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Abstract

This paper presents a new method for studying protein fgl#tinetics. It uses the recently intro-
duced Stochastic Roadmap Simulation (SRS) method to dstiimatransition state ensemble (TSE) and
predict the rates and thie-values for protein folding. The new method was tested onrdémns, whose
rates andb-values have been determined experimentally. Comparigtrexperimental data shows that
our method estimates the TSE much more accurately than atingximethod based on dynamic pro-
gramming. This improvement leads to better folding-ratedigstions. We also compute the mean first
passage time of the unfolded states and show that the codwaitees correlate with experimentally de-
termined folding rates. The results dnvalue predictions are mixed, possibly due to the simplegne
model used in the tests. This is the first time that resultainbtl from SRS have been compared against
a substantial amount of experimental data. The resultedustalidate the SRS method and indicate its
potential as a general tool for studying protein foldingetios.

1 Introduction

Protein folding is a fundamental biological process. Starting out as a loegr chain of amino acids,
a protein molecule remarkably configures itselffalds, into a unique three-dimensional structure, called
the native conformationin order to perform vital biological functions. There are two sepafatéyelated
problems in protein folding: structure prediction and folding kinetics. In trenker problem, we are only
interested in predicting the final three-dimensional structure, i.e., the raiv®rmation, attained in the
folding process. In the latter problem, we are interested in the folding psoitself, e.g., the kinetics
and the mechanism of folding. We have at least two important reasonsuftyisg the folding process.
First, better understanding of the folding process will help explain whyhawd proteins misfold and find
therapies for debilitating diseases such as Alzheimer’s disease or @idttidkob (“mad cow”) disease.
Second, this will aid in the development of better algorithms for structurdgired.

In this work, we apply computational methods to study the kinetics of proteitnfplégpecifically, to
predict the folding rates and the-values. The folding rate measures how fast a protein evolves from an
unfolded state to the native state. Thevalue measures the extent to which a residue of a protein attains
its native state when the protein is in the transition state of the folding procesgriing such compu-
tational studies was once very difficult, due to a lack of good models ofiprilling, a lack of efficient
computational methods to predict experimental quantities based on theometidals, and a lack of de-
tailed experimental results to validate the predictions. However, importamsinads have been made in



recent years. On the theoretical side, the energy landscape tiBE®yV95, DC97]offers a global view
of protein folding in microscopic details based on statistical physics. It tgsizes that proteins fold in
a multi-dimensional energy funnel by following a myriad of pathways, allilegdb the same native con-
formation. On the experimental side, residue-specific measurements aidirggfprocess (e.g.[lOF95])
provide detailed experimental data to validate theoretical predictions.

Our work takes advantage of these developments. To compute the foltingndd-values of a pro-
tein, we first estimate the transition state ensemble (TSE), which is a set oéhéghy protein conforma-
tions that limits the folding rate. We use the recently introduSéochastic Roadmap Simulati¢gB8RS)
method[ABG*02] with a Go-type energy function proposed [BFG04} SRS samples the protein confor-
mational space and builds a directed graph, callstbehastic conformational roadmafhe nodes of the
roadmap represent sampled protein conformations, and the edgesempiransitions between the con-
formations. The power of such a roadmap derives from its ability to caph&restochastic nature of the
folding process by compactly encoding a huge number of folding pathveagh represented as a path in
the roadmap. Using the roadmap, we can efficiently compute the folding lmlitp&P,q) [DPG™98] for
each sampled conformation in the roadmap and decide which conformatilomg lhe the TSE. We then
estimate folding rates anbl-values using the set of conformations in the TSE.

To test our method, we used 16 proteins with sizes ranging from 56 to K&fues. They all have
folding rates andb-values determined experimentally, and have been used as a test suitkeinveank
on folding kinetics predictiofiGFG04] We validated the results against the experimental data. The results
show that our method predicts folding rates with accuracy better than amgxisethod based on dynamic
programming[GFGO04} In the following, this existing method will be called the DP method, for lack of
a better name. More importantly, our method provides a much more discriminatintats of the TSE:
our estimate of the TSE contains less than 10% of all sampled conformatioils,ti estimate by the
DP method contains 85-90%. The more selective estimate better reveals thestammf the TSE and
makes our method more suitable for studying the mechanisms of protein foldiegal3&' experimented
with an alternative way of estimating folding rates by computing the mean firsagagime. Fom-value
prediction, the accuracy of our method varies among the proteins testedediits are comparable to those
obtained with the DP method, but both methods need to be improved in accutzeyseful in practice.

