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ABSTRACT 
This paper describes an initial attempt on a music-driven digital 
violinist (MDV) system, which automatically generates animation 
of a violinist based on violin music. MDV first analyzes the input 
audio signal and transcribes it into music notes. Next it uses the 
notes to synthesize the animated video of a violinist. Tests on the 
prototype system show that it achieves adequate visual realism 
and near real-time performance. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-based Systems] Signal 
Processing Systems 
H.5.5 [Sound and Music Computing] Signal Analysis, Synthesis 
and Processing, Systems 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Music transcription, animation, inverse kinematics 

1. INTRODUCTION 
The effect of music performances depends on both the sound 
produced and the action of performers. Often the sound or the 
audio aspect of a music performance is readily available, long 
after the performance, as recording or broadcasting. The action of 
performers or the visual aspect of a performance is less so, 
because the video is inherently more expensive to store and 
transmit than the audio. As it has been widely acknowledged that 
computational power increases much faster than network 
bandwidth, we may ask: is it possible to recreate the action of 
performers from the audio recording of a performance? 
In this work, we take the first step towards this direction. Our goal 
is to create a music-driven digital violinist (MDV) system, which 
takes as input a piece of solo violin music and outputs the 
animation of a violinist synchronized with the music. We have 
chosen violin because of the versatility of violin music and the 
skillful action required of violinists. The idea of combining music 
and animation is not new and has been applied effectively before 
(see, e.g., [6]) in interesting, but simpler scenarios. 
Systems like MDV have many potential applications, from the 
immediate to the more ambitious. At the minimum, it can replace 
the random geometric patterns for sound visualization on many 

media players and serve as more meaningful and potentially more 
interesting visualization. MDV can also be a useful tool in music 
education as an interactive demonstrator for beginners learning to 
play music instruments. Although audio recordings of violin 
music are widely available, learners need the visual feedback to 
see how to play the music on the recordings. With the help of 
MDV, learners can observe the correct playing from different 
viewing angles interactively, an important advantage over the 
conventional recorded video. They can do this in their own time, 
pace, and chosen location, reinforcing the knowledge from 
teachers’ lessons. Successful MDV systems may also help create 
exciting new multimedia contents by adding visual feedback 
based on audio, e.g., imagining recreating grandmasters’ 
performances from past audio recordings. 
We have implemented a prototype MDV system for proof of 
concept (Figure 1b). Although the prototype shows a violinist 
playing in the Indian style, the approach is general and can be 
applied to other major string instruments, including western violin 
and cello. This paper presents our preliminary results. 
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ure 1: A real and an animated digital violinist. 
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Figure 2: System diagram. 

Motivated by the intended applications, one of our design goals is 
to achieve real-time or near real-time performance. This leads us 
to choose simple and efficient methods for transcription and 
animation. Clearly more sophisticated alternatives exist, but they 
are often computational intensive, and it is more difficult to 
achieve real-time performance. 
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3. VIOLIN TRANSCRIPTION 3. VIOLIN TRANSCRIPTION 
The violin transcription module automatically generates note 
information from a solo violin wave file. At the basic level, note 
information contains the onset, duration, pitch and loudness of 
notes, which are used to control the animation module. 
Piszczalski and Galler created the first automatic single-
instrument transcription system [8]. Subsequent research by many 
researchers has made considerable progress in this field. Our 
violin transcription method is similar to that in [7]. It goes through 
spectrogram creation, pitch and loudness estimation, onset 
detection, and note information generation. These four stages are 
described in the subsections below. Compared with the previous 
work, we have significantly improved the speed of transcription 
by exploiting the characteristics of violin music. 
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3.1 Spectrogram Creation 3.1 Spectrogram Creation 
The input wave file has the conventional CD format and is re-
sampled at the rate of 22 kHz for reduced computation. The 
analysis window length is 4096 samples (186 ms) with a shift of 
512 samples (23 ms) for continuous analysis. Hanning windowed 
FFT is used to create the amplitude spectrum of each frame 
followed by sub-band processing. 
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We assume that G3 (~196 Hz) is the lowest note and G6 (~1568 
Hz) is the highest note the violin can play. We use this knowledge 
to drastically reduce the analysis frequency bandwidth thus 
reducing computational complexity. Our sub-band structure 
follows the musical note structure. That is, the central frequency 
of each sub-band equals the musical notes (G3, G#3, A3, A#3, 
etc.). The bandwidth of each sub-band equals the corresponding 
semitone. The sub-band energy spectrum is computed from 
amplitude spectrum using the following formula: 
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where i is the subband index, Z is the sub-band energy (Z[1] is the 
energy of G3, Z[2] is the energy of G#3, etc), Y is the amplitude 
spectrum, LB(k) and UB(k) are lower bound and upper bound of a 
sub-band. 
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Figure 3: Sub-band energy spectrogram. Figure 3: Sub-band energy spectrogram. 

