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Abstract Object handover is a basic, but essential capability for robots interacting
with humans in many applications, e.g., caring for the elderly and assisting work-
ers in manufacturing workshops. It appears deceptively simple, as humans perform
object handover almost flawlessly. The success of humans, however, belies the com-
plexity of object handover as collaborative physical interaction between two agents
with limited communication. This paper presents a learning algorithm for dynamic
object handover, for example, when a robot hands over water bottles to marathon
runners passing by the water station. We formulate the problem as contextual policy
search, in which the robot learns object handover by interacting with the human.
A key challenge here is to learn the latent reward of the handover task under noisy
human feedback. Preliminary experiments show that the robot learns to hand over a
water bottle naturally and that it adapts to the dynamics of human motion. One chal-
lenge for the future is to combine the model-free learning algorithm with a model-
based planning approach and enable the robot to adapt over human preferences and
object characteristics, such as shape, weight, and surface texture.

1 Introduction

In the near future, robots will become trustworthy helpers of humans, performing
a variety of services at homes and in workplaces. A basic, but essential capability
for such robots is to fetch common objects of daily life, e.g., cups or TV remote
controllers, and hand them to humans. Today robots perform object handover in a
limited manner: typically the robot holds an object statically in place and waits for
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Fig. 1 Hand over a water bottle to a person sitting, walking, or running.

the human to take it. This is far from the fluid handover between humans and is
generally inadequate for the elderly, the very young, or the physically weak who
require robot services. The long-term goal of our research is to develop the algo-
rithmic framework and the experimental system that enable robots to perform fluid
object handover in a dynamic setting and to adapt over human preferences and ob-
ject characteristics. This work takes the first step and focuses on a robot handing
over a water bottle in a dynamic setting (Fig. 1), e.g., handing over flyers to people
walking by or handing over water bottles to marathon runners.

Object handover appears deceptively simple. Humans are experts at object han-
dover. We perform it many times a day almost flawlessly without thinking and adapt
over widely different contexts:

• Dynamics: We hand over objects to others whether they sit, stand, or walk by.
• Object characteristics: We hand over objects of different shape, weight, and sur-

face texture.
• Human preferences: While typical human object handover occurs very fast, we

adapt our strategy and slow down when handing over objects to the elderly or
young children.

The success of humans, however, belies the complexity of object handover as collab-
orative physical interaction between two agents with limited communication. Manu-
ally programming robot handover with comparable robustness and adaptivity poses
great challenge, as we lack even a moderately comprehensive and reliable model for
handover in a variety of contexts.

Alternatively, the robot can learn the handover skill by interacting with the hu-
man and generalize from experience. In this work, we formulate the learning task as
contextual policy search [19]. Policy search is a general approach to reinforcement
learning and has been very successful in skill learning for robot with many degrees
of freedom [11]. Policy search algorithms parametrize robot control policies and
search for the best parameter values by maximizing a reward function that captures
the policy performance. Contextual policy search introduces a set of context vari-
ables that depend on the task context, e.g., object type or size for the handover task,
and the policy parameters are conditioned on the context variables.
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A reward function that accurately measures policy performance is key to the suc-
cess of policy search. However, handcrafting a good reward function is often tedious
and error-prone, in particular, for learning object handover. It is unclear what quanti-
tative measures capture fluid object handover. Instead, we propose to learn the latent
reward function from human feedback. Humans are experts at object handover and
can easily provide reward feedback. However, the feedback is often noisy. To be ro-
bust against noise and avoid overfitting, we apply a Bayesian optimization approach
to latent reward learning. Importantly, our learning algorithm allows for both abso-
lute feedback, e.g., “Is the handover good or bad?”, and preference feedback , e.g.,
“Is the handover better than the previous one?”. Combining latent reward learning
and policy search leads to a holistic contextual policy search algorithm that learns
object handover directly from human feedback. Our preliminary experiments show
that the robot learns to hand over a water bottle naturally and that it adapts to the
dynamics of human motion.

