
Incremental Signaling Pathway Modeling by
Data Integration

Geoffrey Koh1?, David Hsu2, and P. S. Thiagarajan2

1 Bioprocessing Technology Institute, Singapore, 117456, Singapore
2 National University of Singapore, Singapore, 117417, Singapore

In Proc. Int. Conf. on Research in Computational Molecular Biology (RECOMB), 2010

Abstract. Constructing quantitative dynamic models of signaling pathways is an
important task for computational systems biology. Pathway model construction
is often an inherently incremental process, with new pathway players and in-
teractions continuously being discovered and additional experimental data being
generated. Here we focus on the problem of performing model parameter estima-
tion incrementally by integrating new experimental data into an existing model.
A probabilistic graphical model known as the factor graph is used to represent
pathway parameter estimates. By exploiting the network structure of a pathway,
a factor graph compactly encodes many parameter estimates of varying quality
as a probability distribution. When new data arrives, the parameter estimates are
refined efficiently by applying a probabilistic inference algorithm known as be-
lief propagation to the factor graph. A key advantage of our approach is that the
factor graph model contains enough information about the old data, and uses only
new data to refine the parameter estimates without requiring explicit access to the
old data. To test this approach, we applied it to the Akt-MAPK pathways, which
regulate the apoptotic process and are among the most actively studied signaling
pathways. The results show that our new approach can obtain parameter estimates
that fit the data well and refine them incrementally when new data arrives.

1 Introduction

To fully understand complex biological pathways, we must uncover not only the con-
stituent elements—genes, proteins, and other molecular species—and their interactions,
but also the dynamics, i.e., the evolution of these interactions over time. One impor-
tant goal of computational systems biology is to build quantitative models of pathway
dynamics [1, 2]. These models should not only capture our understanding of the un-
derlying mechanisms, but also predict behaviors yet to be observed experimentally. A
key challenge is to address the inherently incremental nature of the model construc-
tion process, as new pathway players and interactions are discovered and additional
experimental data are generated. In this work, we address the problem of incrementally
constructing pathway models as new data becomes available.

A signaling pathway is a network of biochemical reactions. To build a model, we
need both the network structure and the parameters. Structure modeling captures the
interdependencies among the molecular species, based on the reactions producing and
consuming them. Parameter modeling determines the kinetic rate constants, initial con-
ditions, etc. that govern the biochemical reactions. Here, we focus on parameter mod-
eling, also called parameter estimation.
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Parameter estimation for large signaling pathways is a well-known difficult prob-
lem, due to the need to search a high-dimensional parameter space and the lack of
accurate data. Conventional parameter estimation algorithms fit an estimate of the pa-
rameters with all available experimental data and produce a single best estimate of the
parameters (see [3] for a survey). When new data arrives, the entire procedure must be
repeated afresh, in order to fit both the new and the old data well. This simplistic ap-
proach of recomputing the parameter estimate is undesirable. It does not take advantage
of the earlier estimates. Furthermore, it may be not even be feasible, if the old data is
not easily accessible. Often, many parts of the current model are obtained from exter-
nal sources. For these “imported” parts, we have the estimated parameter values, but
are unlikely to have access to the data used to produce these estimates. Hence we need
a modeling approach that encodes the information from the old data compactly in the
model itself and furthermore can integrate new data into an existing model to refine it.

We propose to use a probabilistic graphical model known as the factor graph [4] to
represent pathway parameter estimates. We view a factor graph as a representation of a
probability function p(k1,k2, . . .) over the parameters k1,k2, . . . . A particular estimate of
parameter values has high probability if it fits well with experimental data according to
a suitable error measure. A factor graph represents many parameter estimates of varying
quality, encoded as a probability function, rather than a single best estimate based on
the existing data. A large pathway model typically involves many parameters. As a
result, p(k1,k2, . . .) is a high-dimensional function, which is expensive to compute and
store. A key advantage of the factor graph model is that it exploits the network structure
of a pathway to factor p(k1,k2, . . .) as a product of lower-dimensional functions. This
drastically reduces the complexity of representing p(k1,k2, . . .) and allows parameter
estimates to be refined efficiently.

To incorporate new data, we add new nodes to a factor graph and apply a proba-
bilistic inference technique known as belief propagation (see [5] for a survey) to refine
the parameter estimates represented by p(k1,k2, . . .). Belief propagation reconciles the
local constraints encoded in the new and the old factor graph nodes and ensures that
they are globally consistent.

To test our approach, we applied it to the Akt-MAPK pathways. The kinase Akt
plays an important role in regulating cellular functions, including, in particular, apop-
tosis, and has been identified as a major factor in several types of cancer. We created
multiple data sets through simulation and introduced them one at a time into the factor
graph model. The results show that our approach can obtain estimates that fit the data
well and refine them incrementally when new data becomes available.

