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Abstract

This paper presents a new method for studying protein folding kinetics. It uses the recently intro-
duced Stochastic Roadmap Simulation (SRS) method to estimate the transition state ensemble (TSE) and
predict the rates and theΦ-values for protein folding. The new method was tested on 16 proteins, whose
rates andΦ-values have been determined experimentally. Comparison with experimental data shows that
our method estimates the TSE much more accurately than an existing method based on dynamic pro-
gramming. This improvement leads to better folding-rate predictions. We also compute the mean first
passage time of the unfolded states and show that the computed values correlate with experimentally de-
termined folding rates. The results onΦ-value predictions are mixed, possibly due to the simple energy
model used in the tests. This is the first time that results obtained from SRS have been compared against
a substantial amount of experimental data. The results further validate the SRS method and indicate its
potential as a general tool for studying protein folding kinetics.

1 Introduction

Protein folding is a fundamental biological process. Starting out as a long,linear chain of amino acids,
a protein molecule remarkably configures itself, orfolds, into a unique three-dimensional structure, called
thenative conformation, in order to perform vital biological functions. There are two separate,but related
problems in protein folding: structure prediction and folding kinetics. In the former problem, we are only
interested in predicting the final three-dimensional structure, i.e., the nativeconformation, attained in the
folding process. In the latter problem, we are interested in the folding process itself, e.g., the kinetics
and the mechanism of folding. We have at least two important reasons for studying the folding process.
First, better understanding of the folding process will help explain why andhow proteins misfold and find
therapies for debilitating diseases such as Alzheimer’s disease or Creutzfeldt-Jakob (“mad cow”) disease.
Second, this will aid in the development of better algorithms for structure prediction.

In this work, we apply computational methods to study the kinetics of protein folding, specifically, to
predict the folding rates and theΦ-values. The folding rate measures how fast a protein evolves from an
unfolded state to the native state. TheΦ-value measures the extent to which a residue of a protein attains
its native state when the protein is in the transition state of the folding process. Performing such compu-
tational studies was once very difficult, due to a lack of good models of protein folding, a lack of efficient
computational methods to predict experimental quantities based on theoreticalmodels, and a lack of de-
tailed experimental results to validate the predictions. However, important advances have been made in
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recent years. On the theoretical side, the energy landscape theory[BOSW95, DC97]offers a global view
of protein folding in microscopic details based on statistical physics. It hypothesizes that proteins fold in
a multi-dimensional energy funnel by following a myriad of pathways, all leading to the same native con-
formation. On the experimental side, residue-specific measurements of the folding process (e.g.,[IOF95])
provide detailed experimental data to validate theoretical predictions.

Our work takes advantage of these developments. To compute the folding rate andΦ-values of a pro-
tein, we first estimate the transition state ensemble (TSE), which is a set of high-energy protein conforma-
tions that limits the folding rate. We use the recently introducedStochastic Roadmap Simulation(SRS)
method[ABG+02] with a Gō-type energy function proposed in[GFG04]. SRS samples the protein confor-
mational space and builds a directed graph, called astochastic conformational roadmap. The nodes of the
roadmap represent sampled protein conformations, and the edges represent transitions between the con-
formations. The power of such a roadmap derives from its ability to capturethe stochastic nature of the
folding process by compactly encoding a huge number of folding pathways, each represented as a path in
the roadmap. Using the roadmap, we can efficiently compute the folding probability (Pfold) [DPG+98] for
each sampled conformation in the roadmap and decide which conformations belong to the TSE. We then
estimate folding rates andΦ-values using the set of conformations in the TSE.

To test our method, we used 16 proteins with sizes ranging from 56 to 128 residues. They all have
folding rates andΦ-values determined experimentally, and have been used as a test suite in earlier work
on folding kinetics prediction[GFG04]. We validated the results against the experimental data. The results
show that our method predicts folding rates with accuracy better than an existing method based on dynamic
programming[GFG04]. In the following, this existing method will be called the DP method, for lack of
a better name. More importantly, our method provides a much more discriminating estimate of the TSE:
our estimate of the TSE contains less than 10% of all sampled conformations, while the estimate by the
DP method contains 85–90%. The more selective estimate better reveals the composition of the TSE and
makes our method more suitable for studying the mechanisms of protein folding. We also experimented
with an alternative way of estimating folding rates by computing the mean first passage time. ForΦ-value
prediction, the accuracy of our method varies among the proteins tested. The results are comparable to those
obtained with the DP method, but both methods need to be improved in accuracy tobe useful in practice.