2 Related Work

2.1 Object Handover

Object handover has intrigued the research community for a long time from the
both physical and social-cognitive perspectives. Early work on handover dates back
to at least 1990s [1, 21]. Recent work suggests that object handover consists of three
stages conceptually: approach, signal, and transfer [26]. They do not necessarily oc-
cur sequentially and may partially overlap. In the first stage, the giver approaches the
taker and poses the object to get ready for handover [4, 20, 25]. In the second stage,
the giver and taker signal to each other and exchange information, often through
non-verbal communication, such as motion [12], eye gaze, or head orientation [13],
in order to establish joint intention of handover. In the final stage, they complete
the physical transfer of the object. The transfer stage can be further divided into
two sub-stages, before and after the giver and the taker establish joint contact of
the object, respectively. Earlier work on object transfer generally assumes that the
object remains stationary once joint contact is established and relies on handcrafted
controllers [1, 6, 14, 21]. Our work focuses to the final physical transfer stage only.
The algorithm learns a controller directly from human feedback. It does not make
the stationary assumption and caters for dynamic handover. Object transfer is an in-
stance of the more general problem of cooperative manipulation [3]: it involves two
asymmetric agents with limited communication.

Human-human object handover provides the yardstick for handover perfor-
mance. Understanding how humans perform handover (e.g., [5, 15]) paves the way
towards improved robot handover performance.
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2.2 Policy Search

Robot skill learning by policy search has been highly successful in recent years [11].
Policy search algorithms learn a skill represented as a probability distribution over
parameterized robot controllers, by maximizing the expected reward. To allow robot
skills to adapt to different situations, contextual policy search learns a contextual
policy that conditions a skill on context variables [8, 9, 19].

To represent robot skills, policy search typically makes use of parametrized con-
trollers, such as dynamic movement primitives [16] or interaction primitives [2]. The
latter is well-suited for human-robot interaction tasks. Our work, on the other hand,
exploits domain knowledge to construct a parameterized impedance controller.

To learn robot skills, policy search requires that a reward function be given to
measure learning performance. However, handcrafting a good reward function is
often difficult. One approach is inverse reinforcement learning (IRL), also called
inverse optimal control, which learns a reward function from expert demonstra-
tion [22, 24]. Demonstrations by human experts can be difficult or tedious to ac-
quire, in particular, for robot-human object handover. An alternative is to learn di-
rectly from human feedback, without human expert demonstration. Daniel et al. use
reward feedback from humans to learn manipulation skills for robot hands [10].
Wilson et al. consider learning control policies from trajectory preferences using a
Bayesian approach without explicit reward feedback [27]. Jain et al. learn manip-
ulation trajectories from human preferences [17]. Preference-based reinforcement
learning algorithms generally do not use absolute reward feedback and rely solely
on preference feedback [28]. Our algorithm combines both absolute and preference
feedback in a single Bayesian framework to learn a reward function and integrate
with policy search for robot skill learning.

3 Learning Dynamic Handover from Human Feedback

3.1 Overview

Assume that a robot and a human have established the joint intention of handover.
Our work addresses the physical transfer of an object from the robot to the human.
The robot controller u(· ;ω) specifies the control action ut at the state xt at time t
for t = 1,2, . . . . The controller u(· ;ω) is parametrized by a set of parameters ω , and
the notation makes the dependency on ω explicit. A reward function R(ω) assigns
a real number that measures the performance of the policy u(· ;ω). To handle the
dynamics of handover, we introduce a context variable s representing the velocity
of the human hand and condition the controller parameters ω on s, giving rise the
reward function R(ω,s). In general, context variables may include other features,
such as human preferences and object characteristics as well. A contextual policy
π(ω|s) is a probability distribution over parametrized controllers, conditioned on
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Fig. 2 The human-robot handover skill learning framework. The robot observes context s, then
samples ω using the policy π(ω|s). The experiment is executed with a robot controller with
parametrization ω . The robot controller u(x;ω) provides deterministic control signals u given the
state of the robot and its environment x. After the experiment the human provides a high-level
feedback F , which is used the estimate the latent reward R̂(ω,s). Finally, the policy is updated
with the latest data.