From a methodology point of view, this is the first time that results basedgpv@lues computed by
SRS were compared against substantial amount of experimental dataer &ark on SRS compared it
with Monte Carlo simulation and showed that SRS is fastesdweral orders of magnitudaBG*02]. The
comparison with experimental data serves as a test of the methodology,earestitts further validate the
SRS method and indicate its potential as a general tool for studying protedingdinetics.

The rest of this paper is organized as follows. We start with a brief regfdhe related work on protein
folding kinetics and on the SRS method (Section 2). We then give an oveofieur approach (Section 3).
In the next three sections, we describe how to use the SRS method to estim@e&t{8ection 4) and
predict folding rates (Section 5) arklvalues (Section 6). Finally, we conclude with our plans for future
work (Section 7).

2 Related Work

2.1 Protein Folding Kinetics

There is a large literature on estimating protein folding kinetics computationallynzyMaproaches have
been proposed, but we can only selectively touch on a few importaistlere. All-atom molecular dy-
namics simulation (sefpKo01] for a survey) provides detailed information on folding pathways, but it is
computationally expensive, even with the help of supercompytes1] or distributed computer clus-
ters[PT03]. The alternatives include, for example, solving the master equiidkB98, WPDO04]or es-



timating the TSHAB99, GFG04] For proteins with simple folding kinetics, a significant correlation was
observed between the folding rate of a protein and its native-conformaipahogy, in particular, theon-
tact order[PSB98] and this led to the belief that the fundamental physics underlying proteiméphday be
relatively simple[BakO00].

Recently, several related methods succeeded in predicting folding radeB-e@alues[AB99, GFGO04,
ME99], using simplified energy functions that depend only on the native-confamimpology of a protein.
Our work also uses such an energy function, but instead of seartdingte-limiting “barriers” on the
energy landscape as [mB99, GFG04] we estimate the TSE by using SRS to compuytg Palues and then
estimate the folding rates adgvalues based on the energy of conformations in the TSE.

2.2 Probabilistic Motion Planning and Molecular Motion

SRS is inspired by the probabilistic roadmap (PRM) mettadsi +05], which have been highly success-
ful for motion planning of robots with many degrees of freedom, a provalalyd computational prob-
lem [Rei79]. In motion planning, the goal is to find a path for a robot to move from a starfiguration

to an end configuration without colliding with any obstacles. The main idea & RRRthods is to sample
at random the space of all robot configurations—a space concepsitalilar to a protein conformation
space—and construct a graph, callepgrababilistic roadmapthat captures the connectivity of this space.
Every path in this graph represents a collision-free sequence of mototisefrobot to move between the
configurations corresponding to the endpoints of this path.

For molecular motion, similar roadmap graphs can be constructed to capusiitras between molec-
ular conformations. Singh et al. introduced the PRM methods to the study otuateiemotion in their
work on ligand-protein bindingSLB99]. This approach has since been applied and adapted to study various
aspects of protein folding, including energy profiling along dominant fgiggathwaygADS02, ASBLO1,
SA01), the formation order of secondary structure elem@niss02], and R, 4 calculationfABG*02]. It has
also been used to build approximation of the space of collision-free aoatans for protein l00OpfCSRST04]
and to study RNA foldingTKT +04].

Most of the earlier worADS02, ASBLO1, SLB99, SAO1treats the roadmap as a deterministic graph,
with heuristic edge weights based on the energy difference between faolesnformations. The heuristic
edge weights measure the energetic difficulty of transiting along the eddbhe cdadmap. Graph search
techniques are then used to extract “low-energy” paths from the rgadmaese methods focus on only
one or a few hypothesized important pathways and ignore all the rest.isSle8damentally different: a
stochastic conformational roadmap is in essence a Markov chain modekitatres the stochastic nature
of molecular motion. It enables a global analysis of all the pathways codt&ing roadmap, using tools
from the Markov chain theory. It also provides a formal relationship betwSRS and the well-established
Monte Carlo method. Such a Markov chain model can also be combined witimiaion from molecular
dynamics simulation to provide details of protein folding at the atomistic [R&EC05, SSP04]

In our earlier work, we used SRS to study protein folding, but the resdte wompared only with those
obtained from Monte Carlo simulation. Here, we extend the work to compute {pradies andb-values
and validate the results directly against experimental data.