From a methodology point of view, this is the first time that results based on Pfold values computed by
SRS were compared against substantial amount of experimental data. Earlier work on SRS compared it
with Monte Carlo simulation and showed that SRS is faster byseveral orders of magnitude[ABG+02]. The
comparison with experimental data serves as a test of the methodology, and the results further validate the
SRS method and indicate its potential as a general tool for studying protein folding kinetics.

The rest of this paper is organized as follows. We start with a brief reviewof the related work on protein
folding kinetics and on the SRS method (Section 2). We then give an overviewof our approach (Section 3).
In the next three sections, we describe how to use the SRS method to estimate theTSE (Section 4) and
predict folding rates (Section 5) andΦ-values (Section 6). Finally, we conclude with our plans for future
work (Section 7).

2 Related Work

2.1 Protein Folding Kinetics

There is a large literature on estimating protein folding kinetics computationally. Many approaches have
been proposed, but we can only selectively touch on a few important ones here. All-atom molecular dy-
namics simulation (see[DK01] for a survey) provides detailed information on folding pathways, but it is
computationally expensive, even with the help of supercomputers[Tea01] or distributed computer clus-
ters [P+03]. The alternatives include, for example, solving the master equation[CHKB98, WPD04]or es-
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timating the TSE[AB99, GFG04]. For proteins with simple folding kinetics, a significant correlation was
observed between the folding rate of a protein and its native-conformationtopology, in particular, thecon-
tact order[PSB98], and this led to the belief that the fundamental physics underlying protein folding may be
relatively simple[Bak00].

Recently, several related methods succeeded in predicting folding rates and Φ-values[AB99, GFG04,
ME99], using simplified energy functions that depend only on the native-conformation topology of a protein.
Our work also uses such an energy function, but instead of searchingfor rate-limiting “barriers” on the
energy landscape as in[AB99, GFG04], we estimate the TSE by using SRS to compute Pfold values and then
estimate the folding rates andΦ-values based on the energy of conformations in the TSE.

2.2 Probabilistic Motion Planning and Molecular Motion

SRS is inspired by the probabilistic roadmap (PRM) methods[CLH+05], which have been highly success-
ful for motion planning of robots with many degrees of freedom, a provablyhard computational prob-
lem [Rei79]. In motion planning, the goal is to find a path for a robot to move from a start configuration
to an end configuration without colliding with any obstacles. The main idea of PRM methods is to sample
at random the space of all robot configurations—a space conceptuallysimilar to a protein conformation
space—and construct a graph, called aprobabilistic roadmap, that captures the connectivity of this space.
Every path in this graph represents a collision-free sequence of motions for the robot to move between the
configurations corresponding to the endpoints of this path.

For molecular motion, similar roadmap graphs can be constructed to capture transitions between molec-
ular conformations. Singh et al. introduced the PRM methods to the study of molecular motion in their
work on ligand-protein binding[SLB99]. This approach has since been applied and adapted to study various
aspects of protein folding, including energy profiling along dominant folding pathways[ADS02, ASBL01,
SA01], the formation order of secondary structure elements[ADS02], and Pfold calculation[ABG+02]. It has
also been used to build approximation of the space of collision-free conformations for protein loops[CSRST04]
and to study RNA folding[TKT+04].

Most of the earlier work[ADS02, ASBL01, SLB99, SA01]treats the roadmap as a deterministic graph,
with heuristic edge weights based on the energy difference between molecular conformations. The heuristic
edge weights measure the energetic difficulty of transiting along the edges ofthe roadmap. Graph search
techniques are then used to extract “low-energy” paths from the roadmap. These methods focus on only
one or a few hypothesized important pathways and ignore all the rest. SRSis fundamentally different: a
stochastic conformational roadmap is in essence a Markov chain model thatcaptures the stochastic nature
of molecular motion. It enables a global analysis of all the pathways contained in a roadmap, using tools
from the Markov chain theory. It also provides a formal relationship between SRS and the well-established
Monte Carlo method. Such a Markov chain model can also be combined with information from molecular
dynamics simulation to provide details of protein folding at the atomistic level[RSGC05, SSP04].

In our earlier work, we used SRS to study protein folding, but the results were compared only with those
obtained from Monte Carlo simulation. Here, we extend the work to compute folding rates andΦ-values
and validate the results directly against experimental data.