the context s. Our goal is to learn a contextual policy that maximizes the expected
reward:

π
∗ = argmax

π

∫
s

∫
ω

R(ω,s)π(ω|s)µ(s) dω ds, (1)

where µ(s) is a given prior distribution over the contexts.
Contextual policy search iteratively updates π so that the distribution peaks up

on controllers with higher rewards. In each iteration, the robot learner observes con-
text s and samples a controller with parameter value ω from the distribution π(·|s).
It executes the controller u(·|ω) and observes the reward R(ω,s). After repeating
this experiment L times, it updates π with the gathered data {ω i,si,R(ω i,si)}L

i=1
and proceeds to the next iteration. See Fig. 2 for the overall learning and control
architecture and Table 1 for a sketch of our learning algorithm.

The reward function R(ω,s) is critical in our algorithm. Unfortunately, it is dif-
ficult to specify manually a good reward function for learning object handover, de-
spite the many empirical studies of human-human object handover [4, 5, 15, 26]. We
propose to learn a reward function R̂(ω,s) from human feedback. Specifically, we
allow both absolute and preference human feedback. Absolute feedback provides
direct assessment of the robot controller performance on an absolute scale from 1
to 10. Preference feedback compares one controller with another relatively. While
the former has higher information content, the latter is usually easier for humans
to assess. We take a Bayesian approach and apply Gaussian process regression to
latent reward estimation. The learned reward model R̂(ω,s) generalizes the human
feedback data. It provides estimated reward on arbitrarily sampled (ω,s) without
additional experiments and drastically reduces the number of robot experiments re-
quired for learning a good policy.
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The C-REPS Algorithm with Human Feedback
Input: relative entropy bound ε , initial policy π(ω|s), maximum number of policy updates H.
for h = 1, . . . ,H

Collect human feedback data:
Observe context si ∼ µ(s), i = 1, . . . ,L
Draw parameters ω i ∼ π(ω|si)
Collect human feedback Fi

Estimate latent rewards of all previously seen samples {ω i,si,Fi}E
i=1

Predict rewards:
Draw context s j ∼ µ̂(s), j = 1, . . . ,Q
Draw parameters ω j ∼ π(ω|s j)
Predict R̂(ω j,s j) with reward model

Update policy:
Update policy π(ω|s) using C-REPS with samples {ω j,s j, R̂(ω j,s j)}Q

j=1
end

Output: policy π(ω|s)

Table 1 The learning framework for human-robot object transfer.

3.2 Representing the Object Handover Skill

In this section we discuss how we encode the handover skill and which parameters
ω refers to. In our work we use a trajectory generator, a robot arm controller and a
robot hand controller to encode the handover skill. A trajectory generator provides
reference Cartesian coordinates for the robot end-effector to follow. In robot learn-
ing tasks, Movement Primitives (MP) are often used to encode a trajectory with a
limited amount of parameters. MPs encode the shape, speed and magnitude of the
trajectory in Cartesian space, or in joint space for each degree of freedom. While
MPs can encode a wide variety of skills, they typically require a higher number of
parameters to tune, which might slow down the learning process.