2 Background
2.1 Modeling Pathway Dynamics
The dynamics of a signaling pathway is often modeled as a system of nonlinear ordinary
differential equations (ODEs):
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Fig. 1. (a) A reaction, in which two substrates x1 and x2 bind reversibly to form a complex x3.
The speed of the forward and backward reactions depends on the kinetic rate constants k1 and k2,
respectively. (b) The corresponding system of ODEs. (c) The HFPN model. The places are drawn
as circles, and the transitions, as rectangles.

ẋ1(t) = f1(x1(t),x2(t), . . . ;k1,k2, . . .)
ẋ2(t) = f2(x1(t),x2(t), . . . ;k1,k2, . . .)

...

, (1)

where xi(t) denotes the concentration level of molecular species i at time t and ẋi(t)
denotes the corresponding rate of change. Each function fi, usually nonlinear, encodes
the kinetics of the reactions that produce or consume xi. The reactions are typically
modeled with the mass action law or Michaelis-Menten kinetics [6], and we assume
that the functions f1, f2, . . . are given. The kinetic rate constants k1,k2, . . . are parameter
that govern the speed of reactions. See Fig. 1 for an example.

Using the vector notation, we can rewrite (1) more concisely as ẋ(t) = f(x(t);k),
where x(t) = (x1(t),x2(t), . . .), ẋ(t) = (ẋ1(t), ẋ2(t), . . .), and k = (k1,k2, . . .). Finally,
we also need to specify the initial concentration levels x(0) = x0.

The system of ODEs in (1) can be represented as a hybrid functional Petri net
(HFPN) [7], which makes pathway structure explicit. A HFPN is a directed bipartite
graph consisting of two types of nodes: places and transitions. In our case, places rep-
resent molecular species, and transitions represent reactions. The places and transitions
are connected by arcs to indicate the flow of reactants and products. For an enzyme-
catalyzed reaction, a read arc, shown pictorially as a dashed arc, connects an enzyme
place to a catalyzed transition. It indicates that the enzyme influences, but is not con-
sumed by the reaction. See [7] for more details on the HFPN model.

2.2 Parameter Modeling
An important step in building a pathway model is to determine the pathway parame-
ters, which include kinetic rate constants and initial concentration levels of molecular
species. Here we mainly deal with unknown kinetic rate constants, but the basic idea
applies to unknown initial concentration levels as well.

Experimental determination of parameter values in vitro may not be possible or
prohibitively expensive. A more practical approach is to estimate the parameter values
based on experimental data. Suppose that we are given a set D of experimental data
{x̃i j}, where x̃i j is the experimentally measured concentration level of molecular species
i at time Tj. The goal is to determine the values of the unknown parameters k so that the
resulting pathway dynamics, i.e., the evolution of molecular concentration levels over
time, fits experimental data well. Mathematically, our goal consists of minimizing an
objective function measuring the error in fit to data:

J(k|D) = ∑
i∈M

∑
j
(xi(Tj;k)− x̃i j)2, (2)



where M denotes the set of experimentally measured molecular species, and xi(t;k), i =
1,2, . . . are the solution to the system of ODEs in (1) with parameters k. Typically
we obtain xi(t;k), i = 1,2, . . . by simulating (1), using a numerical method. We can
generalize J(k|D) by multiplying each term in (2) by a weight wi j to favor the fit to data
for some species at certain time over others. In the following, however, we use (2) to
simplify the presentation. For multiple data sets D1,D2, . . . ,Dn, we simply sum up the
error due to each data set and denote the total error by J(k|D1,D2, . . . ,Dn).

Standard estimation algorithms traverse the space of all parameter values and search
for an optimal set of values with the best fit with D. A major challenge is that the size
of the parameter space grows exponentially with the number of unknown parameters.
Many different search strategies have been proposed to overcome this challenge, includ-
ing local strategies (such as gradient descent) and global strategies (such as simulated
annealing and evolutionary algorithms). See [3] for a survey, as well as [8, 9]. However,
almost all current algorithms aim to find a single best parameter estimate based on the
data available. This is inadequate for incremental pathway modeling: the single estimate
cannot be easily improved when new data arrives. We propose instead to use a factor
graph to represent a probability distribution that encodes multiple parameter estimates.
Using this representation, we can refine the estimates systematically by adjusting their
probabilities when new data becomes available.

Yoshida et al. adopts a similar probabilistic, data-driven view of parameter estima-
tion [8], but their method assumes that all the data is available and is not geared towards
incremental modeling. Factor graphs have been used to model biological systems [10],
but the main goal there is to study the functional correlations among the molecular
species in the pathway rather than the dynamics. An early use of belief propagation in
computational biology is to predict protein secondary structure assignment [11].

3 Incremental Pathway Parameter Modeling

3.1 Overview
Often, experimental data are obtained in an incremental fashion. As a new data set Dn
arrives at some time Tn with T1 < T2 < T3 < · · · , we want to incorporate Dn and compute
a new estimate of the parameters k. A simplistic approach would be to use all the data
available up to time Tn,

⋃n
i=1 Dn, and recompute the estimate of k from scratch. The

error in fit to data is then given by J(k|D1,D2, . . . ,Dn). This approach, however, may
be infeasible, because experimental data are generated by different research groups at
different times. While the estimated parameter values may be published and accessible,
the data used to produce these estimates is usually not. Recomputing the parameter
estimate is also inefficient, as it does not take advantage of earlier estimates.