3 Overview

The conformationof a protein is a set of parameters that uniquely specify the structure pfolein, e.g.,

the backbone torsional anglésandi. The conformational spac€ contains all the conformations of a
protein. If C is parametrized byl conformational parameters, then a conformation can be regarded as a
point in ad-dimensional space.



Each conformatiory of a protein has an associated energy vdli{e), determined by the interactions
between the atoms of the protein and between the protein and the surroumeiiiigm, e.g., the van der
Waals and electrostatic forces. The enefgys a function defined ovef and is often called thenergy
landscape According to the energy landscape theory, proteins fold along manypgthinC. These
pathways start from unfolded conformations and all lead to the same catiNermation.

To understand protein folding kinetics, we need to analyze the folding pgthwand identify those
conformations, called thigansition state ensembl@ SE), that act as barriers on the energy landscape and
limit the folding rate. In the simple case where there is a dominant folding patkwithya single major
energy peak along the pathway, the TSE can be defined as the conforsnaitiio energy at or near the peak
value. In general, there may be many pathways, and along every patiheey may be multiple energy
peaks. This makes the TSE more difficult to identify. To address this issuet Bl. introduced the notion
of Piqa [DPGT98]. In a folding process, thegly value of a conformatiory is defined as the probability
of a protein reaching the native (folded) conformation before reachimgnfolded conformation, starting
from conformationqg. Py,q measures the kinetic distance betweeand the native conformation. From
any conformatiory with Py, 4 value greater than 0.5, the protein is more likely to fold first than to unfold
first, thusg is kinetically closer to the native conformation. The TSE is defined as thd sethformations
with Pg,14 equal t00.5. Defining the TSE using fq has many advantages. In particulag, Pis not
determined by any specific pathway, but depends on all the pathwaysufiéolded conformations to the
native conformation. It thus captures the ensemble behavior of folding.

We can compute thefy value for a conformation by performing many folding simulation runs from
g and count the number of times that they reach the native conformatioretsefarnfolded one. However,
a large number of simulation runs are needed to estimateghevBlue accurately, and doing so for many
conformations incurs prohibitive computational cost. The SRS method dpates the B,y values for
many conformations simultaneously in a much more efficient way. In the followuegfirst describe the
computation of the TSE using SRS (Section 4) and then the computation of foltesy(Section 5) and
®-values (Section 6) based on the energy of conformations in the TSE.

4 Estimating the TSE through Stochastic Roadmap Simulation

SRS is an efficient method for exploring protein folding kinetics by examiningynfalding pathways
simultaneously. We use SRS to computgsPvalues and then determine the TSE based on the computed
Pro1q values.

4.1 A Simplified Folding Model

To study protein folding kinetics, we need an energy function that atalynaodels the interactions within
a protein and the interactions between a protein and the surrounding medhavatomic level. For this, we
use the simple, but effective energy model developed by Garbuzyaskily{GFG04] This model is based
on the topology of a protein’s native conformation. An important concef# Is that ohative contactTwo
atoms are considered to be in contact if the distance between them is withinkdysciitasen threshold. A
native contact between two atoms of a protein is a contact that exists in the oatiformation. Given a
conformationg, we can obtain all the native contactsgithy computing the pairwise distances between the
atoms of the protein.

The energy model that we use divides a protein into contiguous segmefinte afsidues each. Each
segment must be either folded or unfolded completely. In other words, atithia a folded segment must
gain all their native contacts with other atoms in folded segments, while atoms withinfalded segment
are assumed to form a disordered loop and lose all their native contaethud/represent the conformation



of a protein by a binary vector, with 1 representing a folded segment egqatr@senting an unfolded segment.
In particular, the native conformation (%, 1, ..., 1), and the unfolded conformation (8, 0, ..., 0).

Using this representation, a protein withresidues has/"¥/?! distinct conformations. To further reduce
computation time, Garbuzynskiy et al. suggested a restriction which acegptomformations with at most
two unfolded regions in the middle of a protein plus two unfolded regions arlds of the protein, where
a region is defined as a sequence of contiguous five-residue segmétitsa maximum of four unfolded
regions, we can capture the folding and unfolding of proteins with up tghiyul 00 residue§GFG04]

The free energy of a conformati@nis calculated based on the number of native contacts and the length
of unfolded segments i

E(q)=¢-n(q) =T (23R u(q) + S(q)) - 1)

In the formula aboven(q) is the number of native contacts in the folded segments pfq) is the number
of residues in the unfolded segments;pindS(q) is the entropy for closing the disordered loops. For the
rest, which are all constantsjs the energy of a single native contattjs the absolute temperature, aRd
is the gas constant. A similar energy function has been used in the work chidnBake[AB99].

