil-
ity for the moleculeto transitionfrom v; to v;. Every pathin
the roadmapcorrespond to a potential motion pathway for the
molecule. A roadmapcontainsmary pathways, with associated
probadiliti es indicating the likelihood that the moleculemay fol-
low thesepathways. In SRS,we constructaroadma andanalyze
all the pathsin it simultaneouslyto obtainkinetic informationon
the motion of moleculesover theentireenepgy landscape.

To analyzea roadmapwe view molecularmotionin the roadmap
asa randam walk on a graph. We avoid explicitly simulatingthe
motion and obtain much of the sameinformation by applying al-
gebraicmethod from the Markov chaintheory[TK94]. Intuitively
this is equivalert to performingmary simulationruns simultane-
ouslyfor along time. As anexample,let us conside the problem
of computingthe transmissiorcoeficients for a proteinin a sys-
tem dominatedby two stablestatesa folded oneandan unfolded
one.Thetransmissiorcoeficient r for aconformatiory is defined



asthe probability of reachingthe folded statebeforethe unfolded
state startingfrom ¢ [DPG™98]. This coeficient providesa mea-
sureof the “kinetic distance”betweery andthe folded state. It is
possibleto computer in a straightforvard way: for every ¢ of in-
tereststartmary of Monte Carlosimulationrunsfrom ¢ andcount
the numbe of timesthatthey enterthe folded statebeforethe un-
foldedone[DPG*98]. However, thesimulationis compuationally
expersive, asalarge numberof simulationrunsarerequiredto ob-
tainareasonablaccurateestimateof . With SRS ,we canachieve
the sameresultmuch more efficiently. This is not a surprise be-
causeevery pathin aroadmapcanbeinterpretedasa Monte Carlo
simulationrun. However, Monte Carlosimulationfollows only one
pathway atatime. It alsoeasilygetsstuckin the local minima of
theenepgy landscapgrepeatedlysamplingmary similarconforma-
tionswithout obtainingmuchnew information. Our new approach
avoidstheproblemby samplingdirectly from the spaceof all path-
waysandtreatingthemtogetherusingalgebraicmethods.

SRSis amorecoarse-grainedimulationtechnigue thanthe Monte
Carlo method. The Monte Carlo methodtendsto focus on one
pathway at a time and hasa highe densityof samplesalongthat
particularpathway. In contrast, SRSspreadghe samplesover the
wholeconfarmationspace Thusit is ableto examinemary motion
pathways at onceandextractinterestingkinetic propertiesghatare
noteasilyaccessibléy othermethodsuchasMonte Carlosimula-
tion. In addition,we show that,in thelimit, SRSandMonte Carlo
simulationcorverge to the samesamplingdistribution (Section4).

SRSis inspiredby probabilisticroadma methodsor motion plan-

ning [KSLO96]. The main idea of probabilisticroadmapmeth-
odsis to constructa graphthatcaptureghe connectiity of ahigh-

dimensioml spacevia randomsampling. Singh, et al. first intro-

ducedprobabilisticroadmapmethodgo the studyof moleculamo-

tion in theirwork on ligand-proteirbinding [SLB99]. Thesemeth-
ods have sincebeenappliedto proteinfolding aswell [ASBLO1,

SAO01]. Theearlierwork treatsa roadmapasa deterministiograph
with heuristicedgeweightsbasedntheenepy differencebetween
moleculeconformatiors. In contrastwe usethe probabilisticcon-

formationalroadmapas a way to capturethe stochastimatureof

molecularmotion. It enablesus to exploit the knawledge from

Markov chaintheoryto processnew queriesthat are biologically

relevant and to establisha formal relationshipbetweenSRS and
Monte Carlosimulation.

The main contrikbutions of this work are the following. SRSpro-

videsa new represetation of the stochastianotion of molecules.
We describehow to constructa roadmap(Section2) andquerya

roadmapefficiently by exploiting toolsfrom the Markov chainthe-
ory (Section3). We shav formally that SRScorvergesto thesame
distribution asthe Monte Carlo method(Section4). Our approach
providesanefficient algorithmfor compuing the transmissiorco-

efficientsfor proteinfolding (Sections and6). It alsohaspotential
applicationsin otherquestionsegardingthe kineticsof molecular
motion (Section?).

2. Stochasticroadmapsimulation

In StochastidRoadmapSimulation,we first constructa roadmap,
asa discreterepresentatiolf molecularmotion. A roadmaprep-
resentsa large numberof possibleMonte Carlo simulationpaths
simultaneosly and enablesus to perform key computationeffi-

ciently.

2.1 Conformation space
The conformaion of a moleculecanbe specifiedin variousways.
In a lattice model, we specify the lattice positionsof constituent

atoms. In protein folding, we commonly use the backlone tor-

sional angles(¢ and ) of a protein. SRSis applicableto all

thesedifferentrepresentationgyrovided that the conformaion of
a moleculecanbe specifiedasa finite numberof parametershat
uniquelydeterminethe 3-D positionof every atomin themolecule.
Formally, a conformationof d parameterss specifiedby a vector
(61,62, ...,64).

Thesetof all possibleconformationgorm the conformation space
C. A pointin C corresponsto a particularassignmat to the pa-
rameterghatspecifythe conformdion of themolecule.

The conformationabarametersleterminethe interactionbetween
atomsof the moleculeandbetweerthe moleculeandthe medium,
e.g., thevanderWaalsandelectrostatidorces. Theseinteractions
give rise to the attractve andrepulsie forcesthat dictatethe mo-

tion of amolecule.SRSassumeshattheinteractionsaredescribed
by anenepgy function E(q), which depend®nly onthe confama-
tion ¢ of themolecule;it doesnotrequire E to have ary particular
propertiesor functionalforms.

2.2 Roadmapconstruction

We encodemary pathwaysin C with a directedgraphG, called
aroadmap Eachnode of the roadmapG is a randonly sampled
conformationin C. Each(directed)edgebetweertwo nodesy; and
v; carriesa weight P;;, which is the probability for the molecule
to transitionfrom v; to v;. The probablity P;; is O if thereis no

edgebetweerny; andv;. Otherwise the valueof P;; depemlson

the enepy differencebetweeny; andv;. We thusadopta stochas-
tic view of molecularmotion: P;; representshe probability that
the moleculewill next move to conformationv;, giventhatit is

currentlyin v;.