For handover tasks however, we can use human expert knowledge to define robot
hand trajectories. This approach allows for a more compact representation of the tra-
jectory generator with less parameters to tune. Furthermore, we can address safety
by reducing the workspace of the robot and we can easily synchronize with the hu-
man motion. In our experiments we use visual data of a Kinect sensor, which tracks
the right hand of the human. As soon as the human hand is within dmax distance
from the robot hand the robot moves the object towards the human hand location.
We assume that a path planner computes the reference trajectory from the current
robot hand location to the human hand location. The reference trajectory is updated
every time the human hand location is updated. As soon as the distance between the
human and the robot hand falls below dmin, we do not use visual information due
to possible occlusion and measurement error. Instead, we use the recorded visual
data to predict the human hand trajectory for the next second when the physical in-
teraction is likely to happen. The values of dmin and dmax may depend on different
factors, such as, experiment setup, robot configuration, etc.
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In order to ensure robust human-robot handover, we need to allow compliant
robot arm motion. We use Cartesian impedance control [3] where the wrench F6×1
concatenating forces and torques exerted in the end-effector frame is computed ac-
cording to F = M∆ ẍ+D∆ ẋ+P∆x, where ∆x6×1 is the deviation from the reference
trajectory. The gain parameters M, D and P will determine the amount of exerted
forces and torques. M is typically replaced with the robot inertia at the current state.
We choose the damping D such that the closed loop control system is critically
damped. We use a diagonal stiffness matrix P = diag([pT

t , pT
r ]), where pt is the

translational and pr is the rotational stiffness. Finally, the applied torque commands
are τ = JT F + τ f f , where J is the Jacobian of the robot and τ f f are feed forward
torques compensating for gravity and other nonlinear effects.

Motivated by recent work in human-human handover experiments [5], a robot
grip force controller [6] has been proposed Fg = kF l +Fovl , where Fg is the com-
manded grip force, F l is the measured load force and Fovl is the preset overloading
force. The slope parameter k depends on object properties, such as mass, shape and
material properties. When using this controller, the robot will release the object in
case the total load force on the robot drops below a threshold value. For robot hands
with only finger position control we cannot use the above control approach. Instead,
we directly command finger positions by identifying the finger position with mini-
mal grip force that still holds the object. Then, we use a control law to change finger
positions linear in the load force f pos = f min +mF l . The value of m depends on
many factors, such as, object type, weight and other material properties.

For learning the object handover, we tune 7 parameters of the control architec-
ture. For trajectory generator we tune the minimal and maximal tracking distances
dmin and dmax. For the compliant arm controller we learn the translational stiffness
parameters and one parameter for all the rotational stiffness values. Finally, for fin-
ger controller we tune the slope parameter. All these parameters are collected in
ω7×1.

3.3 Estimating the Latent Reward Function

In this section we propose a Bayesian latent reward estimation technique based on
previous work [7]. Assume that we have observed a set of samples {si,ω i}E

i=1 and
human feedback {Fi}E

i=1, where Fi = R̃(y), in case the human gives an absolute
evaluation (denoted by R̃) on parametrization ω i in context si, y = [sT ,ωT ]T . In case
of preference feedback Fi = yk � yi6=k if yi is preferred over yi. Note that for a given
sample there may exist both preference and absolute evaluation.

We define the prior distribution over the latent rewards as a Gaussian Process
[23], R̂ ∼ N (0,K), with Ki j = k(yi,y j). Without the loss of generality we as-
sume 0 prior mean, but more informative priors can be constructed with expert
knowledge. The likelihood function for preference based feedback is given by
p(yi � y j|R̂) = Φ((R̂i− R̂ j)/(

√
2σp)) [7], where Φ(·) is the c.d.f. of N (0,1) and

σp is a noise term accounting for feedback noise. For absolute feedback data we
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simply define the likelihood by p(R̃i|R̂) =N (R̂i,σ
2
r ), where σ2

r represents the vari-
ance of absolute human feedback. Finally, the posterior distribution of the latent
rewards can be approximated by,

p(R̂|D) ∝

N

∏
i=1

p(yi,1 � yi,2|R̂)
M

∏
j=1

p(R̃ j|R̂ j,σ
2
r )p(R̂|0,K), (2)

where we used the notation p(yi,1 � yi,2|R̂) to highlight that Fi is a preference
feedback comparing yi,1 to yi,2. For finding the optimal latent rewards, we minimize