3 Overview

Theconformationof a protein is a set of parameters that uniquely specify the structure of theprotein, e.g.,
the backbone torsional anglesφ andψ. The conformational spaceC contains all the conformations of a
protein. If C is parametrized byd conformational parameters, then a conformation can be regarded as a
point in ad-dimensional space.
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Each conformationq of a protein has an associated energy valueE(q), determined by the interactions
between the atoms of the protein and between the protein and the surroundingmedium, e.g., the van der
Waals and electrostatic forces. The energyE is a function defined overC and is often called theenergy
landscape. According to the energy landscape theory, proteins fold along many pathways inC. These
pathways start from unfolded conformations and all lead to the same nativeconformation.

To understand protein folding kinetics, we need to analyze the folding pathways and identify those
conformations, called thetransition state ensemble(TSE), that act as barriers on the energy landscape and
limit the folding rate. In the simple case where there is a dominant folding pathwaywith a single major
energy peak along the pathway, the TSE can be defined as the conformations with energy at or near the peak
value. In general, there may be many pathways, and along every pathway, there may be multiple energy
peaks. This makes the TSE more difficult to identify. To address this issue, Du et al. introduced the notion
of Pfold [DPG+98]. In a folding process, the Pfold value of a conformationq is defined as the probability
of a protein reaching the native (folded) conformation before reachingan unfolded conformation, starting
from conformationq. Pfold measures the kinetic distance betweenq and the native conformation. From
any conformationq with Pfold value greater than 0.5, the protein is more likely to fold first than to unfold
first, thusq is kinetically closer to the native conformation. The TSE is defined as the set of conformations
with Pfold equal to0.5. Defining the TSE using Pfold has many advantages. In particular, Pfold is not
determined by any specific pathway, but depends on all the pathways from unfolded conformations to the
native conformation. It thus captures the ensemble behavior of folding.

We can compute the Pfold value for a conformationq by performing many folding simulation runs from
q and count the number of times that they reach the native conformation before an unfolded one. However,
a large number of simulation runs are needed to estimate the Pfold value accurately, and doing so for many
conformations incurs prohibitive computational cost. The SRS method approximates the Pfold values for
many conformations simultaneously in a much more efficient way. In the following, we first describe the
computation of the TSE using SRS (Section 4) and then the computation of foldingrates (Section 5) and
Φ-values (Section 6) based on the energy of conformations in the TSE.

4 Estimating the TSE through Stochastic Roadmap Simulation

SRS is an efficient method for exploring protein folding kinetics by examining many folding pathways
simultaneously. We use SRS to compute Pfold values and then determine the TSE based on the computed
Pfold values.

4.1 A Simplified Folding Model

To study protein folding kinetics, we need an energy function that accurately models the interactions within
a protein and the interactions between a protein and the surrounding medium at the atomic level. For this, we
use the simple, but effective energy model developed by Garbuzynskiyet al.[GFG04]. This model is based
on the topology of a protein’s native conformation. An important concept here is that ofnative contact. Two
atoms are considered to be in contact if the distance between them is within a suitably chosen threshold. A
native contact between two atoms of a protein is a contact that exists in the native conformation. Given a
conformationq, we can obtain all the native contacts inq by computing the pairwise distances between the
atoms of the protein.

The energy model that we use divides a protein into contiguous segments offive residues each. Each
segment must be either folded or unfolded completely. In other words, atomswithin a folded segment must
gain all their native contacts with other atoms in folded segments, while atoms within an unfolded segment
are assumed to form a disordered loop and lose all their native contacts. We thus represent the conformation
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of a protein by a binary vector, with 1 representing a folded segment and 0representing an unfolded segment.
In particular, the native conformation is(1, 1, . . . , 1), and the unfolded conformation is(0, 0, . . . , 0).

Using this representation, a protein withN residues has2⌈N/5⌉ distinct conformations. To further reduce
computation time, Garbuzynskiy et al. suggested a restriction which accepts only conformations with at most
two unfolded regions in the middle of a protein plus two unfolded regions at theends of the protein, where
a region is defined as a sequence of contiguous five-residue segments.With a maximum of four unfolded
regions, we can capture the folding and unfolding of proteins with up to roughly 100 residues[GFG04].

The free energy of a conformationq is calculated based on the number of native contacts and the length
of unfolded segments inq:

E(q) = ε · n(q) − T · (2.3R · µ(q) + S(q)) . (1)

In the formula above,n(q) is the number of native contacts in the folded segments ofq, µ(q) is the number
of residues in the unfolded segments ofq, andS(q) is the entropy for closing the disordered loops. For the
rest, which are all constants,ε is the energy of a single native contact,T is the absolute temperature, andR
is the gas constant. A similar energy function has been used in the work of Almand Baker[AB99].

