
The Creation of a Music-Driven Digital Violinist
Jun Yin+, Ankur Dhanik#, David Hsu+, Ye Wang+

National University of Singapore, Singapore 117543
+: {yinjun, dyhsu, wangye} @comp.nus.edu.sg #: g0203706@nus.edu.sg

ABSTRACT
This paper describes an initial attempt on a music-driven digital
violinist (MDV) system, which automatically generates animation
of a violinist based on violin music. MDV first analyzes the input
audio signal and transcribes it into music notes. Next it uses the
notes to synthesize the animated video of a violinist. Tests on the
prototype system show that it achieves adequate visual realism
and near real-time performance.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems] Signal
Processing Systems
H.5.5 [Sound and Music Computing] Signal Analysis, Synthesis
and Processing, Systems

General Terms
Algorithms, Design, Experimentation.

Keywords
Music transcription, animation, inverse kinematics

1. INTRODUCTION
The effect of music performances depends on both the sound
produced and the action of performers. Often the sound or the
audio aspect of a music performance is readily available, long
after the performance, as recording or broadcasting. The action of
performers or the visual aspect of a performance is less so,
because the video is inherently more expensive to store and
transmit than the audio. As it has been widely acknowledged that
computational power increases much faster than network
bandwidth, we may ask: is it possible to recreate the action of
performers from the audio recording of a performance?
In this work, we take the first step towards this direction. Our goal
is to create a music-driven digital violinist (MDV) system, which
takes as input a piece of solo violin music and outputs the
animation of a violinist synchronized with the music. We have
chosen violin because of the versatility of violin music and the
skillful action required of violinists. The idea of combining music
and animation is not new and has been applied effectively before
(see, e.g., [6]) in interesting, but simpler scenarios.
Systems like MDV have many potential applications, from the
immediate to the more ambitious. At the minimum, it can replace
the random geometric patterns for sound visualization on many

media players and serve as more meaningful and potentially more
interesting visualization. MDV can also be a useful tool in music
education as an interactive demonstrator for beginners learning to
play music instruments. Although audio recordings of violin
music are widely available, learners need the visual feedback to
see how to play the music on the recordings. With the help of
MDV, learners can observe the correct playing from different
viewing angles interactively, an important advantage over the
conventional recorded video. They can do this in their own time,
pace, and chosen location, reinforcing the knowledge from
teachers’ lessons. Successful MDV systems may also help create
exciting new multimedia contents by adding visual feedback
based on audio, e.g., imagining recreating grandmasters’
performances from past audio recordings.
We have implemented a prototype MDV system for proof of
concept (Figure 1b). Although the prototype shows a violinist
playing in the Indian style, the approach is general and can be
applied to other major string instruments, including western violin
and cello. This paper presents our preliminary results.

 (a) (b)

Fig

2. SYST
Our system t
music and ou
with the audi
the input aud
use the notes
Our system
perform violi
transcription
which is a lis
the pitch, lou
entry may a
vibrato and
annotated mu
note table sh
played but a
note table ou
animation m
the transcrip
synchronized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MM’04, October 10–16, 2004, New York, New York, USA.

Copyright 2004 ACM 1-58113-893-8/04/0010…$5.00.

ure 1: A real and an animated digital violinist.

EM OVERVIEW
akes as input the audio recording of a piece of violin
tputs the animated video of a violinist synchronized
o. We propose a two-step solution. First we analyze
io signal and transcribe it into music notes. Next we
 to synthesize the 3-D animation of a violinist.
has a simple architecture with two modules that
n music transcription and animation (Figure 2). The
module converts the audio signal into a note table,
t of note entries. Each entry contains information on
dness, onset, and duration of a note. Optionally an

lso contain information on playing styles, such as
spiccato. The note table can be viewed as an
sic score. As a design goal, the information in the
ould be rich enough to describe not only the notes
lso the individual playing style of a violinist. The
tput by the transcription module is then fed into the
odule to produce the animated video. Assuming that
tion is accurate, the audio and video can be
 by playing the notes in the note table successively.

Figure 2: System diagram.

Motivated by the intended applications, one of our design goals is
to achieve real-time or near real-time performance. This leads us
to choose simple and efficient methods for transcription and
animation. Clearly more sophisticated alternatives exist, but they
are often computational intensive, and it is more difficult to
achieve real-time performance.