J(R̂) =−
N

∑
i=1

logΦ(zi)+
σ−2

r

2

M

∑
j=1

(R̃ j− R̂ j)
2 + R̂T K−1R̂, (3)

with zi = (R̂(yi,1)− R̂(yi,2))/(
√

2σp). It was shown in [7] that minimizing J w.r.t.
R̂ is a convex problem in case there is only preference based feedback (M = 0).
However, it easy to see that the Hessian of J(R̂) will only be augmented with non-
negative elements in the diagonal in case M > 0, which will leave the Hessian posi-
tive semi-definite and the problem convex. Optimizing the hyper-parameters of the
kernel function θ and the noise terms can be evaluated by maximizing the evidence
p(D |θ ,σp,σr). While the evidence cannot be given in a closed form, we can esti-
mate it by Laplace approximation.

It is interesting to note that in case there is only preference feedback, that is,
M = 0, N > 0, we obtain the exact same algorithm as in [7]. In the other extreme,
in case there is only absolute feedback (M > 0, N = 0) we get Gaussian Process
regression, which provides a closed form solution for p(R̂). Overall, our exten-
sion provides an opportunity to mix preference and absolute feedback in a unified
Bayesian framework.

Also note that after obtaining p(R̂) we can use Bayesian linear regression to
query the expected reward R∗ of unseen samples y∗ [7, 23]. We can use the re-
sulting generative model of the reward to query the reward for a large number of
samples from the current control distribution y∼ µ(s)π(ω|s), without the need for
real experimental evaluation. Such a data-efficient model-based approach has been
demonstrated to reduce the required number of experiments up to two orders of
magnitude [19, 10].

3.4 Contextual Relative Entropy Policy Search

To update the policy π(ω|s), we rely on the contextual extension of Relative Entropy
Policy Search [19, 11], or C-REPS. The intuition of C-REPS is to maximize the ex-
pected reward over the joint context-control parameter distribution, while staying
close to the observed data to balance out exploration and experience loss. C-REPS
uses an information theoretic approach, where the relative entropy between con-
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Fig. 3 Robot setup for experiments. We use the 7-DoF KUKA LBR arb with the 3-finger Robotiq
robot hand. We use Kinect to track the human hand motion.

secutive parameter distributions is bounded
∫

s,ω p(s,ω) log p(s,ω)
q(s,ω)dsdω ≤ ε, where

p(s,ω) and q(s,ω) represent the updated and the previously used context-parameter
distributions. The parameter ε ∈ R+ is the upper bound of the relative entropy. The
emerging constrained optimization problem can be solved by the Lagrange multi-
plier method (see e.g. [18]). The closed form solution for the new distribution is
given by p(s,ω) ∝ q(s,ω)exp((R(ω,s)−V (s))/η) . Here, V (s) is a context depen-
dent baseline, while η and θ are Lagrangian parameters. The baseline is linear in
some context features and it is parametrized by θ . To update the policy we use the
computed probabilities p(s,ω) as sample weights and perform a maximum likeli-
hood estimation of the policy model parameters.

4 Experiments

For the handover experiment we use the 7-DoF KUKA LBR arm (Figure 3). For the
robot hand we use the Robotiq 3-finger hand. The fingers are position controlled, but
the maximum grip force can be indirectly adjusted by limiting the finger currents.
In order for accurate measurement of external forces and torques, a wrist mounted
force/torque sensor is installed.

4.1 Experimental Setup

An experiment is executed as follows. First, a 1.5l water bottle is placed at a fixed
location, which the robot is programmed to pick up. Subsequently, the robot moves
the bottle to a predefined position. At this point we enable compliant arm control
and we use a Kinect sensor (Figure 3) to track the hand of the human. Subsequently,
the human moves towards the robot to take the bottle. While approaching the robot,
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we use the Kinect data to estimate the hand velocity s of the human, which we as-
sume to be constant during the experiment. We only use data when the human is
relatively far (above 1m) from the robot to avoid occlusion. After the context vari-
able is estimated the robot sets its parameter by drawing a controller parametrization
ω ∼ π(ω|s). Subsequently, the robot and the human make physical contact and the
handover takes place. Finally, the human evaluates the robot performance (prefer-
ence or absolute evaluation on a 1-10 scale, where 1 is worst 10 is best) and walks
away such that the next experiment may begin.