Our model uses all the atoms of a protein, including the hydrogen atoms, to calculate the energy. For
protein structures determined by X-ray crystallography, hydrogen atomsare missing and we added them
using the Insight II program at pH level7.0.

4.2 Constructing the Stochastic Conformational Roadmap

A stochastic conformational roadmapG is a directed graph. Each node ofG represents a conformation of a
protein. Each directed edge from a nodeqi to a nodeqj carries a weightPij , which represents the probability
for a protein to transit fromqi to qj . If there is no edge fromqi to qj , the probabilityPij is 0; otherwise,Pij

depends on the energy difference betweenqi andqj , ∆Eij = E(qj) − E(qi).
The transition probabilityPij is defined according to the Metropolis criterion, which is also used in

Monte Carlo simulation:

Pij =

{

(1/ni) exp(−
∆Eij

RT ) if ∆Eij > 0
1/ni otherwise

, (2)

whereni is the number of outgoing edges ofqi, R is the gas constant, andT is the absolute temperature.
The factor1/ni normalizes the effect that different nodes may have different numbersof outgoing edges.
We also assign the self-transition probability:

Pii = 1 −
∑

j 6=i

Pij , (3)

which ensures that the transition probabilities from any node sums to 1.
SRS views protein folding as a random walk on the roadmap graph. IfqU andqF are the two roadmap

nodes representing the unfolded and the native conformation, respectively, every path in the roadmap from
qU to qF represents a potential folding pathway. Thus, a roadmap compactly encodes an exponential number
of folding pathways.

To construct the roadmapG using the folding model described in Section 4.1, we enumerate the set of
all allowable conformations in the model (with the restriction of a maximum of four unfolded regions) and
use them as the nodes ofG. There is an edge between two nodes if the corresponding conformationsdiffer
by exactly one folded or unfolded segment.

5



4.3 Computing Pfold

Pfold measures the kinetic distance between a conformationq and the native conformationqF. The main
advantage of using Pfold to measure the progress of protein folding is that it takes into account all folding
pathways sampled from the protein conformation space and does not assume any particular pathwaya priori.

Recall that the Pfold valueτ of a conformationq is defined as the probability of a protein reaching a native
conformationqF before reaching an unfolded conformationqU, starting fromq. Instead of computingτ by
brute force through many Monte Carlo simulation runs, we construct a stochastic conformational roadmap
and apply the first step analysis[TK94]. Let us consider what happens after a single step of transition:

• We may reach a node in a native conformation, which, by definition, has Pfold value 1.

• We may reach a node in an unfolded conformation, which has Pfold value 0.

• Finally, we may reach an intermediate nodeqj with Pfold valueτ j .

The first step analysis conditions on the first transition and gives the following relationship among the Pfold
values:

τi =
∑

qj∈{qF}

Pij · 1 +
∑

qj∈{qU}

Pij · 0 +
∑

qj 6∈{qF,qU}

Pij · τ j , (4)

whereτi is the Pfold value for nodeqi. In our simple folding model, both the native and the unfolded
conformation contains only a single conformation, but in general, they may contain multiple conformations.

The relationship in (4) gives a linear equation for each unknownτ i. The resulting linear system is sparse
and can be solved efficiently using iterative methods[ABG+02].

The largest protein that we tested has 128 residues, resulting in a total of 314,000 allowable conforma-
tions. It took SRS only about a minute to compute Pfold values for all the conformations on a PC workstation
with a 1.5GHz Itanium2 processor and 8GB of memory.

4.4 Estimating the TSE

After computing the Pfold value for each conformation, we identify the TSE by extracting all conformations
with Pfold value0.5. However, due to the simplification and discretization used in our folding model,we
need to broaden our selection criteria slightly and identify the TSE as the set of conformations with Pfold
values within a small range centered around0.5. We found that the range between0.45 to 0.55 is usually
adequate to account for the model inaccuracy in our tests, and we used itin all the results reported below.

4.5 An Example on a Synthetic Energy Landscape

Consider a tiny fictitious protein with only two residues. Ignoring the side-chains, we can specify its con-
formation by two backbone torsional anglesφ andψ. For the purpose of illustration, instead of using the
simplified energy function described in Section 4.1, this example uses a saddle-shaped energy function over
a two-dimensional conformation space (Figure 1a) in which the two torsional angles vary continuously over
their respective ranges. On this energy landscape, almost all intermediateconformations have energy levels
at least as high as the unfolded conformationqU and the native conformationqF. This synthetic energy
landscape is conceptually similar to more realistic energy models commonly used. Namely, to go fromqU
to qF, a protein must pass through energy barriers.