To constructhe roadmapour algorithmsamples: conformatiors
indepemently at randomfrom C. For simplicity, we usethe uni-

form samplingdistribution by picking avalueuniformly atrandom
for eachconformationhparameted;, i = 1,2,... from its allow-

ablerange.For every nodev;, wefind thek nearesheightorsof v;,

accordingto a suitablemetric suchasthe RMS or Euclideandis-
tancein C. Let V; denotethe setof k£ nearesheighborsof »;. The
algorithmthencompuesthetransitionprobalility P;; betweerev-

ery pair of neighbaing nodesy; andv;, wherev; isin N;. P;; is

computedbasedbn AE;; = E(v;) — E(v;), theenepy difference
betweerthe conformationsy; andv;. In formula,we have

. _ J (1/INi]) exp(—AE;; /ksT),
Fij = { 1/|Nil,

if AE;; > 0;
otherwise;

whereks is theBoltzmannconstantT is thetemperatureand|N;|
is thenumberof neighlorsof nodew;, excludingitself. If anodew;
is notin IV;, thenv; andv; aretoo far apartfor theirenegy differ-
enceto beagoodbasisfor estimatinghetransitionprobability and
wesetP;; = 0. Finally we definethe self-transitionproballiti es:

Py =1- Z P,
J#i
which ensureghatthe transitionprobalblities from any nodesum
uptol.

The transition probabilities thus defined are consistentwith the
Metropolis criterion usedin Monte Carlo simulation. They allow
usto establisha connetion betweenSRSandMonte Carlo simu-
lation formally (seeSection4). In comparisonprevious work uses
roadmaps with heuristicedgeweightsbasedon the enegy differ-
ences[SLB99, ASBL01, SA01]. They do not have the samein-
terpretationof the roadmapas representinghe stochastiomotion



of molecules,and thus cannotbe formally validatedin the same
stochastidramenork thatwe usehere.Furthermorewith ourinter-
pretation we canexploit theknowledge from Markov chaintheory
to efficiently processnterestingqueries(seeSection3).

2.3 Using SRSto study molecular motion

Typically, Monte Carlosimulationgeneratesandompathsthrough
C in searchof the globalminimum of the enegy function E. Such
pathsare interestingfor understanihg the enegy landscapeand
exploring the kineticsof molecularmotion,aswell asdetermining
the native folds of proteinsandthe binding sitesin ligand-protein
docking (seee.g., [Fer99,KS96)).

A pathgeneratedy Monte Carlo simulationcorrespond to a se-
querceof randommovesin theconformationspaceC. Suchapath-
way in C canalsobe obtainedby following a sequene of edgesn
ourroadmapG: atnodew;, we decidewhich nodeto move to next
accordirg to thetransitionprobabilities P;;.

With our choiceof transitionprobalilities, thereis a strongrela-

tionshipbetweerpathsgenerdedby SRS,.e,, pathsn theroadma,
and pathsgeneratedy Monte Carlo simulation. The main differ-

encebetweenSRSand Monte Carlo simulationis the spacethat
they operateon. SRSoperate®nthesetof samplecconformations,
while Monte Carlo methodoperateson the undelying continuows

conformdion spaceC. SoSRScanberegardedasadiscretelysam-
pledversionof Monte Carlo simulation.

In [SKSO01],it isarguedthatMonte Carlosimulationcanbeapplied
to the undestandingof proteinfolding kinetics. The relationship
betweerSRSpathsandMonte Carlosimulationpathssuggeststhat
their analysids applicableto our approachaswell.

However, Monte Carlo simulationfocuseson only one pathway
at a time and easily getsstuckin the local minima of the enegy
function,repeatedlysamplingmary similar conformatiors without
obtainingmuchnew information. SRSconstructsa roadmapcon-
taining mary Monte Carlo simulationpathsby samplingdirectly
from the spaceof all pathways. It processeshesepathstogether
using algebraicmethods thusgreatly reducingcompuationtime,
aswewill seein thenext sectionsThecomputatiordoesnotsuffer
from thelocal-minimaproblemencouwnteredin Monte Carlo simu-
lation.

3. First-step analysisand roadmapquery

A roadmapG containsa multitudeof informationabou molecular
motion. Giventwo nodesy; andv; in G, we caneasilycompute
themostlikely pathway from v; to v; by searchingor aminimum-
weightpathfrom v; to v; in agraphsimilarto G but with — In P;;
asedgeweights.This leadsto resultssimilarto thosein theearlier
work [SLB99, ASBL01, SA01], which usea directedgraphwith
heuristicedgeweightsbasedon enepgy differencesbecausehe
heuristicedgeweights can be interpretedas probaliliti es. How-
ever, aninsightresultingfrom our choiceof transitionprobablities
is thata roadmapimplicitly definesa Markov chainthat captures
the stochastimatureof molecularmotion. This allows usto take
adwantageof powerful tools from the Markov chaintheory We
now focuson one suchtool, the first-stepanalysis,which will be
usedlaterto studythekineticsof proteinfolding.

Considera roadmapG representinghe motion of a proteindur-
ing the folding process.Let F be a setof nodesin G thatlie in
the folded state. In otherwords, they are structurally similar to
the native fold. The setF is an exampleof a macrostate, which
is definedas a set of roadmapnodesthat sharea commonprop-
erty. A macrostatds an abstractiorthat combinesa setof nodes

Py

Figure2: Thefirst-stepanaysis.

into a singleentity. Now suppsethatwe areinterestedn finding,
for every nodew; in G, the expectednumter of transitionsthat it
takesto go from v; to thefolded state,i.e., any nodein F. Denote
this numberby t;. The naive appro@h to compue ¢; would beto
performmary Monte Carlo simulationruns, startingfrom »; and
averagethe numter of stepstaken by eachrun to getan estimate
of t;. Thisapprachhasa high variancein the estimatedueto the
stochasticnatureof the simulationprocedire and thus requiresa
large numberof simulationruns for eachnodew; in orderto get
reasonale results.In contrastthefirst-stepanalysissolvesfor all
t; simultaneouslywithout the needfor explicit simulation.