Our model uses all the atoms of a protein, including the hydrogen atoms, tdatelthe energy. For
protein structures determined by X-ray crystallography, hydrogen atmsnissing and we added them
using the Insight Il program at pH levelo.

4.2 Constructing the Stochastic Conformational Roadmap

A stochastic conformational roadmépis a directed graph. Each node@frepresents a conformation of a
protein. Each directed edge from a nagléo a nodey; carries a weighP;;, which represents the probability
for a protein to transit frong; to ¢;. If there is no edge from; to ¢;, the probability?;; is 0; otherwise,P;;
depends on the energy difference betweeandq;, AE;; = E(q;) — E(q).

The transition probabilityP;; is defined according to the Metropolis criterion, which is also used in
Monte Carlo simulation:

b _ | (/n)exp(—552) it AB; >0 o
Y 1/n; otherwise '

wheren; is the number of outgoing edges @f R is the gas constant, aridis the absolute temperature.
The factorl /n; normalizes the effect that different nodes may have different nundfevatgoing edges.
We also assign the self-transition probability:

Pi=1-> Py, 3
J#i
which ensures that the transition probabilities from any node sums to 1.

SRS views protein folding as a random walk on the roadmap graph. dhdg; are the two roadmap
nodes representing the unfolded and the native conformation, resggctivery path in the roadmap from
qu 10 gr represents a potential folding pathway. Thus, a roadmap compactlyesaadxponential number
of folding pathways.

To construct the roadmag using the folding model described in Section 4.1, we enumerate the set of
all allowable conformations in the model (with the restriction of a maximum of fodolded regions) and
use them as the nodes@f There is an edge between two nodes if the corresponding conformdiftars
by exactly one folded or unfolded segment.



4.3 Computing P

Pr1a measures the kinetic distance between a conformatiand the native conformatiog.. The main
advantage of usingiR4 to measure the progress of protein folding is that it takes into accountldilhép
pathways sampled from the protein conformation space and does noteaasy particular pathwaaypriori.

Recall that the By valuer of a conformatiory is defined as the probability of a protein reaching a native
conformationg, before reaching an unfolded conformatign starting fromg. Instead of computing by
brute force through many Monte Carlo simulation runs, we construct aastictconformational roadmap
and apply the first step analy$iegk94]. Let us consider what happens after a single step of transition:

¢ We may reach a node in a native conformation, which, by definition, has\Rlue 1.
¢ We may reach a node in an unfolded conformation, which has Walue 0.
¢ Finally, we may reach an intermediate nagevith P;, 4 valuer;.

The first step analysis conditions on the first transition and gives the fioldprglationship among thepy

values:
= >, Pyl+ ) PO+ > Py (4)
g;€{ar} ¢;€{qu} q;¢{ar,qu}

where7; is the R4 value for nodeg;. In our simple folding model, both the native and the unfolded
conformation contains only a single conformation, but in general, they magicomultiple conformations.

The relationship in (4) gives a linear equation for each unknewihe resulting linear system is sparse
and can be solved efficiently using iterative methpdsG +02].

The largest protein that we tested has 128 residues, resulting in a totbd @08 allowable conforma-
tions. It took SRS only about a minute to computgdalues for all the conformations on a PC workstation
with a 1.5GHz Itanium2 processor and 8GB of memory.

4.4 Estimating the TSE

After computing the B4 value for each conformation, we identify the TSE by extracting all conftiona
with Pg,q value0.5. However, due to the simplification and discretization used in our folding medel,
need to broaden our selection criteria slightly and identify the TSE as thd senhformations with B4
values within a small range centered around We found that the range between5 to 0.55 is usually
adequate to account for the model inaccuracy in our tests, and we usedl the results reported below.