The computed Pfold values for this energy landscape is shown in Figure 1b. A comparison of the two
plots in Figure 1 shows that the conformations with Pfold value0.5 correspond well with the energy barrier
that separatesqU andqF.
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Figure 1. Pfold values for a synthetic energy landscape. (a) A synthetic energy landscape. (b) The computed Pfold
values.
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Figure 2. Estimation of the TSE for the energy landscape shown in Figure 1. The conformation-space region corre-
sponding to the TSE is shaded and overlaid on the contour plotof the energy landscape. (a) The DP method. (b) The
SRS method.

5 Predicting Folding Rates

The folding rate is an experimentally measurable quantity that determines how fast the protein proceeds
from the unfolded conformation to the native conformation. By observing how it varies under different
experimental conditions, we can gain an understanding of the important factors that influence the folding
process.

The speed at which a protein folds depends exponentially on the height ofthe energy barrier that must
be overcome during the folding process. The higher the barrier, the harder it is for the unfolded protein
to reach the native conformation and the slower the process. Because ofthe exponential dependence, even
a small difference in the height of the energy barrier has significant effect on the folding rate. Therefore,
accurately identifying the TSE is crucial when predicting the folding rate.

5.1 Methods

After identifying the TSE using the SRS method described in the previous section, we compute the folding
rate in the same way as that in[GFG04]. First, we calculateETSE, the total energy of the TSE, according to
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the following equation[GFG04]:

exp(−
ETSE

RT
) =

∑

q∈TSE

exp(−
E(q)

RT
), (5)

where the summation is taken over the set of all conformations in the TSE,R is the gas constant andT
is the absolute temperature. We then compute the rate constantkf according to the following theoretical
dependence[GFG04]:

ln(kf) = ln(108) − (
ETSE

RT
−
E(qU)

RT
), (6)

whereE(qU) is the energy of theqU.

5.2 Results

Using data from the Protein Data Bank (PDB), we computed folding rates for16 proteins (see Appendix A
for the list). The results are shown in Figure 3. The horizontal axis of the chart corresponds to the experi-
mentally measured folding rates (see[GFG04] for the sources of data), and the vertical axis corresponds to
the predicted values. The best-fit lines of the data are also shown. For comparison, we also computed the
folding rates using the DP method[GFG04]and show the results in the same chart. Note that since the chart
plotsln kf , it basically compares the height of the energy barrier.

Figure 3 shows that both methods can predict the trend reasonably well. The best-fit line of SRS is closer
to the diagonal, indicating better predictions. This is confirmed by comparing theaverage error inln kf for
the two methods.

We also examined the effect of the simplying assumptions made in the energy model proposed in[GFG04].
If a protein is divided into contiguous segments of 4 residues instead of 5 (see Section 4.1), the average error
for SRS improves slightly to2.35. However, the smaller error comes at the cost of increased computational
time by 5 to 10 times, depending on the size of the protein. If a protein is divided into segments of 6 residues,
the average error remains roughly the same at2.74 for the set of proteins tested, and the computational time
is reduced by 3 to 5 times. We also tried to remove the restriction of 4 unfolded regions. This has almost no
effect on the computed folding rates and confirms that the simplification is reasonable for the protein size
considered here.
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5.3 Accuracy in Estimating the TSE

It is interesting to note in Figure 3 that DP consistently predicts higherkf compared to SRS. Since a higher
kf corresponds to lower energy barrier along the folding pathway, the TSEidentified by DP must have lower
energy. This is significant in terms of the accuracy of folding rate prediction and suggests that an important
difference exists between the TSE estimated by SRS and that estimated by DP.

The difference between SRS and DP in estimating the TSE becomes more apparent when we compare
the percentage of sampled conformations that belong to the TSE. Figure 4 shows that the TSE estimated by
SRS includes less than 10% of all allowable conformations. In contrast, the TSE estimated by DP includes,
surprisingly, 85-90%. Closer inspection reveals that the TSE computed bySRS is mostly a subset of the
TSE computed by DP. Combining this observation with the better prediction accuracy of SRS, we conclude
that the additional 80% or so conformations identified by DP are not only unnecessary, but also negatively
affect folding rate prediction.