We would like to compute an estimate of k at time Tn using only Dn and the esti-
mates obtained from the earlier data

⋃n−1
i=1 Di. To do so, we encode a set of estimates of

k as a probability function
p(k|D) = (1/λ )exp(−J(k|D)), (3)

where D is a given data set, λ is a normalizing constant ensuring that
∫

p(k|D)dk = 1,
and J(k|D) measures the error in fit to data, as defined in (2). The probability function
p(k|D) encodes a set of parameter estimates, with large p(k|D) value indicating small



Fig. 2. (a) The HFPN model of an enzyme-mediated reversible reaction. (b) A factor graph Sn
is constructed for each data set Dn. (c) The factor graphs are merged by fusing their common
variable nodes representing unknown parameters.

error in fit to the data set D. In other words, we view p(k|D) as a probabilistic weight on
k, expressing preferences over k values due to the constraints from the data set D. Now
suppose that p(k|D1,D2, . . . ,Dn−1) represents the parameter estimates at time Tn−1.
When a new data set Dn arrives at Tn, we use Dn to update the probabilistic weights on
the estimates encoded by p(k;D1,D2, . . . ,Dn−1) and obtain a new probability function
p(k;D1,D2, . . . ,Dn−1,Dn). This is similar to Bayesian update, except that p(k|D) is
basically a weight on k that depends on the error in fit to data J(k|D) and does not in
itself have any real statistical meanings.

This incremental approach would be beneficial only if we can store and update
p(k|D) efficiently. For a large pathway model with many unknown parameters, p(k|D)
is a high-dimensional global function over the entire parameter space. However, each
species in a typical signaling pathway interacts with only a small number of other
species (see Fig. 5 for an example). We can exploit this insight on the network struc-
ture of a pathway to approximately factor the high-dimensional function p(k|D) into
a product of lower-dimensional functions, and represent this factored probability func-
tion as a factor graph [4]. When combined with belief propagation (see Section 4), this
representation helps us to find the best parameter estimates efficiently. Furthermore, it
enables us to store and update p(k|D) efficiently in an incremental fashion.

Let Sn be a factor graph representing p(k|Dn), which, as mentioned earlier, rep-
resents preferences over k values due to the constraints from the data set Dn. In our
incremental approach to parameter modeling, we compute a sequence of factor graphs
Kn,n = 1,2, . . ., where K1 = S1 and Kn for n ≥ 2 is obtained by merging Sn into Kn−1
See Fig. 2 for an illustration. The merging process uses belief propagation to combine
the preferences on k values represented by Kn−1 with those represented by Sn. This
results in new preferences represented by Kn.

We are ready to present the factor graph model for p(k|D). We begin with a brief
introduction to factor graphs. We then describe how to construct a factor graph Sn, given
a data set Dn and how to merge S1,S2, . . . ,Sn incrementally to build Kn.

3.2 Factor Graphs

Suppose that a high dimensional function g(z) can be factored as a product of lower
dimensional functions: g(z) = ∏i gi(zi), where z = (z1,z2, . . .) is a set of variables
and each zi is a (small) subset of variables in z. A factor graph for g(z) is an undi-
rected bipartite graph consisting of two types of nodes: factor nodes and variable
nodes. Each factor gi(zi) has a corresponding factor node in G, and each variable



Fig. 3. The factor model for
the function g(x1,x2,x3,x4) =
g1(x1,x2) ·g2(x1,x4) ·g3(x2,x3,x4).

z j has a corresponding variable node in G.
There is an undirected edge between the fac-
tor node for gi(zi) and the variable node for z j
if z j ∈ zi, i.e., z j is a variable of the function
gi(zi). An example is shown in Fig. 3.

A variable node for z j contains a probabil-
ity distribution over the values of z j. A fac-
tor node for gi(zi) specifies the dependencies

among the variables in zi and expresses preferences over their values due to some con-
straints. In pathway parameter modeling, the main variables are the parameters, and the
constraints arise from the ODEs in which a parameter appears. For example, consider
the reaction shown in Fig. 1. Suppose that data are available for x1(t),x2(t),x3(t) at all
times t, but the rate constants k1 and k2 are unknown. Then, each of the three equations
in the system of ODEs for the reactions imposes a constraint on the unknowns k1 and
k2 at all times t. Those combinations of k1 and k2 values that satisfy the constraints are
favored. In general, each equation in an ODE model represents a local constraint on the
parameters involved in the equation, and each such constraint results in a factor node.
The resulting factor graph represents the probability function p(k|D) as a product of
factors, each involving only a small number of unknown parameters.

