
Motion Planning under Uncertainty for Robotic
Tasks with Long Time Horizons

Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

IN Proc. Int. Symp. on Robotics Research, 2009

Abstract Partially observable Markov decision processes (POMDPs) are a princi-
pled mathematical framework for planning under uncertainty, a crucial capability
for reliable operation of autonomous robots. By using probabilistic sampling, point-
based POMDP solvers have drastically improved the speed of POMDP planning,
enabling POMDPs to handle moderately complex robotic tasks. However, robot mo-
tion planning tasks with long time horizons remain a severe obstacle for even the
fastest point-based POMDP solvers today. This paper proposes Milestone Guided
Sampling (MiGS), a new point-based POMDP solver, which exploits state space
information to reduce the effective planning horizon. MiGS samples a set of points,
called milestones, from a robot’s state space, uses them to construct a compact, sam-
pled representation of the state space, and then uses this representation of the state
space to guide sampling in the belief space. This strategy reduces the effective plan-
ning horizon, while still capturing the essential features of the belief space with a
small number of sampled points. Preliminary results are very promising. We tested
MiGS in simulation on several difficult POMDPs modeling distinct robotic tasks
with long time horizons; they are impossible with the fastest point-based POMDP
solvers today. MiGS solved them in a few minutes.

1 Introduction
Efficient motion planning with imperfect state information is an essential capability
for autonomous robots to operate reliably in uncertain and dynamic environments.
With imperfect state information, a robot cannot decide the best actions on the basis
of a single known state; instead, the best actions depend on the set of all possible
states consistent with the available information, resulting in much higher compu-

H. Kurniawati
Singapore–MIT Alliance for Research Technology, e-mail: hannakur@smart.mit.edu
Most of the work was done while the author was with the Department of Computer Science, Na-
tional University of Singapore.

Y. Du, D. Hsu, and W. S. Lee
Department of Computer Science, National University of Singapore, e-mail: {duyanzhu, dyhsu,
leews}@comp.nus.edu.sg

1

2 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

tational complexity for planning the best actions. Partially observable Markov de-
cision processes (POMDPs) [7, 17] provide a general and principled mathematical
framework for such planning tasks. In a POMDP, we represent a set of possible
states as a belief, which is a probability distribution over a robot’s state space. We
systematically reason over the belief space B, the space of all beliefs, by taking
into account uncertainty in robot control, sensor measurements, and environment
changes, in order to choose the best robot actions and achieve robust performance.
By incorporating uncertainty into planning, the POMDP approach has led to im-
proved performance in a number of robotic tasks, including localization, coastal
navigation, grasping, and target tracking [4, 6, 12, 15].

Despite its solid mathematical foundation, POMDP planning faces two major
computational challenges. The first one is the “curse of dimensionality”: a complex
robotic task typically generates a high-dimensional belief space. If a robotic task is
modeled with a discrete state space, its belief space has dimensionality equal to the
number of states. Thus a task with 1,000 states has a 1,000-dimensional belief space!
In recent years, point-based POMDP solvers [12] have made dramatic progress in
overcoming this challenge by sampling the belief space and computing approximate
solutions. Today, the fastest point-based POMDP solvers, such as HSVI2 [19] and
SARSOP [9], can handle moderately complex robotic tasks modeled as POMDPs
with up to 100,000 states in reasonable time. The success of point-based solvers
can be largely attributed to probabilistic sampling, which allows us to use a small
number of sampled points as an approximate representation of a high-dimensional
belief space. The approximate representation substantially reduces computational
complexity. The same reason underlies the success of probabilistic sampling in other
related problems and approaches, e.g., probabilistic roadmap (PRM) algorithms [2]
for geometric motion planning (without uncertainty).

The second major challenge is the “curse of history”. In a motion planning task,
a robot often needs to take many actions to reach the goal, resulting in a long time
horizon for planning. Unfortunately the complexity of planning grows exponen-
tially with the time horizon. Together, a long time horizon and a high-dimensional
belief space compound the difficulty of planning under uncertainty. For this reason,
even the best point-based POMDP algorithms today have significant difficulty with
robotic tasks requiring long planning horizons (see Section 6 for examples).