The first-stepanalysisproceed by condtioning on what happes
afterthefirst step. Supposehatwe startat somenodewv; ¢ F and
performonestepof transition. First¢; is increasedyy one. Then,
in the next step,we reacheitherthe folded stateor anothernode
v; € F. In theformer case,we simply stop. In the latter case,
the expectednumbe of stepsfrom thenon is givenby ¢;, by the
definition. More formally, we have the following systemof self-
consistenequations:

t; =1+ Z FP;; -0+ Z P;; - t;, foreveryv; € F. (1)
v; €EF v; EF

In thesecon termof (1), P;; is multiplied by zero,becauseve stop
assoonaswereachthefoldedstate.SeeFigure2 for anillustration.

The linear systemin (1) containsone equationand one unknown
for eachnodew; notin . A unigue solutionto (1) is guaranteedo
exist, becaus¢heroadmapG containsonly onestrongly-comected
comporent by construction and so the Markov chainrepresented
by G is egodic[TK94]. By solvingthelinearsystemalgebraically
we obtaint; for all the nodessimultaneouslywithout ary explicit
simulation.

Sincethereareusuallymary nodesin theroadmapthelinearsys-
temis large andis solved with aniterative method. A simpleone

is the Jacobiiteration[PTVP92]. Lettg’“) bethevalueof ¢; atkth
iteration.We settf.o) = ( for all i andrepeatedlyapply

t*M =143 P04+ Y Pyt
v; EF v; EF

until theiterationconverges,i.e,, [t T — t®)||,, < & for some
small pre-selecteadonstah . The cornvergencerate of the Jacobi
methodis slow, but a bettermethodsuchas Gauss-Seidebr suc-
cessve overrelaxation(SOR) can be usedinsteadto improve the
performancdPTVP92]. In addition,every nodein G is, by con-
struction,conrectedto at mostk neighbaing nodes, for somepre-
selectedralueof k. Usually k£ is muchsmallerthanthe total num-
berof nodesn. We canexploit this featureandrun a sparsematrix
orderingalgorithm (see,e.g., [GL89, GMS92]) to producea lin-

ear systemthat hasa banded sparsestructure which can greatly
improve therunningtime of iterative solvers.



Thefirst-stepanalysisis actuallymoregenerathanthe simpleex-

amplesuggets here.Forinstanceywe mayhave multiple macrostates

andwantto know theprobabilityof reachingpnemacrostatdefore
theothers.We will discusshow to usethefirst-stepanalysisto deal
with thisin Section5.

4. Formal link betweenSRSand Monte
Carlo simulation

Sofar, we have presentedhe roadmapand the first-stepanalysis
as an efficient way to representmolecularmotion pathways and
extract interestinginformation from them. Before applying these
technigesto relevant biologicd questionswe would like to for-
malizetherelationshipbetweenSRSandMonte Carlo simulation,
a classictechnique for studyingmolecularmotion. We prove that
SRSandMonte Carlosimulationcornvergeto thesamedistribution.
The proof hasseveralimplications. First, it validatesour intuition
thatthe quality of resultsfrom SRSimprovesasthe roadma size
increasesSecondjt providesthe basisfor analyzingthe approxi-
mationerrorfor ary givenroadmaysize.Finally, it givesusthefor-
maljustificationfor usingour probabilisticedgeweightsP;;, rather

thanthe heuristicedgeweightsin the earlierwork usingroadmaps.

4.1 Stationary distrib ution
To establishthe proof, we now briefly describethe concep of the
stationary distribution of a Markov chain.

Every roadmapG definesa Markov chain, which hasan associ-
atedlimiting distribution = obtainedasfollows: Performarandom
walk on G, startingat a nodein G. At eachstepof the random
walk, make a move to the next node accordingto the transition
probabtlities P;;. If we let the randomwalk continue infinitely,

thenunderthe conditionthat the roadmapis ergodic, the starting
nodebecomesrrelevant:in thelimit, eachnodev; is visitedwith a
fixedprobabhility ; accordirg to =, regardlesf the startingnode.
Son describeghelimiting behaior of all possiblesimulatedran-
dom walks on the roadmap. Sincethe roadmapG representshe
motion of moleculesfor eachnodew; in G, m; givesthe fraction
of thetime thatthemoleculespendsatwv; in thelimit.

The limiting distribution 7= canbe shawvn to satisfy the following
self-consistenequationgTK94]:

m =Y mPy, foralli. @)
J

With the additionalconstraintsr; > 0 for all s and), m; = 1,
the solutionto (2) is guaranteedo be a well-definedprobability
distribution. Equation(2) saysthat,in thelimit, the distribution 7
no longerchangsfrom one stepof the randomwalk to the next.
For this reason,x is called the stationary distribution. Now we
arereadyto relatethe stationarydistribution of SRSto thelimiting
distribution of Monte Carlosimulation.

4.2 Limit behavior of SRS.

Considera moleculemoving through the conformationspaceC
goverred by the enegy function E. In the limit, the probability
distribution of conformationsvisited by the moleculeis given by
the Boltzmanndistribution 3 [Lea96]. Specificallythedensity3 at
aparticularpointwv of C is

B(v) = Ziﬁ exp(—E(v)/kaT), 3)

whereZg = [, exp(—E(v)/ksT)dv is anormalizationconstant,
alsoknown asa partitionfunction.

It is well-known thatthelimiting distribution of Monte Carlosim-
ulationis 3, the Boltzmanndistribution [Lea96]. This meansthat
if we allow the Monte Carlo simulationto continueinfinitely, the
sampledconformationswill distribute accordingto 3. We would
like to answerthe samequestionfor SRS.Whatis thelimit beha-
ior of SRS?

Notethatthe conformationspaceC is continuots. Thus(3) repre-
sentsa probablity density function over C. To computethe prob-
ability for a setof conformationswe needto integratethe density
function 8 over the set. More formally, let S C C be ary subset
of the conformationspace.In thelimit, the probability thata con-
formationin S is sampledby a Monte Carlo simulationprocesss

B(S) = /S Bw)dv.