Motivated by the intended applications, one of our design goals is
to achieve real-time or near real-time performance. This leads us
to choose simple and efficient methods for transcription and
animation. Clearly more sophisticated alternatives exist, but they
are often computational intensive, and it is more difficult to
achieve real-time performance.

3. VIOLIN TRANSCRIPTION 3. VIOLIN TRANSCRIPTION
The violin transcription module automatically generates note
information from a solo violin wave file. At the basic level, note
information contains the onset, duration, pitch and loudness of
notes, which are used to control the animation module.
Piszczalski and Galler created the first automatic single-
instrument transcription system [8]. Subsequent research by many
researchers has made considerable progress in this field. Our
violin transcription method is similar to that in [7]. It goes through
spectrogram creation, pitch and loudness estimation, onset
detection, and note information generation. These four stages are
described in the subsections below. Compared with the previous
work, we have significantly improved the speed of transcription
by exploiting the characteristics of violin music.

The violin transcription module automatically generates note
information from a solo violin wave file. At the basic level, note
information contains the onset, duration, pitch and loudness of
notes, which are used to control the animation module.
Piszczalski and Galler created the first automatic single-
instrument transcription system [8]. Subsequent research by many
researchers has made considerable progress in this field. Our
violin transcription method is similar to that in [7]. It goes through
spectrogram creation, pitch and loudness estimation, onset
detection, and note information generation. These four stages are
described in the subsections below. Compared with the previous
work, we have significantly improved the speed of transcription
by exploiting the characteristics of violin music.

3.1 Spectrogram Creation 3.1 Spectrogram Creation
The input wave file has the conventional CD format and is re-
sampled at the rate of 22 kHz for reduced computation. The
analysis window length is 4096 samples (186 ms) with a shift of
512 samples (23 ms) for continuous analysis. Hanning windowed
FFT is used to create the amplitude spectrum of each frame
followed by sub-band processing.

The input wave file has the conventional CD format and is re-
sampled at the rate of 22 kHz for reduced computation. The
analysis window length is 4096 samples (186 ms) with a shift of
512 samples (23 ms) for continuous analysis. Hanning windowed
FFT is used to create the amplitude spectrum of each frame
followed by sub-band processing.
We assume that G3 (~196 Hz) is the lowest note and G6 (~1568
Hz) is the highest note the violin can play. We use this knowledge
to drastically reduce the analysis frequency bandwidth thus
reducing computational complexity. Our sub-band structure
follows the musical note structure. That is, the central frequency
of each sub-band equals the musical notes (G3, G#3, A3, A#3,
etc.). The bandwidth of each sub-band equals the corresponding
semitone. The sub-band energy spectrum is computed from
amplitude spectrum using the following formula:

We assume that G3 (~196 Hz) is the lowest note and G6 (~1568
Hz) is the highest note the violin can play. We use this knowledge
to drastically reduce the analysis frequency bandwidth thus
reducing computational complexity. Our sub-band structure
follows the musical note structure. That is, the central frequency
of each sub-band equals the musical notes (G3, G#3, A3, A#3,
etc.). The bandwidth of each sub-band equals the corresponding
semitone. The sub-band energy spectrum is computed from
amplitude spectrum using the following formula:

)) G6..G3(37..1])[(][
)(

)(

2 == ∑
=

ikYiZ
iUB

iLBk

G6..G3(37..1])[(][
)(

)(

2 == ∑
=

ikYiZ
iUB

iLBk

where i is the subband index, Z is the sub-band energy (Z[1] is the
energy of G3, Z[2] is the energy of G#3, etc), Y is the amplitude
spectrum, LB(k) and UB(k) are lower bound and upper bound of a
sub-band.

where i is the subband index, Z is the sub-band energy (Z[1] is the
energy of G3, Z[2] is the energy of G#3, etc), Y is the amplitude
spectrum, LB(k) and UB(k) are lower bound and upper bound of a
sub-band.
The output of this sub-module is a sub-band energy spectrogram
shown in Figure 3.
The output of this sub-module is a sub-band energy spectrogram
shown in Figure 3.

Figure 3: Sub-band energy spectrogram. Figure 3: Sub-band energy spectrogram.