We presented the pseudo code of our learning algorithm in Table 1. As in-
put to the algorithm we have to provide the initial policy π(ω|s), and several
other parameters. We use a Gaussian distribution to represent the policy π(ω|s) =
N (ω|a+As,Σ). In the beginning of the learning we set A = 0, that is, the robot
uses the same controller distribution over all possible context values. During learn-
ing all the parameters (a, A, Σ ) of the policy will be tuned according to the C-REPS
update rule.

The initial policy mean a and the diagonal elements of the covariance matrix
Σ are set as follows. For the rotational stiffness we set 2.75 Nm/rad mean and
0.52 variance. For the translational stiffness parameters we chose 275, 450, 275
N/m in x, y, and z direction in the hand frame (Fig 4). The variances are 502,752,
and 502 respectively. For the finger control slope parameter we chose 2.5 1/N with
a variance of 0.52. This provides a firm grip of the water bottle. The robot will
not move the fingers until the force generated by the human hand reaches half
the weight of the bottle. With a slope parameter of 0 the robot exerts a mini-
mal grip force that can still support the bottle. With a slope value above 5 the
robot only releases the bottle if the human can support 1.2× the object weight.
Thus, we can avoid dropping the object, even with the initial policy. Finally as
mean we set 200mm and 600mm as minimal and maximal trajectory tracking
control distance. As variances we chose 502 and 1502. The parameters are there-
fore initialized as a = (2.75, 275, 450, 275, 2.5, 200, 600)T , A = 0 and Σ =
diag(0.52, 502, 752, 502, 0.52, 502, 1502).

Fig. 4 The robot hand frame ori-
entation.

For the C-REPS learning algorithm in Table 1 we
chose ε = 0.75 and we updated the policy after eval-
uating L = 10 human-robot handover experiments.
However, before the first policy update we used L =
40 handover experiments, such that we have a reli-
able estimation of the latent rewards. Before each
policy update we estimate the latent rewards for
all the previously seen experiments {ω i,si,Fi}E

i=1.
Here, E represents the total number of observed
samples. Note, that E is increased by the amount
of latest experiments L before each policy update.
Therefore, E represents how much experimental evaluation, or information we used
to reach a certain level of performance. After estimating the latent rewards we use
the resulting generative reward model to evaluate Q = 500 artificial context-control
parameter pairs drawn from µ̂(s)π(ω|s). We used these artificial samples to update
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the policy. This way we got a highly data-efficient algorithm, similar to the one in
[19]. After the policy is updated, we start a new loop and evaluate L new experi-
ment. We not only use this information to update our dictionary to estimate latent
rewards, but also to estimate the performance of the current policy. The performance
of the policy is measured by the expected latent reward of the newly evaluated L
experiments. We expect the performance measure to increase with the amount of
information E and policy updates. After updating the policy H times (Table 1) we
terminate the learning.