Now considera roadmapwith stationarydistribution = given by
(2). Thefirst questionis how to estimatethe probalility of the set
S usingthe roadma. The roadmapcontainsa setof discretely
samplednodesfrom C. So the estimatecan be obtainedby the
summingthe stationarydistribution 7 over all the nodesy; thatlie

in thesetS. Somenodesin theroadmapmayhave moreneighbas
thanothers,and so we normalizethe sumby |N;|, the numberof

neighbas of nodew;. In formula,we have

1 (V4
"=z 2 |1(€|)’

v;ES

whereZ = 3, m(v;)/ | Ni| is anormalizingconstant.

If SRSrepresentthestochastianotionof moleculesvith thesame
limit behaior asMonte Carlo simulation,thenthe limit distribu-
tions of thesetwo method shoud corverge. In otherwords,asthe
roadmaysizeincreasesy(S) shouldapproat 5(S) for ary subset
S in C. Thisis statedformally in Theorem.

THEOREM 1. Let S be any subset of the conformation space C
with relative volume p(S) > 0. For anye > 0,6 > 0, and vy > 0,
there exists IV, such that in a roadmap with N uniformly sampled
nodes, the difference between the probability 3(S) and the estimate
m(S) fromthe roadmap is given by

(1-0)B(S) —e <m(S) < (1 +8)B(S) +e, 4)
with probability at least 1 — ~.

Furthermore, if e < min{Zz/2, u(S)/Zg} and d < Zp/(Zs +
2), then the number of roadmap nodes N required is given by

- 3210(6/7)|| exp(~E(v)/ksT)l|s
N_max{ WS) 72 +1,

In(6/7)|| exp(—E(v)/ksT)||s (Zs +2)* 1 }
4Z2(8)?5° ’

where [|f||s = sup, f(v) — infy f(v).

PrROOF. SeeAppendx A. [

Thefirst partof the abore theoremsaysthat, with high probability,

thestationarydistribution = associateavith aroadmapcanapprox

imateg, theBoltzmanndistributionto ary desiredevel of accurag

characterizedy therelative erroré andtheabsoluteerrore. Since
Monte Carlo simulationapproachs 3 in thelimit, too, it follows
from Theorem1l that both SRSand Monte Carlo simulationcon-
vergeto the samelimit distribution.
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Figure3: Errorin SRSestimadesof the statimary distribution.

Figure3illustratesthe resultof Theoreml. It shavs thattheerror
in our roadma estimatesf the stationarydistribution decreases
with increasingroadmapsizes,as predictedby the theorem. Fig-
ure 3 was obtainedby evaluaing our roadmapestimatesf sta-
tionary distribution on a syntheticenegy landscapen a 2-D con-
formationspace.The spaceis divided into 100 equally-sizedins
B;,i =1,2,...,100. We generatedoadmapof increasingsizes
and compued the stationarydistribution (B;) on the roadmap.
The Boltzmanndistribution 3(B;) for eachbin B; wasestimated
by Monte Carlo integration. Figure 3 shavs the averageerrorin
our estimatesi.e., (1/100) 312 |m(B;) — B(B;)|.

The secondpart of Theoreml dealswith the corvergencerate of
the roadmapestimate. For ary desiredlevel of appro<imation (a
given absoluteerror ¢, relative error §, and confidencelevel «),
the numberof milestonesequiredis polynomial in 1/¢, 1/§, and
In(1/). Thesizeof theroadmagalsodepend polynamially onthe
rangeof valuesfor theBoltzmannfaeector|| exp(—E(v) /ksT)||s,
the partitionfunction Zg, andtheinverseof therelative volume of
the setof interestl/u(S), wherethe relative volume p(S) is de-
fined astheratio of the volumeof the setS to thetotal volume of
C.

OuranalysidgndicateghatSRSandMonte Carlosimulationsample
pointsfrom the samedistributionin thelimit. It doesnot, however,
compae the pathsgeneratedby thesetwo methods In Section2.3,
we explainedintuitively the connectionbetweenthe pathsin SRS
and thosein Monte Carlo simulation. Although this connetion
hasnot beenprovenformally, it seemslearthat,asthe numberof
milestonesincreasesa pathin the roadmapwill correspad to a
pathin Monte Carlo simulationwith infinitesimalstepsizesin the
limit.

We have describedjn the foregoing sectionshow to constructa
roadmapandperformqueriesusingthefirst-stepanalysisandhave
shavn therelationshipbetweenrSRSandMonte Carlo Simulation.
Now we arereadyto apply SRSto interestingbiologicalquestions.

5. Computing the transmissioncoefficierts
for protein folding

Proteinfolding is the one of the mostmanellousprocessei na-
ture. Undersuitablecondtions, mostproteinsgo througha series
of geometrictransformationsand assumeunique 3-D structures,
calledthe native folds, which allow themto performintricatebio-
logical functions. Sincethe pioneeing work of Anfinsen[Anf73],
therehasbeenlarge,on-gdng effort on predictingthe native struc-
ture of a protein,givenits aminoacid sequene (see[KS96] for a
suney). Equallyinteresting however, is to understandhe folding

processtself: Whatgeometridransformationsloesthe proteingo
throughduring the folding? Which conformatiors are “closer” to
the native structurealongthefolding pathway?

To addresghis kind of questionsthe transmissiorcoeficient has
beenintroduceal asanorderparametefor proteinfolding [DPG'98].
It givesanindicationon how far away a confarmationis from the
native structurekinetically. For a folding processdominatedby
two stablemacrostatesa folded stateF and an unfolded U/, the
transmissiorcoeficient 7 for a given conformationg is the prob-
ability of arriving in F beforearriving in U, startingfrom q. If
qgisinU, thent = 0. If gisin F, thent = 1. More impor-
tantly, the transmissiorcoeficient measureshe “kinetic distance”
betweera givenconfarmationandthefolded state(or theunfolded
state):from ary conformdion ¢ with = > 0.5, the proteinis more
likely to fold first thanto unfold first, andthereforegq is closerto
the folded state[ DPG™98]. The transmissiorcoeficientis not as-
sociatedwith any particularfolding pathway, but deperison mary
pathways from one stateto another It thusdescribeghe average
behaior of afolding procesdrom a givenconformaion.