3.2 Pitch and Loudness Estimation 3.2 Pitch and Loudness Estimation
We have found out from experiments that the harmonic structure
of a violin sound is unstable over time and most energy of a violin
sound is concentrated at the fundamental and first 5 harmonics,
which lie at 12, 19, 24, 28 and 31 semitones away from the
fundamental, respectively. This observation enables us to design a
simple yet effective pitch detector. Energy values of all possible
pitches between G3 and G6 are computed using the following
formula, which is simplified version of a similar on in [7]:

We have found out from experiments that the harmonic structure
of a violin sound is unstable over time and most energy of a violin
sound is concentrated at the fundamental and first 5 harmonics,
which lie at 12, 19, 24, 28 and 31 semitones away from the
fundamental, respectively. This observation enables us to design a
simple yet effective pitch detector. Energy values of all possible
pitches between G3 and G6 are computed using the following
formula, which is simplified version of a similar on in [7]:

37..1]31[]28[]24[]19[]12[][][37..1]31[]28[]24[]19[]12[][][=++++++++++= iiZiZiZiZiZiZiE

The pitch with the highest energy is assumed to be the dominant
pitch of the frame. The logarithm of the energy is estimated as the
loudness:

][log37..1][maxarg pEliiEp ===

Although we assume that the signal is monophonic in our current
implementation, this pitch estimation algorithm can be extended
to deal with polyphonic violin signal. If the pitch with the next
highest energy is above a threshold, it can be considered as the
secondary dominant pitch of the frame:

37..1threshold][and][maxarg 222 =≥≠= ipEppiEp

The output of this sub-module is a pitch-loudness-gram, shown in
Figure 4.

Figure 4: Pitch-loudness-gram.

3.3 Onset Detection
Onsets are detected in each sub-band (from G3 to G6) over time.
When any of the two following criteria is satisfied, the location of
this sub-band and this frame is considered an onset:

• Sub-band loudness is above a pre-determined threshold

frameonset theis ,1]1[][if
threshold1][0
threshold1][1

][

jjFjF
jL
jL

jF

=−−




<
≥

=

• The derivative of the sub-band energy is over than a
pre-determined threshold

frameonset theis ,threshold2]1[][if jjLjL ≥−−
The output of this sub-module is the onset locations shown in
Figure 5. The two thresholds are determined experimentally.

Figure 5: Onset locations.

3.4 Note Information Generation
The note information is generated based on the output of onset
detector described in the previous subsection. Each onset is a

Transcriber Animator
audio

note
table

animated
video

time

frequency

time

frequency

time

frequency

The difficulty of synthesizing human motion has attracted strong
interest (e.g., the references in [3]). There is also recent work on
animating guitar and violin playing. Observing the complexity of
motion in playing music instruments, previous work attempts to
capture this complexity using sophisticated models such as neural
networks [4] and minimization of a global cost function [2].

potential note. The sub-band with the highest energy is considered
the note’s pitch. The detected onset is considered the note’s
starting time. Our algorithm then tracks the subsequent frames,
until the sub-band loudness decays below a predetermined
threshold. This allows the estimation of the note’s duration. The
average loudness along a note is computed as the note’s loudness.

In contrast, we believe that despite the intricacy required of violin
playing, the range of motion needed is fairly restricted. A simple
procedural model can capture the motion effectively without
much sacrifice in visual realism. The key observation is that to a
reasonable approximation, every music note has a unique posture
of the left hand and arm for producing the note. So we can pre-
compute a database of hand postures for all the notes and
interpolate between the pre-computed postures to synthesize the
continuous motion. The bowing motion of the right arm is
synthesized in a similar way, but the arm postures are computed
on the fly rather than pre-computed and stored in a database. We
now give details on how to compute natural-looking hand-arm
postures via inverse kinematics (IK).

The output of this sub-module is the note table, shown in Table 1.
This table is fed to the animation module as the input.

Onset Duration Pitch Loudness

42 113 24 0.79877

160 23 20 1.2373

182 22 15 2.8975

… … … …
Table 1: An example note table.

3.5 Performance Evaluation
Transcription errors result mainly from pitch estimation and onset
detection. We tested the accuracy of our violin transcription
module with four violin music samples and compared it with that
of commercial software. The accuracy is measured by the number
of correctly detected notes divided by the total number of detected
notes. A detected note is deemed correct if it has the same pitch
and onset as the one in the music. Loudness is not considered in
determining accuracy. Table 2 shows that our transcription
method performs much better. Although the tested commercial
software systems do not reveal what methods they use, we suspect
that our method has two main advantages. First it specifically
takes advantage of the fact that violin music is monophonic most
of the time, while the commercial software is designed for general
polyphonic music. Second it employs adaptive threshold for pitch
estimation. To understand these issues better, we plan to
implement and compare with other strong transcription methods
in the literature.