3.3 The Factor Graph Structure
Given a data set D, we now construct the factor graph S for the parameters of a system of
ODEs modeling a biological pathway. For each equation ẋi = fi(x;k) in (1), we create a
factor node ν( fi) in S. We also create a variable node ν(k j) for each parameter k j and
a variable node ν(x j) for each molecular concentration level x j. We insert an edge that
connects a factor node for fi and a variable node for k j (or x j), if k j (or x j) is involved
in fi. An example is shown in Fig. 4.

Our main goal is to capture the dependencies among the parameters. We can elim-
inate many of the variable nodes representing molecular concentration levels and thus
simplify S. However, we can eliminate a variable node only if it does not represent
the concentration level of an enzyme. The reason is that although enzymes are not
consumed in catalytic reactions, their concentration levels influence the reactions. In
general, eliminating a variable node corresponding to an enzyme results in the loss of
dependency between the reaction producing the enzyme and the reaction catalyzed by
the enzyme. To see this, consider again the example in Fig. 4. If we eliminate the vari-
able nodes for x1, x3 and x4, which are not enzymes, the dependencies among k1,k2,k3,

Fig. 4. (a) A simple signaling cascade and its ODEs. (b) The factor graph representation. The
variable nodes in gray—x1, x3, and x4—can be eliminated.



and k4 remain intact. However, if we eliminate the variable node x2, an enzyme, the
factor graph breaks into two disconnected components. There is no constraint that con-
nects k1 and k2 with k3 and k4, implying that k1 and k2 are independent of k3 and k4.
This is clearly not the case.

To summarize, the structure of a factor graph—the variable nodes, the factor nodes,
and the edges—is constructed from the ODEs that model a signaling pathway. Each fac-
tor captures the dependencies among the parameters involved in a particular equation.

3.4 The Compatibility Functions
To complete the construction of the factor graph S, we need to associate a factor, also
called a compatibility function, with each factor node ν( fi) and decomposes p(k|D) as
a product of these compatibility functions. Although all compatibility functions depend
on D, we drop the explicit mention of D in this section to simplify the notation. It is
understood that compatibility functions are defined with respect to a given data set D.
The compatibility function for ν( fi) is given by

gi(ki,xi(t)) = exp(−Ei(ki,xi(t))), (4)

where ki and xi(t) are respectively the set of parameters and the set of molecular con-
centration levels corresponding to the variables nodes connected to ν( fi). Note the dis-
tinction between xi, which denotes the concentration level of species i, and xi. The
function Ei(ki,xi(t)) consists of two terms:

Ei(ki,xi(t)) = Ei,1(ki)+Ei,2(ki,xi(t)). (5)

The first term Ei,1(ki) measures the fit to data for a particular choice of values for the
parameters in ki. The second term Ei,2(ki,xi(t)) measures whether the values for ki are
consistent with those for xi(t).

We calculate Ei,1(ki) based on the global effect of ki on the fit to data for the molec-
ular species that are experimentally measured:

Ei,1(ki) = min
k\ki

∑
m∈M

∑
j
(xm(Tj;k)− x̃m j)2, (6)

where k\ki denotes the set of parameters in k, but not in ki, M denotes the set of all
species that are measured experimentally, xm(t;k) is the concentration level of species
m at time t, obtained by simulating the system of ODEs in (1) with parameters k, and
finally x̃m j is the experimental concentration level of species m at time Tj.

The second term Ei,2(ki,xi(t)) measures the consistency between the parameter val-
ues ki and concentration levels xi(t): ki and xi(t) are consistent if xi(t) can be obtained
by simulating the system of ODEs in (1) with parameter values ki and some suitable
choice of values for parameters in k\ki. The function Ei,2(ki,xi(t)) takes binary values.
If ki and xi(t) are consistent, Ei,2(ki,xi(t)) = 0; otherwise, Ei,2(ki,xi(t)) = +∞. This
way, ki values that are inconsistent with the dynamics defined by the ODEs are filtered
out, regardless of their agreement with experimental data according to Ei,1(ki).

With our definition of compatibility functions, the factor graph S encodes exactly
the function

g(k,x(t)) =
1
λ

∏
i

gi(ki,xi(t)) =
1
λ

exp
(
−∑

i
Ei(ki,xi(t))

)
, (7)



where k =
⋃

i ki, x =
⋃

i xi, and λ is a normalizing constant ensuring that g(k,x(t))
represents a well-defined probability function. The function g(k,x(t)) has the same
extremal values as J(k) and p(k):

Theorem 1. The following statements are equivalent:

1. The parameter values k∗ minimize J(k).
2. The parameter values k∗ maximize p(k).
3. The parameter values k∗ and concentration levels x(t;k∗) maximize g(k,x(t)),

where x(t;k∗) is the molecular concentration levels obtained by simulating the
ODE model in (1) with parameter values k∗.

The proof is given in Appendix A. This result implies that that to minimize J(k) or
maximize p(k), we may equivalently maximize g(k,x(t)). Why do we want to do so?
The reason is that although g(k,x(t)) is also a high-dimensional function, it is factored
as a product of lower-dimensional functions represented by the factor graph S. We can
maximize it effectively using belief propagation (Section 4), when searching for a pa-
rameter estimate with the best fit to data.