3.2 Pitch and Loudness Estimation 3.2 Pitch and Loudness Estimation 
We have found out from experiments that the harmonic structure 
of a violin sound is unstable over time and most energy of a violin 
sound is concentrated at the fundamental and first 5 harmonics, 
which lie at 12, 19, 24, 28 and 31 semitones away from the 
fundamental, respectively. This observation enables us to design a 
simple yet effective pitch detector. Energy values of all possible 
pitches between G3 and G6 are computed using the following 
formula, which is simplified version of a similar on in [7]: 
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The pitch with the highest energy is assumed to be the dominant 
pitch of the frame. The logarithm of the energy is estimated as the 
loudness: 

][log37..1][maxarg pEliiEp ===  

Although we assume that the signal is monophonic in our current 
implementation, this pitch estimation algorithm can be extended 
to deal with polyphonic violin signal. If the pitch with the next 
highest energy is above a threshold, it can be considered as the 
secondary dominant pitch of the frame: 
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The output of this sub-module is a pitch-loudness-gram, shown in 
Figure 4. 

 
Figure 4: Pitch-loudness-gram. 

3.3 Onset Detection 
Onsets are detected in each sub-band (from G3 to G6) over time. 
When any of the two following criteria is satisfied, the location of 
this sub-band and this frame is considered an onset: 

• Sub-band loudness is above a pre-determined threshold 
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• The derivative of the sub-band energy is over than a 
pre-determined threshold 

frameonset   theis  ,threshold2]1[][ if jjLjL ≥−−  
The output of this sub-module is the onset locations shown in 
Figure 5. The two thresholds are determined experimentally. 

 
Figure 5: Onset locations. 

3.4 Note Information Generation 
The note information is generated based on the output of onset 
detector described in the previous subsection. Each onset is a 
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The difficulty of synthesizing human motion has attracted strong 
interest (e.g., the references in [3]). There is also recent work on 
animating guitar and violin playing. Observing the complexity of 
motion in playing music instruments, previous work attempts to 
capture this complexity using sophisticated models such as neural 
networks [4] and minimization of a global cost function [2].  

potential note. The sub-band with the highest energy is considered 
the note’s pitch. The detected onset is considered the note’s 
starting time. Our algorithm then tracks the subsequent frames, 
until the sub-band loudness decays below a predetermined 
threshold. This allows the estimation of the note’s duration. The 
average loudness along a note is computed as the note’s loudness. 

In contrast, we believe that despite the intricacy required of violin 
playing, the range of motion needed is fairly restricted. A simple 
procedural model can capture the motion effectively without 
much sacrifice in visual realism. The key observation is that to a 
reasonable approximation, every music note has a unique posture 
of the left hand and arm for producing the note. So we can pre-
compute a database of hand postures for all the notes and 
interpolate between the pre-computed postures to synthesize the 
continuous motion. The bowing motion of the right arm is 
synthesized in a similar way, but the arm postures are computed 
on the fly rather than pre-computed and stored in a database. We 
now give details on how to compute natural-looking hand-arm 
postures via inverse kinematics (IK). 

The output of this sub-module is the note table, shown in Table 1. 
This table is fed to the animation module as the input. 

Onset Duration Pitch Loudness 

42 113 24 0.79877 

160 23 20 1.2373 

182 22 15 2.8975 

… … … … 
Table 1: An example note table. 

3.5 Performance Evaluation 
Transcription errors result mainly from pitch estimation and onset 
detection. We tested the accuracy of our violin transcription 
module with four violin music samples and compared it with that 
of commercial software. The accuracy is measured by the number 
of correctly detected notes divided by the total number of detected 
notes. A detected note is deemed correct if it has the same pitch 
and onset as the one in the music. Loudness is not considered in 
determining accuracy. Table 2 shows that our transcription 
method performs much better. Although the tested commercial 
software systems do not reveal what methods they use, we suspect 
that our method has two main advantages. First it specifically 
takes advantage of the fact that violin music is monophonic most 
of the time, while the commercial software is designed for general 
polyphonic music. Second it employs adaptive threshold for pitch 
estimation. To understand these issues better, we plan to 
implement and compare with other strong transcription methods 
in the literature. 