4.2 Results

As the learning algorithm uses randomly sampled data for policy updates and noisy
human feedback, the learned policy and its performance may vary. In order to mea-
sure the consistency of the learning progress we repeated the complete learning trial
several times. A trial means evaluating the learning algorithm starting with the ini-
tial policy and with an empty dictionary, E = 0, but using the same parameters for L
and ε . We evaluated 5 learning trials and recorded the expected performance of the
robot before each policy update. The expected learning performance over 5 trials
with 95% confidence bounds against the amount of real robot experiments E used
for policy update is shown in Figure 5. We can see that learning indeed improved the
performance of the initial policy, which has an expected value of 6.8. Over the learn-
ing trials, we noticed that the human mostly gave absolute feedback for very good
or bad solutions. This is expected as humans can confidently say if a handover skill
feels close to that of a human, or if it does something unnatural (e.g., not releasing
the object). By the end of the learning, the expected latent reward rose to the region
of 8. Note, that the variance of the learning performance over different trials not only
depends on the stochastic learning approach, but also on noisy human feedback.
Thus we can conclude that the learning indeed improved the expected latent reward
of the policy, but how did the policy and the experiments change with the learning?

Robot Experiments (E)
40 50 60 70 80 90
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e
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a
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8.5
Human Robot Handover Learning

Fig. 5 The expected latent reward mean and
standard deviation over 5 independent learn-
ing trials.

The learned policy. We first discuss the
mean value a of the learned policy and
then we show how the policy generalizes to
more dynamic tasks. Over several learning
trials we observed that a high quality policy
provides a lower rotational stiffness com-
pared to the hand-tuned initial policy. We
observed that on expectation the learned ro-
tational stiffness is 1.29 Nm/rad, which is
lower than the initial 2.75. This helped the
robot to quickly orient the object with the
human hand upon physical contact. We ob-

served similar behavior in the translational stiffness values in the x− z directions
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Fig. 6 The initial and the learned policy parameters against the context value. Top row, from left
to right: the rotational stiffness, translational stiffness in the x-y-z direction. Bottom row, from left
to right: finger control slope, minimal and maximal visual hand tracking distance.

(see Figure 4). The learned values were almost 100 N/m lower compared to the ini-
tial values. This helps the robot to become more compliant in horizontal motions.
Interestingly, the learned stiffness in y direction became slightly higher (474 N/m)
compared to its initial value. During physical interaction the forces acting along the
y-axis are mostly responsible for supporting the weight of the object. With a higher
stiffness value interaction times became lower and also helped avoiding situations
where the robot did not release the object. The learned slope parameter of the finger
controller became more conservative (3.63 1/N). This prevented any finger move-
ment until the human force reached at least 0.8× the weight of the object. Finally,
the learned minimal and maximal tracking distance on expectation became 269 and
541mm respectively.

The policy generalizes the controller parametrization with mean a+As. We dis-
cussed above how a changed on expectation after the learning. We now turn our
attention to A and show how generalization to more dynamic task happens. We typ-
ically executed experiments with hand speed between 0.1 and 1m/s. We observed
that on expectation the rotational stiffness values were lowered for more dynami-
cal tasks (s = 1m/s) with −0.31 Nm/rad. This helped the robot to orient with the
human hand quicker. Interestingly, we observed that the stiffness in x direction is
slightly increased with 56 N/m. However, the stiffness in y direction is dramatically
decreased with −281 N/m. This reduces forces acting on the human significantly
during faster physical interaction. The stiffness in z direction is decreased with −10
N/m, which is just a minor change. Interestingly, the slope parameter of the robot
finger controller increases with 0.6 1/N, which leads to an even more conservative
finger control. Finally, we observed that on expectation the minimal hand tracking
distance is increased by 46mm and the maximal distance remains almost the same
with an additional 9mm. A visual representation of the learned parameters against
the context value is shown in Figure 6. In the following, we will analyze some static
and dynamic handover experiments to give more insight why humans prefer the
learned policy as opposed to the initial hand-tuned controller.
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Fig. 7 Two example of experimental results of the forces acting between the human and the robot
during physical interaction. The forces are plotted starting right before the physical interaction
until the handover is finished.
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Fig. 8 Two example of experimental results in dynamic handover situations. The forces are plotted
starting right before the physical interaction until the handover is finished.