The compatibility functions defined above measure the fit to data globally over all
experimentally measured molecular species. As a heuristic for improving efficiency,
we introduce a variant which measures the fit to data locally as well. The definition of
Ei,1(ki) then depends on whether the concentration level xi of molecular species i is
measured experimentally. If it is, we calculate Ei,1(ki) locally using only the data for
xi:

Ei,1(ki) = min
k\ki

∑
j
(xi(Tj;k)− x̃i j)2. (8)

If xi is not measured experimentally, we calculate Ei,1(ki) globally using (6). Intuitively,
calculating the fit to data locally strengthens the local constraints and makes belief
propagation (Section 4) more greedy. This turns out to be helpful in our experiments
(Section 4). However, it does not have the theoretical guarantee stated in Theorem 1.

We now discuss how to represent and compute the compatibility functions gi(ki,xi(t)).
First, the parameter values and the concentration levels are discretized into a finite of
set of intervals. Both the probability distributions for variable nodes and the compatibil-
ity functions for factor nodes are represented using this discretization. This is common
practice for factor graphs used in conjunction with belief propagation [5]. It is not a
severe limitation here, as the experimentally measured concentration levels for proteins
in a signaling pathway often have very limited accuracy. Furthermore, once belief prop-
agation gives the best parameter estimate up to the resolution of the discretization, we
can further refine the estimate by performing a local search, thus mitigating the effect
of discretization. More details regarding this can be found in Section 5. One advantage
of the discrete representation is that the resulting factor graph can represent arbitrary
probability distributions, up to the resolution of the discretization. There is no need to
assume a particular parametric form of the distribution.

Next, to compute gi(ki,xi(t)), we need to perform the minimization required in (6)
or (8). For this, we sample a representative set of parameter values and perform the
minimization over the set of sampled values. This would be expensive computationally
if performed on the space of all parameters. We need sophisticated sampling methods



such as Latin square sampling [12] to reduce the computational cost. Whenever possi-
ble, we also decompose a pathway model into components (Section 3.5). Sampling is
performed only within a pathway component, which usually contains a small subset of
parameters. This keeps the computational cost low.

3.5 Pathway Decomposition
For computational efficiency, we decompose a pathway into components. Each com-
ponent usually contains only a small subset of unknown parameters. We build a factor
graph S′ for each component independently, assuming that the component is unaffected
by the other components. Each component factor graph S′ encodes a probability func-
tion expressing preferences over the values of the parameters contained in S′. To account
for the dependency among the parameters from different components, we merge the
component factor graphs and apply belief propagation (Section 4) to reconcile the dif-
ferent preferences over parameter values from each component. We do not have space
here to describe this somewhat elaborate procedure. The details can be found in [13].
See Fig. 5 for an example of a decomposed pathway model.

3.6 Data Integration
Suppose that a sequence of data sets D1,D2, . . . arriving at time T1,T2, . . .. Let Kn de-
note the factor graph for p(k|D1,D2, . . . ,Dn). We want to build Kn incrementally by
integrating the data sets one at a time. At the nth stage, we first apply the procedure de-
scribed above to construct a factor graph Sn for Dn. To construct Kn, we merge Sn with
Kn−1 by fusing their common variable nodes. Specifically, if a node of Sn represents
the same unknown parameter as a node of Kn−1, they are merged as a single node in
Kn. The edges are rearranged accordingly. Other nodes of Sn and Kn−1 remain the same
in Kn. See Fig. 2 for an illustration. It is important to note that although Kn takes into
account all the data

⋃n
i=1 Di, the construction of Kn requires only Dn. Information from

the earlier data sets
⋃n−1

i=1 Di is encoded in Kn−1. Intuitively each new data set Dn adds
a “slice” to our final factor graph Kn. So the size of Kn grows linearly with n.

We now turn to the important step of belief propagation, which reconciles the local
constraints encoded by Kn−1 and Sn.

4 Finding the Best Parameter Estimate
Theorem 1 shows that to find the minimum k∗ of J(k|D1,D2, . . . ,Dn), we can equiva-
lently maximize g(k,x(t)) represented by the factor graph Kn. We compute the maxi-
mum by applying a standard belief propagation (BP) algorithm called the max-product
algorithm to Kn.

We give only a quick overview of BP here. See [4, 5] for comprehensive tuto-
rials. Let G be a factor graph representing a factored non-negative function g(z) =
g(z1,z2, . . .) = ∏i gi(zi), where zi is the subset of variables involved in the factor gi(zi).
After normalization, g(z) can be considered a probability function. Each variable node
ν(z j) of G is initialized with a probability distribution π0(z j)—commonly called a be-
lief —over the values of z j. A preferred z j value has higher probability. The initial dis-
tribution π0(z j) represents our prior knowledge on the value of z j. If there is no prior
information on z j, we set its initial distribution to be uniform. After initialization, a



variable node ν(z j) sends its belief π(z j) as a message to each adjacent factor node
ν(gi). Upon receiving the messages from the adjacent variable nodes, a factor node
ν(gi) combines them with its own compatibility function gi(zi) and creates a new mes-
sage, which is sent to each variable node ν(z j) adjacent to ν(gi). The belief at ν(z j)
is then updated so that z j values satisfying the compatibility function gi(zi) well have
their probabilities increased. The order in which to send the messages must follow a
suitable protocol, and the messages stop when a termination condition is met.