4.5 An Example on a Synthetic Energy Landscape

Consider a tiny fictitious protein with only two residues. Ignoring the sideéashave can specify its con-
formation by two backbone torsional anglesand+. For the purpose of illustration, instead of using the
simplified energy function described in Section 4.1, this example uses a sddgied energy function over
a two-dimensional conformation space (Figueg ih which the two torsional angles vary continuously over
their respective ranges. On this energy landscape, almost all intermediditemations have energy levels
at least as high as the unfolded conformatignand the native conformatiog.. This synthetic energy
landscape is conceptually similar to more realistic energy models commonly usetel to go fromy,
to ¢r, a protein must pass through energy barriers.

The computed 4 values for this energy landscape is shown in Figure A comparison of the two
plots in Figure 1 shows that the conformations with Pvalue0.5 correspond well with the energy barrier
that separateg, andgy.
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Figure 2. Estimation of the TSE for the energy landscape shHowrigure 1. The conformation-space region corre-
sponding to the TSE is shaded and overlaid on the contouoptbe energy landscapea)(The DP method.k) The
SRS method.

5 Predicting Folding Rates

The folding rate is an experimentally measurable quantity that determines kbthéaprotein proceeds
from the unfolded conformation to the native conformation. By observing h varies under different
experimental conditions, we can gain an understanding of the importaotdabat influence the folding
process.

The speed at which a protein folds depends exponentially on the heigte ehergy barrier that must
be overcome during the folding process. The higher the barrier, thdehdris for the unfolded protein
to reach the native conformation and the slower the process. Becatlsa{ponential dependence, even
a small difference in the height of the energy barrier has significaateén the folding rate. Therefore,
accurately identifying the TSE is crucial when predicting the folding rate.

5.1 Methods

After identifying the TSE using the SRS method described in the previous seatiocompute the folding
rate in the same way as that[(BFG04] First, we calculatévg;;, the total energy of the TSE, according to
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Figure 3. Predicted folding rates versus the experimgniaélasured folding rates.
the following equatioriGFG04}

eXP(—ﬁ): > eXP(—ﬁ)a (5)

where the summation is taken over the set of all conformations in the R3&the gas constant arid
is the absolute temperature. We then compute the rate corigtantording to the following theoretical

dependencfGFG04t1 5 )
TSE qu

RT RT

In(kf) = In(108) — ( ), (6)

whereE(qy) is the energy of they.

5.2 Results

Using data from the Protein Data Bank (PDB), we computed folding ratesfproteins (see Appendix A
for the list). The results are shown in Figure 3. The horizontal axis of it €corresponds to the experi-
mentally measured folding rates (§6#+G04]for the sources of data), and the vertical axis corresponds to
the predicted values. The best-fit lines of the data are also shown. facison, we also computed the
folding rates using the DP meth@@FG04]and show the results in the same chart. Note that since the chart
plotsin k¢, it basically compares the height of the energy barrier.

Figure 3 shows that both methods can predict the trend reasonably welheBhit line of SRS is closer
to the diagonal, indicating better predictions. This is confirmed by comparingviirage error ifn k¢ for
the two methods.

We also examined the effect of the simplying assumptions made in the energhpragiesed ifGFG04]
If a protein is divided into contiguous segments of 4 residues instead e€&@ction 4.1), the average error
for SRS improves slightly t@.35. However, the smaller error comes at the cost of increased computational
time by 5 to 10 times, depending on the size of the protein. If a protein is divitede@gments of 6 residues,
the average error remains roughly the sam2 &t for the set of proteins tested, and the computational time
is reduced by 3 to 5 times. We also tried to remove the restriction of 4 unfoldgahe This has almost no
effect on the computed folding rates and confirms that the simplification ismahte for the protein size
considered here.
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5.3 Accuracy in Estimating the TSE

It is interesting to note in Figure 3 that DP consistently predicts higheompared to SRS. Since a higher
k¢ corresponds to lower energy barrier along the folding pathway, theid&#ified by DP must have lower
energy. This is significant in terms of the accuracy of folding rate predicial suggests that an important
difference exists between the TSE estimated by SRS and that estimated by DP.

The difference between SRS and DP in estimating the TSE becomes morerapplaen we compare
the percentage of sampled conformations that belong to the TSE. Figuoevd 8iat the TSE estimated by
SRS includes less than 10% of all allowable conformations. In contrast SRee$timated by DP includes,
surprisingly, 85-90%. Closer inspection reveals that the TSE comput&RIS/is mostly a subset of the
TSE computed by DP. Combining this observation with the better predictionaycaf SRS, we conclude
that the additional 80% or so conformations identified by DP are not onlgeessary, but also negatively
affect folding rate prediction.