Although it is difficult to know the true percentage of conformations that should belong to the TSE,
careful examination of the DP method shows that it indeed may include in the TSEmany conformations
that are suspicious. This is best illustrated using the example in Figure 1a. According to the DP method,
a conformationq belongs to the TSE, ifq has the highest energy along the folding pathway that has the
lowest energy barrier among all pathways that go throughq. This definition tries to capture the intuition that
q is the location of minimum barrier on the energy landscape. For the energy landscape shown in Figure 1,
the globally lowest energy barrier is clearly the conformationqs at the saddle point. Soqs belongs to the
TSE. For any other conformationq, there are two possibilities. WhenE(q) < E(qs), any path throughq
must have a barrier higher than or equal toE(qs), andq cannot possibly achieve the highest energy along
the path. Thus,q does not belong to the TSE. The problem arises whenE(q) ≥ E(qs). In this case, to
placeq in the TSE, all it takes is to find a path that goes throughq and does not pass through any other
conformation with energy higher thanE(q). This can be easily accomplished on the saddle-shaped energy
landscape for most conformations withE(q) ≥ E(qs), e.g., the conformationqi indicated in Figure 1.
Including such conformations in the TSE seems counter-intuitive, as they donot constitute a barrier on the
energy landscape.

As we have seen in Section 4.5, the SRS method includes in the TSE only those conformations near the
barrier of the energy landscape, but the DP method includes many additional conformations, some of which
are far below the energy of the barrier (see Figure 2 for an illustration).Therefore, the TSE estimated by DP
tends to have lower energy than the TSE estimated by SRS, resulting in over-estimated folding rates.
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5.4 Mean First Passage Time

An alternative way of estimating the folding rate is to compute the mean first passage time (MFPT), a
quantity inversely proportional to the folding rate. To do this, we can perform many simulation runs. Each
simulation starts from an unfolded conformation and stops as soon as it reaches the native conformation.
We count the total number of steps that the simulation takes and use its average over all the simulation runs
as an estimate of MFPT.

We can easily perform such simulations on a stochastic conformational roadmap by running many in-
dependent random walks starting from the nodeqU, using the edge transition probabilities to decide which
node to go next, and stopping when a random walk first reaches the nodeqF. The average length of the
random walks then serves as an estimate of MFPT. Instead of explicitly running many simulations, which
are computationally expensive, we can use the SRS framework to compute theaverage number of stepssi

that it takes to reach the native conformation from any arbitrary nodeqi in the roadmap. We again use the
first step analysis for this and establish a system of linear equations forsi, similar to (4):

si = 1 +
∑

qj∈{qF}

Pij · 0 +
∑

qj 6∈{qF}

Pij · sj for everyqi. (7)

Solving this linear system givessi for everyqi, including that forqU, i.e., the estimate for MFPT.
Using (7), we estimated the MFPT for the same 16 proteins tested in Section 5.2. The results are

plotted in Figure 5 against experimentally measured folding rates. For the entire test set of 16 proteins,
the correlation is0.73. By removing a single outlier, the correlation improves substantially to0.83. In
a related study[GGF05], Monte Carlo simulation was used to estimate MFPT. Monte Carlo simulation
has some potential advantages over SRS, as it does not require restricting the number of conformations
by, for example, dividing a protein into contiguous segments of five residues that fold or unfold together.
However, due to the high computational cost of Monte Carlo simulation, the number of simulation runs
had to be limited to 50, and each run had a cutoff of108 steps[GGF05]. In terms of the correlation with
experimental data, our results are comparable to those based on Monte Carlo simulations. However, Monte
Carlo simulations were able to finish on only 10 proteins in the test set[GGF05], whereas SRS computed the
MFPT for all 16 proteins in about 40 minutes. The 6 additional proteins tend tohave longer MFPT than the
rest. This confirms that they are indeed difficult for Monte Carlo simulation and further demonstrates the
computational advantage of SRS.

The folding rate predictions based on MFPT are comparable to those basedon the free energy of the
TSE in accuracy, but are slightly weaker. The MFPT method does not compute the TSE, and thus does not
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Figure 6.Φ-value.

require us to manually set a Pfold range to delineate the TSE, as the TSE method does The MFPT method
is also potentially more effective in handling complex folding mechanisms with multiple transition states.
On the other hand, while the TSE method gives a direct estimate of the folding rate, MFPT is measured
in the number of simulation steps. One way of converting this quantity to a measureof folding rate is to
calibrate against the experimentally measured average time that it takes for a single amino acid to fold or
unfold (see[IF01]).