When BP terminates, the variable nodes take on beliefs favoring values that satisfy
well the local constraints represented by the compatibility functions in the factor nodes.
If a factor graph G contains no cycles, BP converges to the global maximum of the
function that G represents [14]. In practice, a factor graph modeling a complex system
often contains cycles. So convergence is not guaranteed, and one needs to terminate the
algorithm using heuristic criteria. Nevertheless, BP on general factor graphs has gener-
ated good results in diverse applications [15, 16]. One reason is that BP is in essence a
dynamic programming algorithm, which performs a more global search than strategies
such as gradient descent, and is less likely to get stuck in local maxima.

We apply BP to a factor graph representing the function g(k,x(t)) in (7). Each
compatibility function gi(ki,xi(t)) in the factor graph encodes two types of constraints:
Ei,1(ki) measures the fit to data, and Ei,2(ki,xi(t)) measures the consistency between
ki and xi(t) with respect to the dynamics defined by the ODEs in (1). BP favors k and
x values that satisfy these constraints well. It is also important to remember that when
BP terminates, the variable nodes of the factor graph contain not only the parameter
values with the best fit to existing data, but also alternative parameter values of varying
quality weighted by the probabilities. These alternatives will become useful when new
data arrives.

We run BP on each incrementally constructed factor graph Kn. For n = 1, the vari-
able nodes of K1 are initialized with the uniform probability distribution. For n≥ 2, the
variable nodes of Kn are initialized with beliefs resulting from BP at the previous stage.
Recall that Kn is obtained by merging Kn−1 with a factor graph slice Sn representing the
new data set Dn (Section 3.6). So BP has the effect of reconciling the constraints due to
the new data (encoded in Sn) with those due to the earlier data (encoded in Kn−1) and
favoring those parameter values with good fit to both the new and the old data.

5 Results

We tested our approach on the Akt-MAPK signaling pathways. The kinase Akt is a
major factor in many types of cancer. The Akt pathway is one of the most actively
studied kinase pathways, as it plays a key role in essential cellular functions, including
cell survival, differentiation, etc. [17]. The Akt pathway interacts with several other
pathways while performing its functions, in particular, the MAPK pathway.

In our earlier work [18], we performed parameter estimation on a combined model
of the Akt-MAPK pathways using experimental data and studied the crosstalk between
them. In the present setting, due to the lack of sufficient number of experimental data
sets, we used synthetic data. The Akt-MAPK model used in our case study contains
36 molecular species and 42 unknown parameters. See Fig. 5. A larger figure along



Fig. 5. The HFPN model of the Akt-MAPK pathways. A place node in the model is shaded in
gray if data is available for the corresponding molecular species. The light gray boxes indicate
the components obtained through pathway decomposition.

with model parameter values is available at http://www.comp.nus.edu.sg/
˜rpsysbio/recomb2010. We generated six data sets by simulating the model un-
der different knockdown conditions, in which the initial concentration level of each of
six molecular species—Akt, PDK1, PP2A, PTEN, and the cell receptor—is reduced.
Each data set contains concentration levels of 13 molecular species at 50 time points.

We normalized the value of each parameter to a range between 0 and 1 and divided
the range into 10 equally-sized intervals. Due to the discretization, belief propagation
produces the best parameter intervals rather than exact values. As a post-processing
step, we apply the Levenberg-Marquardt algorithm [19], starting from the mid-points
of the best parameter intervals obtained from belief propagation. This gives us the final
parameter estimate that minimizes the error in fit to data.

As mentioned in Section 1, a key goal of our work is to address the issue of not
having access to all the data at the same time. In our test, we introduced the six data
sets one at a time, in an arbitrary, but fixed order. At each stage, to perform parameter
estimation, we used only one data set along the factor graph model from the earlier
estimation; all other data sets were kept away. Since sampling is used during the factor
graph modeling (Section 3.4), we repeated each test 10 times.



Fig. 7. The change in concentration level over time for Badp136 under six knockdown conditions.
The six curves in each plot correspond to the six different parameter estimates as more data sets
are integrated. Data points are shown every 5 time steps to avoid cluttering the plots.

Fig. 6. The error in fit to data, as
six data sets were introduced one
at a time. The darker bar indi-
cates the error of the parameter
estimate obtained by SRES, us-
ing all six data sets.