Although it is difficult to know the true percentage of conformations thaukhbelong to the TSE,
careful examination of the DP method shows that it indeed may include in themiZ®lg conformations
that are suspicious. This is best illustrated using the example in Figur@&dcording to the DP method,

a conformatiorny belongs to the TSE, i§ has the highest energy along the folding pathway that has the
lowest energy barrier among all pathways that go throudrhis definition tries to capture the intuition that

q is the location of minimum barrier on the energy landscape. For the enemdydape shown in Figure 1,
the globally lowest energy barrier is clearly the conformatigrat the saddle point. S@ belongs to the
TSE. For any other conformatian there are two possibilities. Whefi(¢q) < F(qs), any path througly
must have a barrier higher than or equalH¢y;), andg cannot possibly achieve the highest energy along
the path. Thusg does not belong to the TSE. The problem arises whéq) > F(qgs). In this case, to
placeq in the TSE, all it takes is to find a path that goes throggind does not pass through any other
conformation with energy higher thaki(q). This can be easily accomplished on the saddle-shaped energy
landscape for most conformations witt\q) > E(¢s), €.9., the conformation; indicated in Figure 1.
Including such conformations in the TSE seems counter-intuitive, as thagtdmnstitute a barrier on the
energy landscape.

As we have seen in Section 4.5, the SRS method includes in the TSE only tidgeeations near the
barrier of the energy landscape, but the DP method includes many adbiogriarmations, some of which
are far below the energy of the barrier (see Figure 2 for an illustratibmdrefore, the TSE estimated by DP
tends to have lower energy than the TSE estimated by SRS, resulting instieated folding rates.
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5.4 Mean First Passage Time

An alternative way of estimating the folding rate is to compute the mean first gasgae (MFPT), a
guantity inversely proportional to the folding rate. To do this, we can perfmany simulation runs. Each
simulation starts from an unfolded conformation and stops as soon aslieget®e native conformation.
We count the total number of steps that the simulation takes and use its aveeagdl the simulation runs
as an estimate of MFPT.

We can easily perform such simulations on a stochastic conformationahegaldy running many in-
dependent random walks starting from the ngdeusing the edge transition probabilities to decide which
node to go next, and stopping when a random walk first reaches thegnodéhe average length of the
random walks then serves as an estimate of MFPT. Instead of explicitlyngunmany simulations, which
are computationally expensive, we can use the SRS framework to compuatecttagie number of steps
that it takes to reach the native conformation from any arbitrary nedethe roadmap. We again use the
first step analysis for this and establish a system of linear equationg &imilar to (4):

si=1+ > P04+ Y Pj-s; foreveryg. 7)
q;€{qr} a;#{ar}
Solving this linear system gives for everyg;, including that forgy, i.e., the estimate for MFPT.

Using (7), we estimated the MFPT for the same 16 proteins tested in Section Bere3ults are
plotted in Figure 5 against experimentally measured folding rates. For the ¢esir set of 16 proteins,
the correlation i9).73. By removing a single outlier, the correlation improves substantiallg.8. In
a related studyGGF05] Monte Carlo simulation was used to estimate MFPT. Monte Carlo simulation
has some potential advantages over SRS, as it does not require ragtifitinumber of conformations
by, for example, dividing a protein into contiguous segments of five resitha fold or unfold together.
However, due to the high computational cost of Monte Carlo simulation, the ewpftsimulation runs
had to be limited to 50, and each run had a cutofi@f stepsJGGF05] In terms of the correlation with
experimental data, our results are comparable to those based on Moltsi@adations. However, Monte
Carlo simulations were able to finish on only 10 proteins in the te$Gs&t05] whereas SRS computed the
MFPT for all 16 proteins in about 40 minutes. The 6 additional proteins tehdwe longer MFPT than the
rest. This confirms that they are indeed difficult for Monte Carlo simulatiahfarther demonstrates the
computational advantage of SRS.

The folding rate predictions based on MFPT are comparable to those baged free energy of the
TSE in accuracy, but are slightly weaker. The MFPT method does notutertipe TSE, and thus does not
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require us to manually set g,RB range to delineate the TSE, as the TSE method does The MFPT method
is also potentially more effective in handling complex folding mechanisms with multipiesition states.

On the other hand, while the TSE method gives a direct estimate of the foldmgM&PT is measured

in the number of simulation steps. One way of converting this quantity to a meeffokling rate is to
calibrate against the experimentally measured average time that it takesifigleaaamino acid to fold or
unfold (sedIF01]).