To overcome this second challenge and scale up POMDP solvers for realistic
robot motion planning tasks, we have developed a new point-based POMDP solver
called Milestone Guided Sampling (MiGS). It is known from earlier work on related
problems that the most important component of a planning algorithm based on prob-
abilistic sampling is the sampling strategy [5]. MiGS reduces the planning horizon
by constructing a more effective sampling strategy. It samples a set of points, called
milestones, from a robot’s state space S, uses the milestones to construct a compact,
sampled representation of S, and then uses this representation of S to guide sam-
pling in the belief space B. The intuition is that many paths in B are similar. Using
the sampled representation of the state space, MiGS avoids exploring many of the
similar belief space paths, which enables us to capture the essential features of B
with a small number of sampled points from B.

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 3

We tested MiGS in simulation on several difficult POMDPs modeling distinct
robotic tasks with long time horizons, including navigation in 2D and 3D environ-
ments, and target finding. These tasks are impossible with the fastest point-based
POMDP solvers today. MiGS solved them in a few minutes.

2 Background

2.1 Motion Planning under Uncertainty

Despite its importance and more than almost three decades of active research [10,
21], motion planning under uncertainty remains a challenge in robotics. Several
recent successful algorithms are based on the probabilistic sampling approach.
Stochastic Motion Roadmap [1] combines PRM with the Markov decision pro-
cess (MDP) framework to handle uncertainty in robot control, but it does not take
into account uncertainty in sensing. Another method, Belief Roadmap [14], handles
uncertainty in both robot control and sensing, but one major limitation is the as-
sumption that the uncertainty can be modeled as Gaussian distributions. Unimodal
distributions such as the Gaussian distribution are inadequate when robots operate
in complex geometric environments.

POMDPs are a general framework that can overcome the above limitations. By
tackling the difficulty of long planning horizons, MiGS brings POMDPs a step
closer to being practical for complex robotics tasks.

2.2 POMDPs

A POMDP models an agent taking a sequence of actions under uncertainty to maxi-
mize its reward. Formally, it is specified as a tuple (S,A,O, T , Z,R, γ), where S is
a set of states describing the agent and the environment, A is the set of actions that
the agent may take, and O is the set of observations that the agent may receive.

At each time step, the agent lies in some state s ∈ S, takes some action a ∈ A,
and moves from a start state s to an end state s′. Due to the uncertainty in action, the
end state s′ is modeled as a conditional probability function T (s, a, s′) = p(s′|s, a),
which gives the probability that the agent lies in s′, after taking action a in state s.
The agent then receives an observation that provides information on its current state.
Due to the uncertainty in observation, the observation result o ∈ O is again modeled
as a conditional probability function Z(s, a, o) = p(o|s, a).

In each step, the agent receives a real-valued rewardR(s, a), if it takes action a in
state s. The goal of the agent is to maximize its expected total reward by choosing
a suitable sequence of actions. When the sequence of actions has infinite length,
we typically specify a discount factor γ ∈ (0, 1) so that the total reward is finite
and the problem is well defined. In this case, the expected total reward is given by
E [
∑∞
t=0 γ

tR(st, at)], where st and at denote the agent’s state and action at time t.

4 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

The solution to a POMDP is an optimal policy that maximizes the expected total
reward. In a POMDP, the state is partially observable and not known exactly. So we
rely on the concept of beliefs. A POMDP policy π : B → A maps a belief b ∈ B to
the prescribed action a ∈ A.

A policy π induces a value function Vπ(b) = E [
∑∞
t=0 γ

tR(st, at)|b, π] that spec-
ifies the expected total reward of executing policy π starting from b. It is known that
V ∗, the value function associated with the optimal policy π∗, can be approximated
arbitrarily closely by a convex, piecewise-linear function,

V (b) = max
α∈Γ

(α · b) (1)

where Γ is a finite set of vectors called α-vectors and b is the discrete vector rep-
resentation of a belief. Each α-vector is associated with an action. The policy can
be executed by selecting the action corresponding to the best α-vector at the current
belief. So a policy can be represented as a set of α-vectors.

Given a policy, represented as a set Γ of α-vectors, the control of the agent’s
actions, also called policy execution, is performed online in real time. It consists of
two steps executed repeatedly. The first step is action selection. If the agent’s current
belief is b, it finds the action a that maximizes V (b) by evaluating (1). The second
step is belief update. After the agent takes an action a and receives an observation
o, its new belief b′ is given by

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑
s
T (s, a, s′)b(s) (2)

where η is a normalization constant. The process then repeats.