6 Predicting Φ-values

Φ-value analysis is the only experimental method for determining the transition-state structure of a protein
at the resolution of individual residues[Fer99]. Its main idea is to mutate carefully selected residues of
a protein, measure the resulting energy changes, and infer from them thestructure of the protein in the
transition state. Here, we would like to predictΦ-values computationally.

6.1 Methods

TheΦ-value indicates the extent to which a residue has attained the native conformation when the protein is
in the transition state of the folding process. More precisely, theΦ-value of a residuer is defined as

Φr =
∆r[ETSE − E(qU)]

∆r[E(qF) − E(qU)]
, (8)

where∆r[ETSE − E(qU)] is the change in the free energy difference between the TSE and the unfolded
conformationqU as a result of mutatingr. Similarly, ∆r[E(qF) − E(qU)] is the mutation-induced change
in the free energy difference between the native conformationqF and the unfolded conformationqU. See
Figure 6 for an illustration. AΦ-value of 1 indicates that the mutation of residuer affects the free energy
of the transition state as much as the free energy of the native conformation,relative to the free energy of
the unfolded conformation. So, in the transition state,r must have fully attained the native conformation,
according to free energy considerations. Similarly, aΦ-value of 0 indicates that in the transition state, the
residue remains unfolded. A fractionalΦ-value between 0 and 1 indicates that the residue has only partially
attained its native conformation. By analyzing theΦ-value of each residue of a protein, we can elucidate the
structure of the TSE.

Using (1) and (5), we can simplify (8) and obtain the following expression for theΦ-value of residuer:

Φr =

∑

q∈TSE P (q) · ∆rn(q)

∆rn(qF)
, (9)

whereP (q) is the Boltzmann probability for conformationq and∆rn(q) is the change in the number of
native contacts for conformationq as a result of mutatingr.

11



RNA binding domain of U1A CheY

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

residue

Φ

Experimental
SRS
DP

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

residue

Φ

Experimental
SRS
DP

Barnase TI I27 domain of titin

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

residue

Φ

Experimental
SRS
DP

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

residue

Φ

Experimental
SRS
DP

Figure 7.Φ-value predictions for four proteins.

6.2 Results onΦ-value Prediction

TheΦ-value is more difficult to predict than the folding rate, because it is a detailedexperimental quantity
and requires an accurate energy model for prediction. We computedΦ-values for 16 proteins listed in
Appendix A, but got mixed results. Figure 7 shows a comparison of theΦ-values computed by SRS and DP
and theΦ-values measured experimentally. The sources of the experimental data are available in[GFG04].
In general, ourΦ-value predictions based on X-ray crystallography structures are better than those based on
NMR structures. When compared with DP, SRS is much better for some proteins, such as CheY and the
RNA binding domain of U1A, both of which have X-ray crystallography structures. For the other proteins,
the results are mixed. In some cases (e.g., barnase), our results are slightly better, and in others (e.g., TI
I27 domain of titin), slightly worse. Table 1 shows the performance of SRS and DP over the 16 proteins
tested. SinceΦ-values range between 0 and 1, the errors are fairly large for both SRSand DP. To be useful
in practice, more research is needed for both methods.

Again we looked at the effect of the simplifying assumptions made in the model, aswe did for the
folding rate computation. They have little effect (less than 5%) on the results.

6.3 Results on the Progress of Native Structure Formation

An important advantage of using Pfold as a measure of the progress of folding is that Pfold takes into account
all sampled folding pathways and is not biased towards any specific one. We have seen how to use Pfold

to estimateΦ-values, which give an indication of the extent of folding in the transition stateonly. We can
extend this method to observe the details of the folding process, in particular,the progress of native structure
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Table 1. Performance of SRS and DP inΦ-value prediction. For each protein, the average error of computedΦ-values
is calculated. The table reports the mean, the minimum, and the maximum of average errors over the 16 proteins
tested.

Method Mean Min Max
SRS 0.21 0.11 0.32
DP 0.24 0.13 0.35

CheY Barnase

Figure 8. Progress of native structure formation. The colored bar on the left of each plot indicates secondary structures,
red for helices and green for strands.

formation, by plotting the progression of each residue with respect to Pfold.
Each plot in Figure 8 shows the frequency with which a residue achieves itsnative conformation in a

Boltzmann weighted ensemble of conformations with approximately same Pfold values. For CheY, residues
1 to 40 gain their native conformation very early in the folding process. Thecoherent interactions between
neighboring residues is consistent with the mainly helical secondary structure of these residues. Residues
50 to 80 are subsequently involved in the folding nucleus as folding progresses. The folding of barnase is
more cooperative and involves many regions of the protein simultaneously. Residues 50 to 109 dominate the
folding process early on, and the simultaneous progress of different regions corresponds to the formation of
theβ sheet. The helical residues 1 to 50 gain native conformation very late in the folding. The progress of
native structure formation that we observed is consistent with that obtainedby Alm et al.[AB99].