6 Predicting ®-values

d-value analysis is the only experimental method for determining the transitissttacture of a protein

at the resolution of individual residugBer99] Its main idea is to mutate carefully selected residues of
a protein, measure the resulting energy changes, and infer from thestrtivéure of the protein in the
transition state. Here, we would like to predietvalues computationally.

6.1 Methods

The ®-value indicates the extent to which a residue has attained the native roatifmn when the protein is
in the transition state of the folding process. More precisely®thalue of a residue is defined as

AT‘[ETSE - E(QU)]
A B () — Blan)] (®)

where A, [Erss — E(qu)] is the change in the free energy difference between the TSE and thieleohfo
conformationg, as a result of mutating. Similarly, A, [E(gr) — E(qu)] is the mutation-induced change
in the free energy difference between the native conformatioand the unfolded conformation,. See
Figure 6 for an illustration. Ab-value of 1 indicates that the mutation of residuaffects the free energy
of the transition state as much as the free energy of the native conformiative to the free energy of
the unfolded conformation. So, in the transition statequst have fully attained the native conformation,
according to free energy considerations. Similarlyp-aalue of 0 indicates that in the transition state, the
residue remains unfolded. A fractiondlvalue between 0 and 1 indicates that the residue has only partially
attained its native conformation. By analyzing thealue of each residue of a protein, we can elucidate the
structure of the TSE.

Using (1) and (5), we can simplify (8) and obtain the following expressiotife -value of residue:

> qetsE P(a) - Arn(q)
Arn(QF) ’ (9)

where P(q) is the Boltzmann probability for conformatiapnand A, n(q) is the change in the number of
native contacts for conformatianas a result of mutating.

o, =

®, =
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Figure 7.®-value predictions for four proteins.

6.2 Results on®-value Prediction

The ®-value is more difficult to predict than the folding rate, because it is a detaipdrimental quantity
and requires an accurate energy model for prediction. We comperealues for 16 proteins listed in
Appendix A, but got mixed results. Figure 7 shows a comparison obthalues computed by SRS and DP
and the®-values measured experimentally. The sources of the experimental datacdlable ifGFG04]
In general, oub-value predictions based on X-ray crystallography structures are tiedie those based on
NMR structures. When compared with DP, SRS is much better for some prosgeicts as CheY and the
RNA binding domain of U1A, both of which have X-ray crystallography stanes. For the other proteins,
the results are mixed. In some cases (e.g., barnase), our results atly dligiter, and in others (e.g., Tl
127 domain of titin), slightly worse. Table 1 shows the performance of SRISD# over the 16 proteins
tested. Sinc@-values range between 0 and 1, the errors are fairly large for botha®BB®P. To be useful
in practice, more research is needed for both methods.

Again we looked at the effect of the simplifying assumptions made in the mod&lgatid for the
folding rate computation. They have little effect (less than 5%) on the results.

6.3 Results on the Progress of Native Structure Formation

An important advantage of using,R as a measure of the progress of folding is tha;Rakes into account
all sampled folding pathways and is not biased towards any specific orehaWé seen how to use,R
to estimateP-values, which give an indication of the extent of folding in the transition siatg We can
extend this method to observe the details of the folding process, in partitidaorogress of native structure

12



Table 1. Performance of SRS and DRlirvalue prediction. For each protein, the average error offmated®-values
is calculated. The table reports the mean, the minimum, hadrtaximum of average errors over the 16 proteins
tested.

Method Mean Min Max
SRS 0.21 0.11 0.32
DP 0.24 0.13 0.35

CheY Barnase

elghted frequency (%)
reighted frequency (%)

Boltzmann w
Boltzmann w

Figure 8. Progress of native structure formation. The @adrar on the left of each plot indicates secondary strusture
red for helices and green for strands.

formation, by plotting the progression of each residue with respectig P

Each plot in Figure 8 shows the frequency with which a residue achieveatite conformation in a
Boltzmann weighted ensemble of conformations with approximately sasmevBlues. For CheY, residues
1 to 40 gain their native conformation very early in the folding process. chiierent interactions between
neighboring residues is consistent with the mainly helical secondary seeustithese residues. Residues
50 to 80 are subsequently involved in the folding nucleus as folding egse The folding of barnase is
more cooperative and involves many regions of the protein simultaneowesdidies 50 to 109 dominate the
folding process early on, and the simultaneous progress of diffezgitns corresponds to the formation of
the 3 sheet. The helical residues 1 to 50 gain native conformation very late ioliad. The progress of
native structure formation that we observed is consistent with that obthinétm et al.[AB99].