Using SRS,we caneasilycompue transmissiorcoeficients. Let
vi,1 = 1,2, ... bethesamplechodesn theroadma, andr; bethe
transmissiorcoeficient of v;. After constructingheroadmapwe
apply the first-stepanalysisto establishthe following relationship
for every nodew; notin F orU:

Tl‘:ZPl'j-1+ZPij-0+ Z P - 7;. 5)

v;€F v €U JEF,jeU

Equation(5) is obtainedby conditioningon thefirst transition. Af-
ter one stepof transition,we have threepossibilities. In the first
casewereachanodein F, thefoldedstate.Sowe have reachedF
beforel/ with probaility 1. In thesecondcasewe reachanodein
U. Sowe have reached/{ beforeF, andthe probaility of reach-
ing F beforel/ is 0. Finally, if we reacha nodew; in neitherF
or U, thenthe probability depend on the valueof 7;. Again, the
linearsystemin (5) canbesolvediteratively to obtainthetransmis-
sion coeficientsfor all the nodesin the roadmapsimultaneously
without explicit simulation.

6. Results

We now shav the computedresultson two examples. The first

oneis basedon arelatively simplesyntheticenegy landscapeand
the secondone, on a real protein. We compae the resultsfrom

SRSwith thoseobtainedfrom Monte Carlo simulation,a standard
methodfor computingtransmissiorcoeficients, and demorstrate
that SRSreduceghe runningtime by several ordersof magnitude
andis more accurate. A main reasonfor us to usethe synthetic
datais that Monte Carlo simulationwould take excessve amourt

of compuation time on a fastworkstationif a real proteinwere
used,and so we cannotperform extensve comparison Our pre-

liminary implementatiorof SRSsolveslinear systemg5) with the

Jacobimethodanddoesnot exploit the sparsityof linear systems.
Thecomputationahdantageof SRScouldbefurtherincreasedy

usinga betterlinearsystemsolver.

The syntheticenegy landscapdies in a 2-D conformationspace.
It is constructedusing a linear combinationof radially symmet-
ric GaussiansThe centersthe decayrates,andthe heightsof the
Gaussiansre chosenat random. Thereis alsoa paraboloidcen-
teredatthe origin. Thelandscapdastwo globalminima.

In thefirsttest,we usedSRSto computer for 101samplechodesn
the conformationspacewith a roadmapof 10102nodes,andthen
usedMonte Carlo simulationto compue the resultsfor the same
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Figure4: Thecorreltion of transmissiorcoeficients computedoy Monte
Carlo simulation andSRSon syntheic data

nodes. In the Monte Carlo simulation,we performed500indepa-
dentrunsfor eachnode In eachstepof the simulation,we pro-
posea new confarmationq’ in a neighbahoodaroundthe current
conformdion g andacceptor rejectq’ accordng to the Metropo-
lis criterion. Eachsimulationrun stopsas soonasit is within a
smallneighbahoodof aconformatiorin thefoldedor theunfolded
state.Theresultscompuedwith thetwo methodsareplottedalong
the horizontalandvertical axesrespectiely (Figure4). Thefigure
shaws that all the pointslie closeto the diagoral line, indicating
thatthe resultsfrom the two differentmethodsarein good corre-
spongeence.

To examinethe accurag of our computedresults,we conduded
furthertestsby varying the numberof nodessampledby SRSand
the numberof indeperentMonte Carlo simulationrunsfor each
node In eachtest,we summarizethe correspodencebetweerthe
resultsfrom thetwo methodsby their (normalized)correlationco-
efficient, which is definedas

o) (xy) — (2)(y)
V(@) — @) () — @)

for two vectorsz andy, where(-) dendesthe operationof taking

the expectation.Note thatthe magnitudeof p is alwaysbetweer)

and1, with 0 indicatingno correlationand1 indicatingperfectcor-

relation. Figure5 shaws the resultsof theseadditionaltests. The

horizortal axis of the graphis the numberof nodesin theroadmap,
andtheverticalaxisis thecorrelationcoeficient p. Thegraphcon-

tainsthreecurves,eachcorrespondig to a differentnumber of in-

depermentMonte Carlosimulationrunspernode.Thethreecurves
shawv a generallysimilar trend. Initially p improvesratherquickly

asthe numberof nodesin the roadmapincreasesThe curvesthen
flattenout aftera certainpoint. It is notimmediatelyclearwhether
they will reachl, which would indicateperfectcorrelation. Since
p measurenly the relationshipbetweenthe two methods,and
we do not know the groundtruth, thesegeneraltrendsdo not tell

uswhetherthe discrepang is dueto theinaccurag in SRSor the
varianceinherentin Monte Carlosimulation.However, we canget
a hint by compaing the threecurves. For a roadmapof a given

size, p generallyimprovesaswe increasethe numberof indepen-

dentMonte Carlosimulationruns. This seemdo indicatethat SRS
givesthe more accurateresults: whenwe increasethe numberof

indepandentMonte Carlo simulationruns per node, the variance
of Monte Carlo simulationdecreasg, andthe resultsget closerto

thoseobtainedfrom SRS.

We alsocomparedherunningtime of thetwo methods Thecom-

correlation coefficient

—A— 100 MC runs/node ||
—+— 500 MC runs/node
1000 MC runs/node

0 2000 4000 6000 8000 10000
number of nodes

0.55

Figure5: The changeof corrdation coeficient p asthe numberof nodes
in theroadmapincreases.Thethreecurves correspond to Monte Carlosim-
ulation with » = 100, 500, 1000 independentruns for eachnode. As r
increasesthe correlation betwea the resuls from thetwo methodsusually
improves.

Tablel: Runningtimesof 100Monte Carlosimulationrunsperconforma
tion onthesyntheic enegy lands@pe.Firstandthird rows give thenumber
of conformaions processed.Secad andfourth give the runningtimes.