Fig. 6 shows the mean error in fit to data over
the 10 runs in each stage. To examine the bene-
fits of using multiple data sets for parameter esti-
mation, the error is measured according to (2) us-
ing all six data sets. The plot shows that as more
data are used, the error generally decreases, as ex-
pected. Fig. 7 shows the concentration level of Bad
(Bcl2 antagonist of cell death), an important down-
stream protein in the pathway. Each plot shows
how the concentration level changes over time un-
der one of the six knockdown conditions. Figs. 6
and 7 indicate that the fit to data improves, as more
data sets are introduced to refine the parameter es-
timate. For example, parameter estimate 1 causes

substantial error in fit to data set 2, 3, and 5, while parameter estimate 6, after inte-
grating all data, fits well with all data sets. The results confirm that our approach can
integrate new data and improve the parameter estimates effectively.

Next, we compared our results with that from COPASI [20], a well-established path-
way simulator with parameter estimation functions. COPASI contains several methods
for parameter estimation. We used SRES, which is the best based our experiences. We
ran SRES for an extended duration (10 hours), using all six data sets. After integrating
enough data sets, our approach of incremental parameter modeling obtained compa-
rable and better estimates (Fig. 6). The results suggest that our incremental approach
through data integration does not sacrifice parameter estimation accuracy, compared
with global estimation methods that require access to all the data sets at once.

To test the robustness of our approach, we considered four additional knockdown
conditions by combining the knockdown conditions specified earlier. We generated four
new data sets under these additional conditions and computed the error in fit to data for



Fig. 8. The error in fit to data under combination of knockdown conditions.

the six parameter estimates obtained earlier (Fig. 8). We did not recompute the parame-
ter estimates using the additional data, as the purpose here is to check the robustness of
the estimates obtained earlier under new conditions. The results indicate a trend similar
to that shown in Fig. 6.

As more data sets are integrated, we expect that the uncertainty of parameter esti-
mates decreases. Fig. 9 shows the change in the standard deviations of some estimated
parameters as the number of data sets increases. There is a general decrease in the stan-
dard deviations for all estimated parameters, indicating that data integration is effective
for reducing the uncertainty of estimated parameters. For some parameters, such as the
ones shown in Fig. 9, the uncertainty is very low, after six data sets were integrated.
However, for some other parameters, including k7,k9,k10,k11,k12,k13,k21,k22,k32,k37,
k40,k41,k42, the uncertainty remains large. The graphical model of the pathway (Fig. 5)
reveals that such parameters are mostly associated with molecular species that are either
(i) involved in several reactions, e.g., Aktm, Raf, Bad, or (ii) have insufficient data to
constrain their values, e.g., PIP3, Aktm. This observation suggests that biological path-
ways are less sensitive to parameter variations around molecular species involved in
more than one set of production-consumption reactions. The uncertainty level in pa-
rameter estimates can also provide guidance to biologists in the subsequent design of
their experiments to further constrain important pathway parameters.

6 Conclusion
Pathway model construction is often an incremental process, as new experiments lead
to discoveries of additional players and interactions in a pathway. This paper presents
a data integration approach to incremental pathway parameter modeling. We use the
factor graph as a probabilistic model of pathway parameter estimates. It enables us
to refine the parameter estimates in a principled and efficient manner, when new data
becomes available. A main benefit of our approach is that the factor graph model com-
pactly encodes the information from old data in itself and uses only new data to refine
the parameter estimates. It eliminates the unrealistic requirement of having access to all
data, both old and new, in order to improve the parameter estimates.

Several aspects of our approach require further investigation. So far, we have only
tested it with unknown kinetic rate constants as parameters. Our approach can also deal
with unknown initial molecular concentration levels by treating them as parameters, but
we are yet to implement and test our approach to handle this variant. We also need to
test this method on multiple signaling pathway models using real experimental data.

An important underlying idea of our approach is to compose factor graph models.
The current work exploits temporal composition by merging successive slices of factor



Fig. 9. The mean values and the standard deviations of the estimated parameters over 10 runs.
The bars indicate the mean values of estimated parameters. The error bars indicate the standard
deviations. The dashed lines indicate the nominal parameter values.

graphs representing new data sets. This allows us to integrate new data and refine model
parameters. We can go one and exploit spatial composition. When new experiments
suggest additional components of a pathway or interacting pathways, we may compose
the models for these components and pathways to form a single model. Spatial com-
position allows us to expand a model and incorporate missing players and interactions.
The pathway decomposition technique described briefly in Section 3.5 in fact consti-
tutes a special case of spatial composition, but more work is needed to explore spatial
composition methods. Together temporal and spatial compositions create a modeling
framework that supports model refinement and expansion systematically.
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A Proof of Theorem 1

Proof. Since p(k) = (1/λ )exp(−J(k)) and the exponential function is monotonic, the
equivalence between statements 1 and 2 clearly holds.