The accuracy of-value prediction gives an indication of the reliability of such plots. We made simila
plots for the other proteins. Although we were able to see interesting trendstine of the other proteins,
the plots are not shown here, because of the low correlation of dhe@lue predictions to experimental
values. Verifying the accuracy of such plots directly is difficult, due to the lichitbservability of the
protein folding process and the limited experimental data available. In theefuterplan to derive quanti-
tative information on the order of secondary structure formation (seg[&05502]) in order to allow better
comparison with experimental data.

7 Discussion

This paper presents a new method for studying protein folding kineticssels the Stochastic Roadmap
Simulation method to compute the,RB values for a set of sampled conformations of a protein and then
estimate the TSE. The TSE is of great importance for understanding protgind, because it gives insight
into the main factors that influence folding rates and mechanisms. Knowlddhe structure of the TSE
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may be used to re-engineer folding in a principled \ig9]. One main advantage of SRS is that it efficiently
examines a huge number of folding pathways and captures the ensemaléobeli protein folding. Our
method was tested on 16 proteins. The results show that our estimate of tierm&eh more discriminating
than that of the DP method. This allows us to obtain better folding-rate predictidie also used SRS to
efficiently compute MFPT and observed good correlation with the foldingrate have mixed results in
predicting®-values. One likely reason is thétvalue prediction requires a more detailed model than the
one that we used. The results that SRS achieved on these difficulttiyedgicoblems further validate the
SRS method and indicate its potential as a general tool for studying protdingdinetics.

We are working on several fronts to further improve SRS for folding t@seprediction. Currently, our
method requires each contiguous protein segment of five residues tarfotdadd together. Following the
suggestion of Garbuzynskiy et §FG04]} we also impose a constraint on the number of unfolded regions
allowed in a conformation. All these are intended to reduce the number dbrooations that must be
examined and keep the computational cost low. We plan to remove these éssisrapd compute larger
roadmaps, in order to see whether this improves the predictions. Recagndmsimplifying Markov chains
by removing nodes from the roadmap while retaining key properties ofittamprobabilities and stationary
distributions seems well-suited for enabling the computation over large roaj@@@s, GP0O1, SPS04]

Another important issue is to design a better free energy function in ordiengmove the accuracy
of ®-value prediction. As in earlier worfAB99, GFG04, ME99] we have obtained limited success in the
prediction of®-values. The energy function proposed®&NS02]could be a good candidate, as it has been
tested on a large database of mutants.

Our method makes the simplifying assumption that the unfolded conformationiis meaning that no
native contacts exist in the unfolded conformation. In fact, the early staigerotein folding are not well
characterized, partly due to the difficulty of obtaining experimental data setb&ges. Recently, there have
been successful attempts to determine the structure of the denatured EnemiNMR data]RMM *05,
WDO06]. This information can be used to better characterize the unfolded cortfonsand improve our
prediction results.

Finally, most of the 16 proteins that we studied fold via a relatively simple two-s&tsition mecha-
nism. It would be interesting to further test our method on more complex protiachk as those that fold
via an intermediate.
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A The List of Proteins Used for Testing

For each protein used in our test, the table below lists its name, PDB code nienaf residues, and the
experimental method for structure determination.

Protein PDB code No. Res. Exp. Meth.
B1 1gG-binding domain of protein G 1PGB 56 X-ray
Src SH3 domain 1SRM 56 NMR
Src-homology 3 (SH3) domain 1SHG 57 X-ray
Sso7d 1BF4 63 X-ray
Cl-2 2CI2 65 X-ray
B1 1gG-binding domain of protein L 2PTL 78 NMR
Barstar 1BTB 89 NMR
Fibronectin type Ill domain from tenascin 1TEN 89 X-ray
TI'127 domain of titin 1TIU 89 NMR
Tenth type Il module of fibronectin 1TTF 94 NMR
RNA binding domain of U1A 1URN 96 X-ray
S6 1RIS 97 X-ray
FKBP-12 1FKB 107 X-ray
Barnase 1RNB 109 X-ray
Villin 14T 2VIL 126 NMR
CheY 3CHY 128 X-ray
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