No. Conf. 10 20 30 40 50
Time(sec.)|| 866 | 1588 | 2356 | 3191 4026
No. Conf. 60 70 80 90| 100
Time(sec.) || 4913 | 5621 | 6404 | 7203 | 8077

putationtime of SRSconsistsof two parts: the time to construct
theroadmapandthetime to solve alinearsystemof equatiors. On

arealprotein,thefirst partis dominatecby thetime to evaluatethe
enepgy of samplednodes. The secondpartdepenls on the size of

thelinearsystemwhich, in turn, depend on the numbe of nodes
in the roadmap. The running time of Monte Carlo simulationis

dominatedby the time to compue the enegy of sampledconfor

mations.

In our currentimplementation the roadmapconstructionpart of
SRSwascodedin C++, andthe linear systemsolwer, in Matlah

Monte Carlo simulationwas implementedentirely in C++. The
timing resultsreportedherewereobtainedon a 1GHz Pentium-III
PCwith 1GB of memory In atypical run on the syntheic land-
scape SRStook 8 secomsto constructa roadmapof about10,000
nodes,and 750 secondgo solve the linear systemand obtainthe
transmissiorcoeficientsfor all the nodes. The runningtimes of

Monte Carlo simulationis takulatedin Table 1. It is clearfrom

Table 1 thatthe runningtime of Monte Carlo simulationis linear
with respecto the number of conformationgprocessedAlthough
we did not try the Monte Carlo simulationon all 10,000confor

mations,it is not difficult to infer thatthe running time would be
around800,0® seconds.

In additionto the syntheticdata,we alsotestedour algorithmon a
realprotein,repressoof primer(ROP).ROPis afour-helix bundle.
We studyonemonometin isolationasin [STD95].

The 3-D structureof ROP is obtainedfrom the ProteinDataBank
[B*77]. Themonome consistsof 56 residuesforming two a he-
licesconnetedby aloop. Ourimplementatiorspecifiegsheconfor
mationof the monomerwith a vectorbasedrepresentatiofiSB97,
ASBLO01]. Theproteinis representethy two vectorsconrectedby
aloop. As in [ASBLO01], therearesix conformationalparameters
in total. Our enegy functionusesthe H-P model[STD95] consist-
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Figure 6: The corrdation of the transmissin coefficients of ROP com-
puted by SRSandMonte Carlo simulaion.

ing of two terms: one measuringhe hydroptobic interactionand
the othermeasuringhe excludedvolume. In both SRSandMonte
Carlosimulation,we discardconformationghatviolate sterichin-
dranceconstraints.

Here,the folded macrostateontainsall confarmationswithin 3 A
of thenative fold accordingto the RMS distance andthe unfolded
macrostateall theconformaionswithin 10A of thefully-extended
conformdion.

We examinedthetransmissiorcoeficientsfor ROPat39 randamly
selectedconformationsusing both SRSand Monte Carlo simula-
tion. In SRS,we computedthe estimatedor increasingroadmap
sizes. In Monte Carlo simulation,we performedup to 300 inde-
pencentrunsat eachof the 39 conformationgo getthe estimates.
As in the casefor syntheticdata,we computedthe correlationco-
efficientfor increasinghumbe of Monte Carlosimulationrunsper
node The results,shavn in Figure 6, suggestconclusionssimi-
lar to thoseobtainedfrom synthdic data. First,the SRSestimates
improve rapidly astheroadmaysizeincreasesSecondthecorrela-
tion tendsto increaseaswe performmoreMonte Carlosimulation
runspernode indicatingthat variancein Monte Carlo simulation
is thelikely causefor the discrepany.

Thetotaltimeto generateroadmapwith 5000 nodesandcompute
the transmissiorcoeficientsfor all the nodes in the roadmapwas
abou onehour In comparisonit took an averageof three days
of compuationtime on the samemachinein orderto execute300
Monte Carlo simulationrunsrequiredto estimatethe transmission
coeficient at just one conformation To generatethe resultsfor
Figure 6, the Monte Carlo simulationprocedue spentaboutone
hundeddaysof computatiortime, asoppaedto onehourneeded
by SRSfor all 5000conformations.

The above resultsindicatethat, to computethe transmissiorcoef-
ficients7 for only a few nodes(say10), we may useMonte Carlo
simulation. SRSis not applicablein this case,becasethe num-
berof nodesis too smallto generateaccurateaesults.On the hand,
if we wantr for mary nodesspreadover the entire enegy land-
scape,which is the more typical situation, SRSis far more effi-
cient. It computesr for all the nodes simultaneouslythusoffering
aspeedumf severalordersof magnituden runningtime according
to our experierces.

7. Discussion

We have introducel stochasticoadmagsimulationasa new frame-
work for studyingmolecularmotion. A roadmapcompactly en-
codesan ensembleof pathways, andthe first-stepanalysisallows

usto efficiently extractfrom theroadmapinterestingkinetic prop-
ertiesof molecularmotion. A salientfeatureof SRSis thatit ex-

aminesall the pathsin a roadma togetherusing algebraicmeth-
odsratherconsideringhemoneat a time asclassicmethodssuch
asMonte Carlo simulationwould do. SRSalso avoids the local-
minima problemencainteredwith existing methods.It thusgains
tremendos compuationalefficiengy for suitableproblems.

SRSis closelyrelatedto Monte Carlo simulation. Every pathin a
roadmapcanbe interpretedasa possibleMonte Carlo simulation
run. In additionto that,we provedthat,in thelimit, SRSandMonte
Carlosimulationcorvergeto the samedistribution.

We have appliedSRSto the computationof the transmissiorcoef-
ficientsfor proteinfolding in orderto testits effectiveness.Trans-
missioncoeficientscanbe obtainedfrom Monte Carlosimulation,
but thelong computatiortime requiredis pointedout asoneof the
main obstaclego its generalutility [DPGT98]. We have shawvn
in our computationastudiesthat SRSreduceshe runningtime by
several ordersof magnitude compaed with Monte Carlo simula-
tion, andobtainsmoreaccurateesults.