2.3 Point-based POMDP Solvers

The adoption of POMDPs as a planning framework in robotics has been hindered by
the high dimensional belief space and the long time horizon typical of many robotics
tasks. Many approaches have been proposed to alleviate these difficulties [21].
Point-based solvers [9, 12, 19, 20] are currently the most successful approach. Using
the idea of probabilistic sampling, they have made impressive progress in comput-
ing approximate solutions for POMDPs with large number of states and have been
successfully applied to a variety of non-trivial robotic tasks, including coastal nav-
igation, grasping, target tracking, and exploration [4, 11, 12, 13, 18]. Despite this
impressive progress, even the best point-based POMDP solvers today have signifi-
cant difficulty with robotic tasks that require long planning horizons.

MiGS follows the approach of point-based POMDP solvers, but aims at over-
coming the difficulty of long horizons. Learning from the successful PRM approach
for geometric motion planning [2], MiGS tries to construct a more effective strategy
for sampling the belief space.

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 5

3 Milestone Guided Sampling
A key idea of point-based POMDP solvers is to sample a set of points from B

and use it as an approximate representation of B. Let R ⊆ B be the set of points
reachable from a given initial belief point b0 ∈ B under arbitrary sequences of
actions and observations. Most of the recent point-based POMDP algorithms sample
fromR instead of B for computational efficiency. The sampled points form a belief
tree T (Fig 1). Each node of T represents a sampled point b ∈ B. The root of T
is the initial belief point b0. To sample a new point b′, we pick a node b from T as
well as an action a ∈ A and an observation o ∈ O according to suitable probability
distributions or heuristics. We then compute b′ = τ(b, a, o) using (2) and insert
b′ into T as a child of b. If a POMDP requires an effective planning horizon of
h actions and observations, T may contain Θ((|A||O|)h) nodes in the worst case,
where |A| is the number of actions and |O| is the number of observations for the
POMDP. Thus any point-based solvers trying to construct T exhaustively must have
running time exponential in h and suffer from the “curse of history”.

To overcome this difficulty, let us consider

a1 a2

o1 o2

b0

Fig. 1 The belief tree rooted at b0.

the space from which we must sample. If the
effective planning horizon is h, we must sam-
ple from a subset of R that contains Rh, the
set of belief points reachable from b0 with at
most h actions and observations. Our difficulty
is that the size ofRh grows exponentially with
h. The basic idea of MiGS is to sample Rh hi-
erarchically at multiple resolutions and avoid
exhaustively samplingRh unless necessary.

To do so, MiGS builds a roadmap graph G in a robot’s state space S. The nodes
of G are states sampled from S and are called milestones. An edge e between two
milestones s and s′ of G is annotated with a sequence of actions (a1, a2, . . . , a`)
that can bring the robot from s to s′. The edge e is also annotated with a sequence
of states (s0, s1, . . . , s`) that the robot traverses under the actions (a1, a2, . . . , a`),
with s0 = s and s` = s′. If we think of G as a collection of edges, each represent-
ing a sequence of actions, we can then use such sequences of actions to construct
the belief tree T . At a node b, we apply a sequence of actions associated with a
selected edge of G, instead of a single action, to derive a child node b′. Suppose,
for example, that G has maximum degree d and each edge of G contains an action
sequence of length `. Then, for a POMDP with time horizon h, T contains at most
O((d |O|`)h/`) = O(dh/`|O|h) nodes. This indicates that the action sequences en-
coded in G help in reducing the effect of long planning horizons due to actions, but
not necessarily observations. Since the size of T grows exponentially with h, the
reduction is nevertheless significant.

To sample at multiple resolutions, we start with a roadmap with a large ` value. In
other words, we sample S coarsely and connect the milestones with long sequences
of actions. We then refine the sampling of S and gradually reduce the ` value.

6 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

Now it should be clear that MiGS is indeed faster, as the belief tree T is smaller.
However, a more fundamental question remains: since the roadmap G contains only
a subset of sampled states and not all states in the state space S, do the belief points
sampled with the help of G cover the entire reachable belief space well and likely
lead to a good approximation to the optimal value function and the optimal policy?
The answer is yes, if we sample S adequately in a sense which we now explain.