4.1 Fingering 
In violin playing, fingering means pressing the strings with left 
fingers to control the music note produced. To do this, a violinist 
first moves the left arm to position the wrist at one of the seven 
positions along the neck of the violin and then extends a finger, 
called the active finger, to place its tip at a chosen position on one 
of the strings. Following standard practice, we use a skeletal 
model of the limb, consisting of the arm, the hand, and the 
fingers. The limb is represented as rigid links connected with 
flexible joints (Figure 6). By changing the joint angles, we control 
the postures of the limb.  

 

Song Our System Amazing MIDI 
v1.70 [9] 

intelliScore 
v5.1 [10] 

Swan 89% 14% 48% 
Thai 90% 23% 34% 

ViolinM1 97% 11% 19% 
ViolinM2 96% 41% 27% 
Average 94% 23% 29% 

           (a)                                (b)                          (c) 
Figure 6: Modeling the dofs in the arm and the hand. 

Given a music note to be played, we can determine the string for 
playing the note, the active finger, and the position of the active 
fingertip on the string. The problem is then to compute the joint 
angles to achieve the posture that places the fingertip at the 
required position to play the given note. Our solution decouples 
the limb into two parts, the arm and the hand, and computes the 
joint angles for the two parts separately. First we compute the 
joint angles for the arm (Figure 6a) to place the wrist at the 
desired position pw, assuming that the shoulder is fixed. Next, 
given pw, we compute the joint angles for the wrist and the active 
finger (Figure 6b-6c) to place the fingertip at the desired position 
pf. Both steps can be accomplished by solving the IK. Although 
solving IK efficiently with many dofs is challenging, it has been 
studied extensively in robotics [1]. Due to the limited space, we 
omit the details of our IK methods, but highlight three issues that 
differentiate our problem from that of similar problems in 
robotics: 

Table 2: Transcription accuracy of our transcription module versus 
two commercial software systems. 

4. ANIMATING A VIOLINIST 
While playing, violinists execute intricate motions of fingers, 
hands, and arms. The left hand shifts among different positions 
along the neck of the violin; the fingers press the strings and 
control the pitch of the sound produced (Figure 1). 
Simultaneously the right arm moves the bow back and forth on 
the strings to produce the sound. Reproducing this coordinated 
motion realistically is a challenging task, due to the complexity of 
human anatomy. From the shoulder to the tips of fingers, each 
limb consists of many joints with nearly 30 degrees of freedom 
(dofs), some of which are interdependent. See Figure 6. To play 
the desired music notes, all the joints have to move in a 
coordinated fashion to place the fingertips at the intended 
positions on the strings. 



5. SYSTEM IMPLEMENTATION Natural postures Since the limb contains a large number of dofs, 
there are multiple postures to achieve a given wrist or fingertip 
position. In other words, there are multiple IK solutions. 
However, most of these postures do not appear natural for violin 
playing. To address this issue, we performed empirical 
measurements to determine a reference posture θr and choose an 
IK solution θ  as close to the reference posture as possible. More 
precisely, we solve the following minimization problem: 
IK solution θ  as close to the reference posture as possible. More 
precisely, we solve the following minimization problem: 

Our prototype system implements the violin transcription module 
in Matlab and the animation module in C++. OpenGL is used for 
3-D graphic rendering. The transcription module takes a single 
wave file as input and feeds the computed note table into the 
animation module. The animation module generates the animation 
of the violinist and, at the same time, plays the wave file, in a 
synchronized manner. 

xf =− )(subject tomin 2
r θθθ

θ

 
In the current implementation, the transcription module takes 
roughly 20 seconds to transcribe one minute of violin music on a 
Pentium IV PC. The animation module can generate animation at 
the rate of 25 frames/second. These test results indicate that our 
approach is suitable for real-time applications. We plan to convert 
the Matlab code for transcription into C++ and integrate with the 
animation module to further improve performance.  

where x is the desired write or fingertip position and f represents 
the mapping determined by the structure of the arm or finger. The 
minimization ensures that IK solutions lead to postures natural for 
violin playing. 

Sympathetic motion Some finger joints are interdependent, 
meaning that there is a relationship between different joint angles. 
This phenomenon is called sympathetic motion and is particularly 
noticeable during violin playing: the passive fingers, the fingers 
not controlling the notes being played, usually assume postures 
similar to that of the active finger. This helps us to determine the 
joint angles for the passive fingers. Once we obtain the joint 
angles for the active finger from the IK procedure, we set the joint 
angles of the passive fingers to similar values after a scaling. The 
joint interdependency relationship used in our implementation is 
shown in Figure 7. It is based on results from physiological 
studies in the literature [5]. 