In [DPG*98], Du et al. suggesthat the transmissiorcoeficient
cansene asthebestpossiblemeasuref kinetic distancefor asys-
tem. However, overwhelmedby the compuationalburdenof stan-
dardsimulationmethodsthey wrote, “To concluck, we stressthat
we do nhot suggestusingthe transmissiorcoeficient asatransition
coordinde for practicalpurposesasit is very compuationally in-
tensive” Our computatioml studiessuggesthat SRSmalesthe
computationof the transmissiorcoeficient viable, which would
potentiallyenableits usein practice.

Ourpreliminarywork indicateghatSRSis apromisingnex method
for studyingmolecularmotion, but mary interestingquestionge-
mainto be explored

We would like to find betterwaysfor constructingoadmapsCur-
rently we usethe uniform distribution to samplethe conformation
spaceC of a molecule. As the dimensionof C getshigher it be-
comesincreasinglymoredifficult to obtainbiologicdly interesting
conformatiors with uniform sampling.Therearetwo waysto deal
with this issue. First, we may usea more efficient representation
(eg., the vectorbasedrepresentationin Section6) to reducethe
dimensionof C. Secondwe may construt¢ bettersamplingstrate-
giesthatfavor low-enepgy regionsin C. If thenodesof aroadmap
aresampledhon-uniformly we mustmake appropiate adjustment
whenassigningransitionprobalilities sothatSRScornvergesto the
samedistribution asMonte Carlosimulationdoes.

Themosttime-consumingpartof thefirst-stepanalysids solvinga
linear systemof equations.Thelinear systemsolverin our current
implementationis still crude.A betteriterative methodthatexploits
thesparsestructureof alinearsystemwill certainlyfurtherimprove
theefficiency of SRS.

Evenmoreinterestingis the applicationof SRSto otherimportant
guestionson molecularmotion, suchasthe orderof eventsin pro-
tein folding. Do seconary structureelementgSSH form first as
sub-unitsheforethey organizeinto atertiary structure2Whendoes
aparticularSSEappearaVe alsoplanto useSRSfor studyingthe
kineticsof ligand-proteinbinding. Our hypothesids thatthereare
enepgy barriersaroundbinding conformations.If aligandisin a
binding conformationjt mustovercomethe enegy barrierin order
to escape.The conformationthat puts the ligand at the catalytic
site hasthe highestenepgy barrier andit takesthe longesttime to
escapdrom it. Theroadmapcombinedwith thefirst-stepanalysis
offersa naturaltool to compue the escapdimesandthusidentify



potentialcatalyticsites.We believe thatSRSwill play animportant
role in studyingtheseandotherinterestingbiological questions.
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Appendix
A. Proofof Theorem1

In thefirst setof the proof, we shaw a closedform solutionto the
stationarydistribution on theroadmap:

LEMMA 2. For any set S, the stationary distribution on the
roadmap can be rewritten as:

Eies exp(—E(v;)/ksT)
>, exp(—E(v;)/ksT)

PROOF. First,notethatarandan walk onagraphwith ourtran-
sition probabilitiesP;; hasa stationarydistribution:

m = 7a(vi) exp(—E(vi) /ksT)/Zu; (6)

where Zy is a normalizationconstantand na (v;) is the station-
ary distribution for a randomwalk on a graphwith the samecon-
nectvity, but with the enegy depen@ntexp(—AE;; /ksT') term

w(8S) =




removed from the transitionprobabilities P;; (for a derivation of
this statementseefor example[Haj88]). We will denotethesenewn
transitionprobalilities by F;.

Now notethat for the caseof our roadmaps, P/, becomesan uni-

ij
form distribution over the neighlors:

1 e )
P{:{(\)Nn if j € N;

otherwise ’
whereN; is the setof neighlors of nodei; and P; = 0. Notethat
in our roadmas nodes is connetedto 5 (5 € V;) if andonly if
nodej is connetedto ¢ (¢ € Nj). In suchgraph the stationary
distribution 7 is trivially givenby:

| Vi |
Za'
whereZg is anormalizationconstant.

@)

iyel (’U@) =

Now, returningto our definition of stationarydistributionin asetS
from Section4:

1 ;i
€S
Substitutingin Equationg6) and(7):

1
(8= > exp(—E(vi)/ksT).
=
We can computethe normalizationconstantZ’ by the constraint
m(C) = 1, yielding:

A Zexp(—E(vj)/kBT).

Thus,proving thelemma. [

Theremainderf our proofwill requirethe applicationof Hoeffd-
ing’s inequality We presentherethe simplified versionof the in-
equalityneededor theproof:

LEMMA 3 (HOEFFDING'SINEQUALITY [HOEG3]). LetY be
a random variable distributed according to P(Y) suchthat Y €
[a,b]. Let Y1,...,Y, be n independent, identically distributed
samples from P(Y") and the empirical meanY = 1 3. V;, then:

p— ’".62
P(Y —E[Y]>¢) <e t-a, and
2

- e (®)
PEY]|-Y >¢)<e #-a. [

For simplicity of presentationassumewithout loss of generality

thatthevolumeof theconformationspaces one: u(C) = 1, where

thevolumeof somesetF is denoteddy p(F), i.e., u(F) represents

the propation of thetotal volumeof C occupiedby F.

Theoreml holdsfor any confidencdevel v > 0. In the proof, we
will divide this~y in threeparts:y; > 0,2 > 0 andvyz > 0, such
thaty: + v2 + 3 < 7 asour proof will requirethreeapplications
of Hoeffding's inequality

Ourfirst lemmawill boundthe numberof pointsthatfall in the set
of interestS:

LEMMA 4. For a uniformly sampled roadmap of IV paints, for
any e; > 0, let K be the number of roadmap points that fall in the
set S, then:

W) a1 < 1 < () +ens ©)

with probability at least 1 — 1, where y, > 2e~V<1.

ProoFr. Application of Hoeffding’s inequality wherethe ran-
domvariableY is theindicatorthata point falls in the setS. By
thelaw of largenumbes, E[Y] = u(S)/u(C) = u(S). Theem-
pirical meanY = K/N andY is anindicator thus,Y € [0, 1].
Theproofis conclucedby applyingLemma3. [

We wouldlike to have, with high probability, atleastonemilestone
in the S. (This constraintcan be relaxed, but the proof become
morecomplicated.)Thus,we mustchoosethe numberof nodesivV
suchthat K > 0 with probability atleastl — +;. Usingthe con-
straintin Lemma4, we know that K > | N(u(S) —e1)]. Thus:

N 2 [1/(u(8) —&1)].
For theremainde of the proof, we canassumewith probablity at
leastl — ~1, thatK > 0.