Denote by Γ ∗ a set of α-vectors representing an optimal value function. Given
a constant ε > 0, we partition the state space S into a collection of disjoint subsets
so that for any α ∈ Γ ∗ and any two states s and s′ in the same subset, |α(s) −
α(s′)| ≤ ε. Intuitively, the partitioning condition means that any two states in the
same subset are similar in terms of their significance in the optimal value function.
The constant ε controls the resolution of partitioning. We call such a partitioning of
S an ε-partitioning and denote it by K. The partitioning K induces a distance metric
on the belief space B:
Definition 1. Let K be an ε-partitioning of the state space S. The distance between
any two beliefs b and b′ in B with respect to K is

dK(b, b′) =
∑
K∈K

∣∣∣∣∣∑
s∈K

b(s)−
∑
s∈K

b′(s)

∣∣∣∣∣ . (3)

This new metric is more lenient than the usual L1 metric and is upper-bounded by
the L1 metric. It measures the difference in probability mass for subsets of states
rather than individual states. This is desirable, because the states within a subset
K ∈ K are similar under our assumption and there is no need to distinguish them.
Using dK, we can derive a Lipschitz condition on the optimal value function V ∗(b):

Theorem 1. Let K be an ε-partitioning of the state space S. For any b and b′ in the
corresponding belief space B, if dK(b, b′) ≤ δ, then |V ∗(b)−V ∗(b′)| ≤ Rmax

1−γ δ+2ε,
where Rmax = maxs∈S,a∈A |R(s, a)|.

The proof is given in the appendix. Theorem 1 provides a sampling criterion for
approximating V ∗ well. Suppose that B is a set of sampled beliefs that covers the
belief space B: for any b ∈ B, there is a point b′ in B with dK(b, b′) ≤ δ, where δ
is some positive constant. Theorem 1 implies that the values of V ∗ at the points in
B serve as a good (sampled) approximation to V ∗. Furthermore, to estimate these
values, we do not need to consider all the states in S, because dK does not distinguish
states within the same subset K ∈ K; it is sufficient to have one representative
state from each subset. This justifies MiGS’ sampling of the state space during the
roadmap construction.

Of course, MiGS does not know the partitioning K in advance. To sample S
adequately, one way is to use uniform random sampling. If each subset K ∈ K is
sufficiently large, then we can guarantee that uniform sampling generates at least
one sampled state from each K ∈ K with high probability. To improve efficiency,
our implementation of MiGS uses a heuristic to sample S. See Section 4 for details.

We now give a sketch of the overall algorithm. MiGS iterates over two stages. In
the first state, we sample a set of new milestones from S, and then use it to construct

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 7

Algorithm 1 Perform α-vector backup at a belief b.

BACKUP(b, Γ)
1: For all a ∈ A, o ∈ O, αa,o ← argmaxα∈Γ (α · τ(b, a, o)).
2: For all a ∈ A, s ∈ S, αa(s)← R(s, a) + γ

P
o,s′ T (s, a, s′)Z(s′, a, o)αa,o(s′).

3: α′ ← argmaxa∈A(αa · b)
4: Insert α′ into Γ .

or refine a roadmap G. In the second stage, we follow the approach of point-based
POMDP solvers and perform value iteration [16] on a set Γ of α-vectors, which
represents a piecewise-linear lower-bound approximation to the optimal value func-
tion V ∗. Exploiting the fact that V ∗ must satisfy the Bellman equation, value it-
eration starts with an initial approximation to V ∗ and performs backup operations
on the approximation by iterating on the Bellman equation until the iteration con-
verges. What is different in value iteration for point-based POMDP solvers is that
backup operations are performed only at a set of sampled points from B rather than
the entire B. In MiGS, we sample incrementally a set of points from B by construct-
ing a belief tree T rooted at an initial belief point b0. To add a new node to T , we
first choose an existing node b in T in the least densely sampled region of B, as
this likely leads to sampled beliefs that cover B well. We then choose a suitable
edge e from the roadmap G and use the associated action sequence (a1, a2, . . . , a`)
and state sequence (s0, s1, s2, . . . , s`) to generate a new node. Specifically, we first
generate an observation sequence (o1, o2, . . . , o`) so that each oi is consistent with
si and ai, to be precise, Z(si, ai, oi) = p(oi|si, ai) > 0, for 1 ≤ i ≤ `. We then
start at b and apply the action-observation sequence (a1, o1, a2, o2, . . . , a`, o`) to
generate a sequence of new beliefs (b1, b2, . . . , b`), where b1 = τ(b, a1, o1) and
bi = τ(bi−1, ai−1, oi−1) for 2 ≤ i ≤ `. Finally, b` is inserted to T as a child node
of b, while (b1, b2, . . . , b`−1) is associated with the edge from b to b` for backup
operations. After creating the new node b`, we perform backup operations for every
belief associated with the nodes and edges of T along the path from b` to the root
b0. A backup operation at b improves the approximation of V ∗(b) by looking ahead
one step. We perform the standard α-vector backup (Algorithm 1). Each backup op-
eration creates a new α-vector, which is added to Γ to improve the approximation of
V ∗. We repeat the sampling and backup processes until a sufficiently large number
of new sampled beliefs are obtained. If necessary, we repeat the two stages to refine
the roadmap G and sample additional new beliefs. The details for these two stages
are reported in Sections 4 and 5, respectively.