We now prove the equivalence between statements 1 and 3. Define E(k,x(t)) =
∑i Ei(ki,xi(t)). Since we want to minimize E(k,x(t)), we are only interested in the
case when E(k,x(t)) is finite. The function E(k,x(t)) is finite if and only if ki and xi
are consistent for all i. Let x(t;k) denote the concentration levels consistent with the
parameters k. In this case, Ei,2(ki,xi(t)) = 0 for all i. Using this and (6), we then get

min
k

E(k,x(t;k)) = min
k

(
∑

i
Ei,1(ki,xi(t))

)
= min

k

(
∑

i
min
k\ki

∑
m∈M

∑
j
(xm(t j;k)− x̃m j)2

)
= min

k

(
∑

i
min
k\ki

J(k)
)

(9)

Note that mink\ki J(k) is a function of ki. If k∗ minimizes J(k), then k∗i minimizes
mink\ki J(k) for all i. It then follows from (9) that

min
k

E(k,x(t;k)) = ∑
i

min
k

J(k).

Since g(k,x(t)) = (1/λ )exp(−E(k,x(t))), the conclusion follows. ut



B HFPN Model of the Akt-MAPK Signaling Pathways

The figure below shows the HFPN model of the Akt-MAPK signaling pathways. This
pathway model contains 36 molecular species and 42 unknown kinetic rate constants.
The equations associated with each transition are shown in Table 1. The nominal values
of the rate constants fall within the interval [0.0, 1.0]. The molecular concentrations of
the various species fall within the interval [0.0, 5.0]. The nominal values of the rate con-
stants and the initial concentration levels of the molecular species are given in Tables 2
and 3.

Fig. 1. The HFPN model of the Akt-MAPK pathways. A place node in the model is shaded in
gray if data is available for the corresponding molecular species. The light gray boxes indicate
the components obtained through pathway decomposition.



Table 1. Equations for the reactions in the pathway. The molecular species are denoted in “[]”.

No Rate Equation No Rate Equation No Rate Equation No Rate Equation

1 k1[R] 12 k12[PDK1m][Aktm] 23 k23[Aktp][Rafp] 34 k34[Aktp][Bad]
2 k2[Ra] 13 k13[PP2A][Aktmp] 24 k24[Rafp][MEK] 35 k35[Badp112]
3 k3[Ri] 14 k14[Aktmp] 25 k25[PDK1][MEK] 36 k36[Badp136]
4 k4[Ra][PI3K] 15 k15[PP2A][Aktp] 26 k26[MEKp][PP2A] 37 k37[PI3Ka][Bax]
5 k5[PTEN][PI3Ka] 16 k16[PI3Ka][Pak1] 27 k27[MEKp][ERK] 38 k38[Baxc]
6 k6[PI3Ka][PIP2] 17 k17[Pak1p] 28 k28[ERKp] 39 k39[Bad][Bcl2]
7 k7[PIP3] 18 k18[Ra][Ras] 29 k29[ERKp][P90RSK] 40 k40[Bax][Bcl2]
8 k8[PIP3][PDK1] 19 k19[Rasa] 30 k30[P90RSKp] 41 k41[Bcl2.Bad]
9 k9[PDK1m 20 k20[Rasa][Raf] 31 k31[P90RSKp][Bad] 42 k42[Bcl2.Bax]
10 k10[PIP3][Akt] 21 k21[Pak1p][Raf] 32 k32[Pak1p][Bad]
11 k11[Aktm] 22 k22[Rafp] 33 k33[Pak1p][Bad]

Table 2. Nominal values for the unknown kinetic rate constants.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

k1 0.55 k11 0.65 k21 0.75 k31 0.05 k41 0.95
k2 0.35 k12 0.65 k22 0.85 k32 0.65 k42 0.45
k3 0.05 k13 0.65 k23 0.55 k33 0.05
k4 0.85 k14 0.75 k24 0.45 k34 0.35
k5 0.75 k15 0.55 k25 0.55 k35 0.85
k6 0.55 k16 0.05 k26 0.35 k36 0.95
k7 0.95 k17 0.95 k27 0.95 k37 0.75
k8 0.25 k18 0.25 k28 0.85 k38 0.15
k9 0.45 k19 0.35 k29 0.05 k39 0.85
k10 0.65 k20 0.45 k30 0.35 k40 0.85

Table 3. Initial concentration levels of the molecular species.

Species Concentration Species Concentration Species Concentration Species Concentration

Serum 1.0 PDK1m 0.0 Rafp 0.0 Bax 0.0
PP2A 5.0 Akt 5.0 MEK 5.0 Baxc 5.0
R 5.0 Aktm 0.0 MEKp 0.0 Bcl2 5.0
Ra 0.0 Aktmp 0.0 ERK 5.0 Bcl2.Bad 0.0
Ri 0.0 Aktp 0.0 ERKp 0.0 Bcl2.Bax 0.0
PI3K 5.0 Pak1 5.0 P90RSK 5.0 PTEN 1.0
PI3Ka 0.0 Pak1p 0.0 P90RSKp 0.0
PIP2 5.0 Ras 5.0 Bad 5.0
PIP3 0.0 Rasa 0.0 Badp112 0.0
PDK1 5.0 Raf 5.0 Badp136 0.0