4.1 Fingering
In violin playing, fingering means pressing the strings with left
fingers to control the music note produced. To do this, a violinist
first moves the left arm to position the wrist at one of the seven
positions along the neck of the violin and then extends a finger,
called the active finger, to place its tip at a chosen position on one
of the strings. Following standard practice, we use a skeletal
model of the limb, consisting of the arm, the hand, and the
fingers. The limb is represented as rigid links connected with
flexible joints (Figure 6). By changing the joint angles, we control
the postures of the limb.

Song Our System Amazing MIDI
v1.70 [9]

intelliScore
v5.1 [10]

Swan 89% 14% 48%
Thai 90% 23% 34%

ViolinM1 97% 11% 19%
ViolinM2 96% 41% 27%
Average 94% 23% 29%

 (a) (b) (c)
Figure 6: Modeling the dofs in the arm and the hand.

Given a music note to be played, we can determine the string for
playing the note, the active finger, and the position of the active
fingertip on the string. The problem is then to compute the joint
angles to achieve the posture that places the fingertip at the
required position to play the given note. Our solution decouples
the limb into two parts, the arm and the hand, and computes the
joint angles for the two parts separately. First we compute the
joint angles for the arm (Figure 6a) to place the wrist at the
desired position pw, assuming that the shoulder is fixed. Next,
given pw, we compute the joint angles for the wrist and the active
finger (Figure 6b-6c) to place the fingertip at the desired position
pf. Both steps can be accomplished by solving the IK. Although
solving IK efficiently with many dofs is challenging, it has been
studied extensively in robotics [1]. Due to the limited space, we
omit the details of our IK methods, but highlight three issues that
differentiate our problem from that of similar problems in
robotics:

Table 2: Transcription accuracy of our transcription module versus
two commercial software systems.

4. ANIMATING A VIOLINIST
While playing, violinists execute intricate motions of fingers,
hands, and arms. The left hand shifts among different positions
along the neck of the violin; the fingers press the strings and
control the pitch of the sound produced (Figure 1).
Simultaneously the right arm moves the bow back and forth on
the strings to produce the sound. Reproducing this coordinated
motion realistically is a challenging task, due to the complexity of
human anatomy. From the shoulder to the tips of fingers, each
limb consists of many joints with nearly 30 degrees of freedom
(dofs), some of which are interdependent. See Figure 6. To play
the desired music notes, all the joints have to move in a
coordinated fashion to place the fingertips at the intended
positions on the strings.

5. SYSTEM IMPLEMENTATION Natural postures Since the limb contains a large number of dofs,
there are multiple postures to achieve a given wrist or fingertip
position. In other words, there are multiple IK solutions.
However, most of these postures do not appear natural for violin
playing. To address this issue, we performed empirical
measurements to determine a reference posture θr and choose an
IK solution θ as close to the reference posture as possible. More
precisely, we solve the following minimization problem:
IK solution θ as close to the reference posture as possible. More
precisely, we solve the following minimization problem:

Our prototype system implements the violin transcription module
in Matlab and the animation module in C++. OpenGL is used for
3-D graphic rendering. The transcription module takes a single
wave file as input and feeds the computed note table into the
animation module. The animation module generates the animation
of the violinist and, at the same time, plays the wave file, in a
synchronized manner.

xf =−)(subject tomin 2
r θθθ

θ

In the current implementation, the transcription module takes
roughly 20 seconds to transcribe one minute of violin music on a
Pentium IV PC. The animation module can generate animation at
the rate of 25 frames/second. These test results indicate that our
approach is suitable for real-time applications. We plan to convert
the Matlab code for transcription into C++ and integrate with the
animation module to further improve performance.

where x is the desired write or fingertip position and f represents
the mapping determined by the structure of the arm or finger. The
minimization ensures that IK solutions lead to postures natural for
violin playing.