4 State space sampling and roadmap construction

MiGS is designed for general motion planning problem where the robot’s goal is to
reach one of the possible goal state(s). It assumes that positive reward is given only
when the robot reaches the goal state.

8 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

4.1 Sampling the milestones

MiGS samples the milestones from the state space without replacement. It biases
sampling towards states that are more likely to improve V (b0) significantly, e.g.,
states that are useful for either reducing uncertainty or gaining high reward. In par-
ticular, MiGS samples a state s ∈ S using the probability P (s) as follows,

P (s) ∝ KI(s) (4)

where K is a constant and I(s) indicates the importance of visiting s in re-
ducing uncertainty and gaining reward. The importance function we use, I :
S → R, is a weighted sum of an expected reward function and a localiza-
tion function, avgReward(s) + λ × locAbility(s), where the weight λ deter-
mines the importance of localization relative to the reward. Since localization de-
pends on both the action performed and the observation perceived, we compute
locAbility(s) as an expected value over all possible actions and observations, as-
suming an action is selected uniformly at random and the observation is perceived
according to the observation distribution function. More precisely, locAbility(s) =
1
|A|
∑
a∈A

∑
o∈O P (o|s, a) · usefulness(s, o, a). To compute how useful an obser-

vation is towards localizing a state, we compute the posterior probability of be-
ing in the state after the observation is received, assuming a uniform prior on the
states, usefulness(s, a, o) = P (o|s, a)/

∑
s∈S P (o|s, a). The reward component is

avgReward(s) = 1
|A|
∑
a∈AR(s, a).

4.2 Partitioning the state space

Once a set of milestones has been sampled, MiGS partitions the state space based
on a notion of “distance” to the milestones. To help establish the notion of distance,
MiGS constructs the state graph S, a weighted multi-digraph where the vertices
are states in S. We will refer to the vertices of S and their corresponding states
interchangeably, as there is no confusion. An edge from s ∈ S to s′ ∈ S, labeled
with action a ∈ A, exists in S whenever T (s, a, s′) > 0. The weight of the edges act
as the distance for partitioning. We define the weight w((ss′, a)) of an edge (ss′, a)
as the total regret of performing action a, and continuing from s′ even when the
robot may be at a state other than s′ after performing a from s. More precisely,

w((ss′, a)) = c(s, a) +
∑
s′′∈S

T (s, a, s′′) · r(s′, s′′) (5)

where c(s, a) is the cost of performing action a from s. For computational efficiency,
we would like the weight to always be positive. Therefore, we set c(s, a) = −R(s, a)
if R(s, a) < 0 and c(s, a) = 0 otherwise. The second component indicates
how different the future total reward can be if we continue from s′. The func-
tion r(s′, s′′) can be defined in many ways, including based on MDP value, i.e.,
|V ∗MDP (s′)− V ∗MDP (s′′)|. For simplicity, MiGS sets r(s′, s′′) as a constant posi-
tive value whenever s′ 6= s′′ and 0 otherwise.

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 9

To partition S, MiGS uses inward Voronoi partition [3] on the state graph S with
M as the Voronoi sites. It partitions the vertices of S into a set of Voronoi sets
{Vor(m)|m ∈M}

⋃
U , where the Voronoi set Vor(m) of a milestone m is the set

of vertices whose distance to m is less than the distance to any other milestone in
M , and U is the set of vertices that can not reach any milestone in M .