The accuracy ofΦ-value prediction gives an indication of the reliability of such plots. We made similar
plots for the other proteins. Although we were able to see interesting trends for some of the other proteins,
the plots are not shown here, because of the low correlation of theirΦ-value predictions to experimental
values. Verifying the accuracy of such plots directly is difficult, due to the limited observability of the
protein folding process and the limited experimental data available. In the future, we plan to derive quanti-
tative information on the order of secondary structure formation (see, e.g., [ADS02]) in order to allow better
comparison with experimental data.

7 Discussion

This paper presents a new method for studying protein folding kinetics. It uses the Stochastic Roadmap
Simulation method to compute the Pfold values for a set of sampled conformations of a protein and then
estimate the TSE. The TSE is of great importance for understanding protein folding, because it gives insight
into the main factors that influence folding rates and mechanisms. Knowledge of the structure of the TSE
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may be used to re-engineer folding in a principled way[N9̈9]. One main advantage of SRS is that it efficiently
examines a huge number of folding pathways and captures the ensemble behavior of protein folding. Our
method was tested on 16 proteins. The results show that our estimate of the TSEis much more discriminating
than that of the DP method. This allows us to obtain better folding-rate predictions. We also used SRS to
efficiently compute MFPT and observed good correlation with the folding rates. We have mixed results in
predictingΦ-values. One likely reason is thatΦ-value prediction requires a more detailed model than the
one that we used. The results that SRS achieved on these difficult prediction problems further validate the
SRS method and indicate its potential as a general tool for studying protein folding kinetics.

We are working on several fronts to further improve SRS for folding kinetics prediction. Currently, our
method requires each contiguous protein segment of five residues to fold or unfold together. Following the
suggestion of Garbuzynskiy et al.[GFG04], we also impose a constraint on the number of unfolded regions
allowed in a conformation. All these are intended to reduce the number of conformations that must be
examined and keep the computational cost low. We plan to remove these assumptions and compute larger
roadmaps, in order to see whether this improves the predictions. Recent work on simplifying Markov chains
by removing nodes from the roadmap while retaining key properties of transition probabilities and stationary
distributions seems well-suited for enabling the computation over large roadmaps [CB06, GP01, SPS04].

Another important issue is to design a better free energy function in order toimprove the accuracy
of Φ-value prediction. As in earlier work[AB99, GFG04, ME99], we have obtained limited success in the
prediction ofΦ-values. The energy function proposed in[GNS02]could be a good candidate, as it has been
tested on a large database of mutants.

Our method makes the simplifying assumption that the unfolded conformation is a coil, meaning that no
native contacts exist in the unfolded conformation. In fact, the early stages of protein folding are not well
characterized, partly due to the difficulty of obtaining experimental data in these stages. Recently, there have
been successful attempts to determine the structure of the denatured ensemble from NMR data[RMM+05,
WD06]. This information can be used to better characterize the unfolded conformations and improve our
prediction results.

Finally, most of the 16 proteins that we studied fold via a relatively simple two-statetransition mecha-
nism. It would be interesting to further test our method on more complex proteins, such as those that fold
via an intermediate.
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A The List of Proteins Used for Testing

For each protein used in our test, the table below lists its name, PDB code, the number of residues, and the
experimental method for structure determination.

Protein PDB code No. Res. Exp. Meth.
B1 IgG-binding domain of protein G 1PGB 56 X-ray
Src SH3 domain 1SRM 56 NMR
Src-homology 3 (SH3) domain 1SHG 57 X-ray
Sso7d 1BF4 63 X-ray
CI-2 2CI2 65 X-ray
B1 IgG-binding domain of protein L 2PTL 78 NMR
Barstar 1BTB 89 NMR
Fibronectin type III domain from tenascin 1TEN 89 X-ray
TI I27 domain of titin 1TIU 89 NMR
Tenth type III module of fibronectin 1TTF 94 NMR
RNA binding domain of U1A 1URN 96 X-ray
S6 1RIS 97 X-ray
FKBP-12 1FKB 107 X-ray
Barnase 1RNB 109 X-ray
Villin 14T 2VIL 126 NMR
CheY 3CHY 128 X-ray
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