For the next stepof the proof, we will needa definition: for some
setF C C, let'sdefinethe Boltzmann integral in this setas:

a(}")=/fexp(—E(v)/kBT)dv.

Notethata(C) correspondto thepartitionfunction Zg. Underthis
definition, we canwrite the Boltzmanndistribution as:
a(F)
F) = .
We will denotetherangeof afunction f as||f||s = sup, f(v) —
inf, f(v). Ournext lemmaimpliesthatwe canestimateheBoltz-
mannintegral with samples:

LEMMA 5. For any set F, let Y; be M uniformly sampled points
in F, for any e > 0, then:

a(F)-en(F) < ) 3 exp(~ BV knT) < a(F)ten(F);

(10)
with probability at least 1 — v, where

—Me?
72 2exp (ll exp(—E(U)/kBT)HS) '

PrRoOF. Define a randomvariableY = exp(—FE(v)/ksT),
notethat E[Y] = «a(F)/u(F). The proof is conduded by ap-
plying Hoeffding’s inequality [

We will apply Lemmabs twice, first for computingthe Boltzmann
integralin the setS, obtainingthe bound

o(8)=e(8) < P& S exp(— B(¥:) /hoT) < a(8)+ern(S):
I€ES
11)
with probabilityatleast:1 — ~y2, where

> 2exp ( —Kej )

2 Z X .

! Texp(—E(v)/ksT)]s
Thesecondbourd concerngheintegral over thewhole space:

a(C) —es < %Zexp(—E(Yj)/kBT) <a(C)+es (12)

with probabilityatleast:1 — 3, where

—N¢3
7 = 2exp (II exp(—E(U)/kBT)HS) '

In the remainderof this proof, we will assumehat equationy9),
(11)and(12)hold,i.e.,theagumentholdswith probabilityatleast

I—(m+r2+7)>1-1.



Next, note that from Lemmaz2 the stationarydistribution on the
roadmapcanberewritten as:

2ies P(—E(Y:)/ksT)
32 exp(=E(Y;)/ksT)

w(S) =

Applying the bourd on Equation(9) we get:

(/A(S) - 61) ZiES exp(—E(Y;)/ksT)
KIN ) S, ex(—B(Y;)/koT)
<m(S8) <
(H(S) +er ) >ics exp(—E(Y;)/ksT)
KIN ) S, exp(—E(,) /o)

rearranging

(H(S) —€1>

w(S)

HW(SE)/K Y ies exp(—E(Yi)/ksT)
1/N 32; exp(—E(Y;)/ksT)
<7(8) <

(u(S) + 61> WSE)/K Y ies exp(—E(Yi)/ksT)
u(S) 1/N3; exp(—E(Y;)/knT)

We cannow applythebourdsin Equationg11) and(12):

(u(S) - 61) (8) — e2p(S)u(S)
m(S) a(C) + &3
<w(8) <
(u(S) + 61) a(8) +e2p(S)
u(S) a(C) —e3
This expressiorcanbe rewritten as:
(1—5)%—5 < w(8) <L (1+5)%+5;

which finally leadsusto the statemenof our theorem:
(1-0)B(S) —e < w(8) < (L+8)B(S) +¢;

wheree andd imposethefollowing constraints:
e2(u(S) +e1)
a(C) — &3 ’
e1a(C) + e3p(S)
#(8) (a(C) — &s3)

In additionto thesetwo constraintswe have the constraintsm-
posedby the confidencdevels-y, y2 and~ys:

€ (13)

(14)

N o> B, (15)
1
In(2/72)| exp(—E(v)/ksT)|ls | ..

Moz WS - 0 WO
N> BmlesCEOmD
3
7 > mAre+s (18)

Givenary € > 0, > 0 andy > 0, we canuseconstraintg13) —
(18) to obtainthe requirednumkber of nodesN in the roadmapto
satisfythetheorem.
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To obtaina simplerconvergenc rate,we cansimplify thesecon-
straintsby imposing:e; = e2 = ez =& <eandy; =2 =3 =
~/3.

Let's first considerthe e constrainton Equation(13), which can
now bewritten as:

E(u(S)+¢
Rearrangingwe have that:
eaC) &2
wS)+e p(S)+e

Finally, recallthatu(S) < 1, & < ¢ and,for anon-trivial approxi-
mationschemag < 1. Thus,we concludethat:

f< e(a(CQ) — 5).

(L]

<

(19)

Usinga similar manipulationof the é constrainton Equation(14),
we canwrite:

a(C)p(S)s
a(C) + u(8)(d+1)°
Noting thaty(S) < 1 and,in anon-trivial approxmationschema,
é < 1, we cansimplify the constraintas:
- alC)u(8)d
< ——.
€= a(C)+2

£<

(20)

We cannow considettheconstrainton NV givenby Equationg15)—
(17). Notethatfor thecaseof &1 = €2 = e3 = £andy; = 2 =
~3, only the constraintin Equation(16) will bebinding This con-
straintcannow bewrittenas:

In(6/)|| exp(—E(v) /ksT)]ls
Nz MOEEE

Substitutingthe constraintson £ givenby Equationg19) and(20),
we canobtainthevalueof N:

+1.

R 81(6/)l| exp(—E(v) /ksT)]ls
N= ma { Bu(S) — e(a(C) — )] 2(alC) — ) T
In(6/y)l exp(~E@)/ksT)lls

[1- () o] wer () o

We can further simplify this equationsby making someassump-
tionson e andé. Assumingthat:
a(C) )

—\J < B\ZJ,
2 “= @)’

a(C)

< :
€= = aC) +2

Applying theseconstraintgo the denominatorof the equationfor
N above andsimplifying, we obtaina final bourd:

321n(6/7)|| exp(—E(v)/ksT)||s

N max { wS)a(Cye? h
In(6/)ll exp(~B(w) ksTls (al€) +2)" 3
4a(C)2u(S)30? '