6. DISCUSSION 
We have presented preliminary results on the MDV system. Using 
a two-step approach consisting of music transcription and 
animation, the system generates realistic animation synchronized 
to the audio with good performance. 
Our work is just beginning. We are currently exploring several 
directions to improve the system. An immediate step is to test our 
transcription method on polyphonic violin music. Playing 
polyphonic notes also requires us to expand the posture database 
to include postures with two active fingers. We would also like to 
develop specialized methods for detecting playing styles such as 
vibrato. In addition, our assumption that every note corresponds 
to a unique hand-arm posture is not exactly true for advanced 
violin playing. Every note can be played with a small finite 
number of postures. The choice of postures depends on the nearby 
notes. This is an interesting problem that has been studied in 
earlier work [4]. Finally on the implementation side, we plan to 
integrate the transcription and the animation modules to build a 
real-time application. 

 
Figure 7: Joint interdependency of four 
fingers, excluding the thumb. Each oval 

indicates a joint. A double arrow between 
ovals indicates joint interdependency. 

Reaching multiple concurrent fingertip positions Sometimes a 
violinist does not release the active finger for the previous note 
before pressing down the active finger for the current note. In this 
case, we must solve the IK to place both fingertips at the required 
positions. This makes the problem more difficult because of the 
increased number of dofs. Our current solution is to prioritize the 
two fingers. We first solve for the joint angles of the current 
active finger to place its tip as close to the required position as 
possible and then compute the joints angles for the other finger. 
This is natural, because only the current active finger controls the 
pitch of the note played and is more important. 

7. REFERENCES 
[1] J. Craig. Introduction to Robotics: Mechanics and Control. Addison-

Wesley, 1989. 
[2] G. ElKoura, K. Singh. Handrix: Animating the Human Hand, ACM  

Symp.  Computer Animation, pp. 110-119, 2003. 
[3] P. Faloutsos, M. van de Panne, D. Terzopoulos. Composable 

Controllers for Physics-based Character Animation. SIGGRAPH 
Conference Proceedings, pp. 251-260, 2001. 

We apply the above IK procedure and compute a database of 
postures, one for every possible note on the violin. Although the 
database creation may be time consuming, it is done in a pre-
computation stage, when time is not critical.  Using the posture 
database, the animation module reads the notes from the note 
table one by one, looks up the posture from the database, and 
interpolates the joint angles of postures corresponding to 
successive notes to generate the continuous motion. 

[4] J. Kim, F. Cordier, N.M. Thalmann. Neural Networks Based 
Violinist’s Hand Animation. Computer Graphics International, pp. 
37-41, 2000. 

[5] J. Lee and T. Kunii. Model-based Analysis of Hand posture. IEEE 
Computer Graphics and Applications, 15(5), 77-86, 1995 

[6] W. Lytle. More Bells and Whistles. ACM SIGGRAPH 2001 
Electronic Theatre, ACM SIGGRAPH Computer Animation 
Festival, 2001. 4.2 Bowing 

[7] P. M. Martins, J. S. Ferreira. PCM to MIDI Transposition. Audio 
Engineering Society 112th Convention Paper, May 2002. The bowing motion of the right arm is created similarly using IK 

and interpolation. For simplicity, we attach the right hand rigidly 
to the bow and use the joints of the right arm to move the wrist 
along one of four possible lines, each corresponding to the 
transverse movement of the bow along one of the four strings. 
Here the IK solution involves only 4 dofs of the right arm and is 
computed on the fly. 

[8] M. Piszczalski, B.A. Galler. Automatic Music Transcription. 
Computer Music Journal, 1(4):24-31, 1977. 

[9] Amazing MIDI, 
http://www.pluto.dti.ne.jp/~araki/amazingmidi/index.html 

[10] intelliScore, http://www.intelliscore.net/



 


	INTRODUCTION
	SYSTEM OVERVIEW
	VIOLIN TRANSCRIPTION
	Spectrogram Creation
	Pitch and Loudness Estimation
	Onset Detection
	Note Information Generation
	Performance Evaluation

	ANIMATING A VIOLINIST
	Fingering
	Bowing

	SYSTEM IMPLEMENTATION
	DISCUSSION
	REFERENCES