Human preferences for static handovers. For static handover tasks we ob-
served that a robust and quick finger control was always preferred and highly rated.
In Figure 7 we can see the forces and jerks of two typical static handover solutions.
The weight of the bottle was around 20N. We can see that the preferred solution
always maintained a low jerk and forces remained limited. Moreover, a successful
handover happens relatively fast. In our experiments we observed that a high quality
solution happens within 0.6 seconds and no faster than 0.4 seconds. Similar results
have been reported in human-human object transfers experiments [5]. Typically dis-
liked parameterizations have low translational stiffness and a stiff finger control,
resulting in the robot not releasing the object quick enough, which is considered a
failure. These experiments typically lasted for 1 to 2 seconds until the bottle was
released.

Human preferences for dynamic handovers. In dynamic handover situations
contact forces and jerks were significantly higher compared to the static case (Figure
8). A typical preferred dynamic handover controller has lower rotational and trans-
lational stiffness, and a more firm finger controller. In our experiments the human
always came from one direction while taking the bottle from the robot. In the robot
hand frame this was the x-direction. As we can see, a preferred controller achieves a
significantly lower contact force and jerk in this direction. We noticed that a physical
contact time in a dynamic handover scenario is around 0.3−0.6 sec. Based on the
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latent rewards, we noticed that there is a strong preference towards faster handovers,
as opposed to the static case, where we did not observe such strong correlation in
handovers within 0.6 seconds. Interestingly, we noticed that humans preferred stiffer
finger controllers in dynamic handovers. We assume that this helps a robust transfer
of the object from giver to taker. In a dynamic handover situation vision might not
provide enough feedback about the handover situation during physical contact, and
thus, an excess of grip force would be necessary to ensure the robust transfer and to
compensate for inaccurate position control.

Video footage of some typical experiments before and after the learning is avail-
able at www.youtube.com/watch?v=2OAnyfph3bQ.

By analyzing these experiments we can see that the learned policy indeed pro-
vides a controller parametrization that decreases handover time, reduces forces and
jerks acting on the human over a wide variety of dynamic situations. While the ini-
tial policy provides a reasonable performance in less dynamic experiments, learning
and generalization significantly improves the performance of the policy. Based on
our observations, for static handovers a fast and smooth finger control was neces-
sary for success, while in dynamic handover situation higher compliance and a firm
finger control were preferred.

5 Discussion

This paper presents an algorithm for learning dynamic robot-to-human object han-
dover from human feedback. The algorithm learns a latent reward function from
both absolute and preference feedback, and integrates reward learning with contex-
tual policy search. Experiments show that the robot adapts to the dynamics of human
motion and learns to hand over a water bottle successfully, even in highly dynamic
situations.

The current work has several limitations. First, it is evaluated on a single ob-
ject and a small number of people. We plan to generalize the learning algorithm to
adapt over human preferences and object characteristics. While contextual policy
search works well for adapting over handover dynamics, object characteristics ex-
hibit much greater variability and may pose greater challenge. Second, our handover
policy also does not consider human response during the handover or its change over
time. We want to model key features of human response and exploit it for effective
and fluid handover. For both, combining model-free learning and model-based plan-
ning seems a fruitful direction for exploration.
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[25] E. Sisbot, R. Alami, T. Siméon, K. Dautenhahn, M. Walters, and S. Woods.
Navigation in the presence of humans. In Proc. IEEE-RAS Int. Conf. on Hu-
manoid Robots, 2005.

[26] K. Strabala, M. K. Lee, A. Dragan, J. Forlizzi, S. Srinivasa, M. Cakmak, and
V. Micelli. Towards seamless human-robot handovers. J. Human-Robot Inter-
action, 2013.

[27] A. Wilson, A. Fern, and P. Tadepalli. A bayesian approach for policy learn-
ing from trajectory preference queries. In Advances in Neural Information
Processing Systems. 2012.

[28] C. Wirth and J. Fürnkranz. Preference-based reinforcement learning: A prelim-
inary survey. In J. Fürnkranz and E. Hüllermeier, editors, Proc. ECML/PKDD
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