4.3 Inserting the edges
MiGS constructs the roadmap G on top of the state graph S. The vertices are the
milestones and an edge mm′ is inserted to G whenever there is a path from m to
m′ in the graph induced by Vor(m) ∪ Vor(m′). MiGS will then annotate each
edge mm′ in G with a sequence of actions that can bring the robot from m to m′

and a sequence of states that the robot traverses under the sequence of actions that
annotates mm′. The two sequences that annotate mm′ are constructed based on the
shortest path Π(m,m′) from m to m′ in the graph induced by Vor(m)∪Vor(m′).
The sequence of actions is the action labels in the sequence of edges in Π(m,m′),
while the sequence of states is the sequence of vertices in Π(m,m′). The weight of
mm′ is then the total weight of Π(m,m′).

4.4 Roadmap refinement
Similar to most probabilistic roadmap, MiGS refines the roadmap by sampling ad-
ditional milestones and reconstructing the roadmap, taking into account the newly
added milestones. The main question is when should MiGS refines the roadmap. Re-
fining the roadmap too often is costly, while refining the roadmap too seldom may
slow down MiGS in covering the belief space well. In the current implementation,
MiGS uses a heuristic. It refines the roadmap when the approximation of V ∗(b0)
does not improve after a consecutive pre-specified number of beliefs are expanded
and the corresponding backups are performed.

Now, since the milestones are sampled without replacement from S, after awhile,
there will be no more milestones that can be sampled. When this happens, although
all vertices of S have become milestones, the sampling guides that correspond to
some edges of S may not be in G yet. To refine G further, MiGS inserts additional
edges toG, such that each edge, including self-loops, of S corresponds to an edge of
G. This refinement strategy ensures that given enough time, MiGS generates all pos-
sible action-observation combinations for sampling beliefs reachable from b0. And
therefore, MiGS is probabilistically complete in the sense that given enough time,
MiGS is guaranteed to sample the set of beliefs representative enough to generate
an optimal policy.

5 Belief space sampling
So far we have discussed the roadmapG, a more compact representation of the state
space. Now, the question is how to use G to guide sampling in the belief space.

To favor sampling beliefs that are more likely to improve covering, MiGS favors
expanding nodes of T that lies far from most of the other beliefs. For this, MiGS

10 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

sets the weight w(b) of a node b in T , to be the number of nodes in T that lie within
a small pre-specified distance from b. MiGS will then select a node b for expansion
based on the probability P (b) ∼ 1

w(b)
.

To enable sampling different beliefs that lie within the planning horizon fast, we
would like to expand b0 using roadmap paths from a state in the support of b0 to a
possible goal state. However, these long roadmap paths may be misleading, in the
sense that the path turns out to generate beliefs that lie in a very localized region
of the belief space. Therefore, to alleviate wasting a lot of computational resources,
MiGS expands beliefs using edges of G, but maintains a memory of which path is
being used for expanding a particular branch of T . For instance, if b′ is a node of
T generated by expanding b using edge mm′ of G, then b′ is annotated with m′.
The next time b′ is selected for expansion, MiGS chooses an out-edge of m′ in G
according to an arbitrary ordering in a circular fashion, returning to the first out-edge
after the last out-edge is used. The idea here is to iteratively expand T using shorter
partial paths, and then uses the generated belief to predict which path is more likely
to significantly improve belief-space covering.

6 Experimental Setup and Results
The purpose of our experiment is two folds. One (Section 6.1) is to compare the per-
formance of MiGS with the best point-based POMDP solvers and other alternatives
to motion planning with uncertainty. The other (Section 6.2) is to test the robustness
of the generated policy.

6.1 Comparison with Other Planners
We tested MiGS in several complex realistic robotics scenarios that require long
planning horizon. The scenarios are presented in Section 6.1.1. The experimental
setup and results are presented in Section 6.1.2 and Section 6.1.3, respectively.

6.1.1 Scenarios
In our experiment, we use the three scenarios below.

(a) 2D-Navigation. In this problem, a 2-DOFs mobile robot navigates in a re-
search lab (Fig 6.1.1(a)). The robot’s position is represented as a uniform grid of
size 60× 70. The robot needs to navigate from the entrance of the lab (marked with
”I”) to one of the goal states (marked with ”G”), while avoiding obstacles. The robot
never knows its exact position, but it can localize well at some parts of the environ-
ment, marked with circles. At each step, the robot performs an action to move to one
of its eight adjacent cells. However, due to control error, the robot will only reach
its intended destination 90% of the time. For the rest of the time, it may remain in
its cell or drift to the left or to the right of its intended destination. Moreover, some
parts (marked with crosses) of the lab are occupied by hostile people, that would
“abuse” the robot once they see it. Despite the imperfect information about its posi-
tion and its control uncertainty, the robot needs to decide which way to go such that
it can reach the goal as fast as possible while avoiding both obstacles and dangerous
places in the environment.