Sympathetic motion Some finger joints are interdependent,
meaning that there is a relationship between different joint angles.
This phenomenon is called sympathetic motion and is particularly
noticeable during violin playing: the passive fingers, the fingers
not controlling the notes being played, usually assume postures
similar to that of the active finger. This helps us to determine the
joint angles for the passive fingers. Once we obtain the joint
angles for the active finger from the IK procedure, we set the joint
angles of the passive fingers to similar values after a scaling. The
joint interdependency relationship used in our implementation is
shown in Figure 7. It is based on results from physiological
studies in the literature [5].

6. DISCUSSION
We have presented preliminary results on the MDV system. Using
a two-step approach consisting of music transcription and
animation, the system generates realistic animation synchronized
to the audio with good performance.
Our work is just beginning. We are currently exploring several
directions to improve the system. An immediate step is to test our
transcription method on polyphonic violin music. Playing
polyphonic notes also requires us to expand the posture database
to include postures with two active fingers. We would also like to
develop specialized methods for detecting playing styles such as
vibrato. In addition, our assumption that every note corresponds
to a unique hand-arm posture is not exactly true for advanced
violin playing. Every note can be played with a small finite
number of postures. The choice of postures depends on the nearby
notes. This is an interesting problem that has been studied in
earlier work [4]. Finally on the implementation side, we plan to
integrate the transcription and the animation modules to build a
real-time application.

Figure 7: Joint interdependency of four
fingers, excluding the thumb. Each oval

indicates a joint. A double arrow between
ovals indicates joint interdependency.

Reaching multiple concurrent fingertip positions Sometimes a
violinist does not release the active finger for the previous note
before pressing down the active finger for the current note. In this
case, we must solve the IK to place both fingertips at the required
positions. This makes the problem more difficult because of the
increased number of dofs. Our current solution is to prioritize the
two fingers. We first solve for the joint angles of the current
active finger to place its tip as close to the required position as
possible and then compute the joints angles for the other finger.
This is natural, because only the current active finger controls the
pitch of the note played and is more important.

7. REFERENCES
[1] J. Craig. Introduction to Robotics: Mechanics and Control. Addison-

Wesley, 1989.
[2] G. ElKoura, K. Singh. Handrix: Animating the Human Hand, ACM

Symp. Computer Animation, pp. 110-119, 2003.
[3] P. Faloutsos, M. van de Panne, D. Terzopoulos. Composable

Controllers for Physics-based Character Animation. SIGGRAPH
Conference Proceedings, pp. 251-260, 2001.

We apply the above IK procedure and compute a database of
postures, one for every possible note on the violin. Although the
database creation may be time consuming, it is done in a pre-
computation stage, when time is not critical. Using the posture
database, the animation module reads the notes from the note
table one by one, looks up the posture from the database, and
interpolates the joint angles of postures corresponding to
successive notes to generate the continuous motion.

[4] J. Kim, F. Cordier, N.M. Thalmann. Neural Networks Based
Violinist’s Hand Animation. Computer Graphics International, pp.
37-41, 2000.

[5] J. Lee and T. Kunii. Model-based Analysis of Hand posture. IEEE
Computer Graphics and Applications, 15(5), 77-86, 1995

[6] W. Lytle. More Bells and Whistles. ACM SIGGRAPH 2001
Electronic Theatre, ACM SIGGRAPH Computer Animation
Festival, 2001. 4.2 Bowing

[7] P. M. Martins, J. S. Ferreira. PCM to MIDI Transposition. Audio
Engineering Society 112th Convention Paper, May 2002. The bowing motion of the right arm is created similarly using IK

and interpolation. For simplicity, we attach the right hand rigidly
to the bow and use the joints of the right arm to move the wrist
along one of four possible lines, each corresponding to the
transverse movement of the bow along one of the four strings.
Here the IK solution involves only 4 dofs of the right arm and is
computed on the fly.

[8] M. Piszczalski, B.A. Galler. Automatic Music Transcription.
Computer Music Journal, 1(4):24-31, 1977.

[9] Amazing MIDI,
http://www.pluto.dti.ne.jp/~araki/amazingmidi/index.html

[10] intelliScore, http://www.intelliscore.net/

	INTRODUCTION
	SYSTEM OVERVIEW
	VIOLIN TRANSCRIPTION
	Spectrogram Creation
	Pitch and Loudness Estimation
	Onset Detection
	Note Information Generation
	Performance Evaluation

	ANIMATING A VIOLINIST
	Fingering
	Bowing

	SYSTEM IMPLEMENTATION
	DISCUSSION
	REFERENCES