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 11

(a) (b) (c)

Fig. 2 Experimental scenarios. (a) 2D-Navigation. (b) 3D-Navigation. (c) Target Finding.

(b) 3D-Navigation. In this problem, a 5-DOFs unmanned aerial vehicle (UAV)
navigates in a tunnel where GPS signal is not available. The robot’s configuration is
represented as (x, y, z, θp, θy), where the first three DOFs are the robot’s position in
a 3D environment, θp is the pitch angle, and θy is the yaw angle. The configuration
space is discretized into grids. The position dimensions are represented as a 3D
uniform grid of 5 levels and 18 × 14 positions at each level (Fig 6.1.1(b)). The
pitch angle ranges from −450 to 450 and is discretized into three equal size cells,
while the yaw angle ranges from 00 to 3600 and is discretized into eight equal size
cells. The robot needs to navigate from the entrance of the tunnel (colored red) to a
goal position (colored blue). The robot never knows its exact configuration. It can
localize by observing the landmarks (colored green) in the environment. However,
due to limited sensing ability, it can only observe the landmarks when the robot is
in front of the landmark and is heading towards the landmark. At each time step, the
robot can either rotate in place or move forward to one of its adjacent cells according
to its heading. However, when the robot moves forward, 10% of the time, the robot
fails to reach its destination state, instead it drifts to its left or right or remains at
the same cell. Moreover, the robot needs to be careful, as the ceiling and floor of
some passages of the tunnel have become bat nests (colored yellow) due to long
abandonment. If the robot hits a bat nest, the bats would damage the robot and the
robot would stop functioning. The main problem in this task is similar to that of the
2D-Navigation scenario, but the state space is much larger. Despite the imperfect
information about its position and its control uncertainty, the robot needs to decide
which way to go such that it can reach the goal as fast as possible while avoiding
both obstacles and dangerous places in the environment.

(c) Target Finding. In this problem, a 2-DOFs mobile robot needs to find a mov-
ing target in an environment (Fig 6.1.1(c), courtesy of the Radish data set). The state
space is represented as (r, t), where r is the robot’s position and t is the target’s po-
sition. These positions are represented as a uniform grid of size 49× 29. The target
may be in one of the places marked with rectangles. It can move within the rectan-
gle, but it can not move to different rectangles. The target motion behavior is entirely

12 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

unknown. The robot starts from an initial position marked with ”I” and needs to find
the target by exploring the possible places of the target. The robot never knows its
exact position, but it can localize itself at places marked with circles. Furthermore,
due to sensing limitation, the robot will only know the position of its target, and
hence accomplish the task, when they are in the same grid cell. At each step, the
robot performs an action to move to one of its eight adjacent cells. However, due
to control error, the robot will only reach its intended destination 85% of the time.
For the rest of the time, it may remain in its cell or drift to the left or to the right of
its intended destination. Furthermore, some parts (marked with crosses) of the envi-
ronment are too dangerous for the robot to pass. Therefore, despite of the imperfect
information about its position and its control uncertainty, the robot needs to decide
an exploration strategy that finds the target as fast as possible while avoiding both
obstacles and dangerous places in the environment.

6.1.2 Experimental Setup
We implemented MiGS in C++ on top of the software package APPL v0.2 [9]. We
tested MiGS on the three tasks above and compared the results with PRM [8], a suc-
cessful motion planner that does not take uncertainty into account, with QMDP [21]
which is an approximate POMDP solver well-known in robotics, and with the
fastest point-based POMDP solver today, HSVI2 [19]. PRM is implemented in C++.
QMDP is implemented on top of the software package APPL v0.2. For HSVI2, we
used the newest software released by their original authors, ZMDP v1.1.5. All the
experiments were performed on a 2.66GHz Intel processor PC and 2GB memory.

For each task and each method, we performed preliminary runs to determine
the suitable parameters, and used the best parameters for generating the results. For
MiGS and HSVI2, we used the best parameters to run each method on each scenario
for at most 2 hours.

For each task, we compared the success rate, i.e., the percentage that the robot
accomplishes the given task successfully within a pre-specified time limit. For MiGS
and PRM, we generate 30 different POMDP policies and roadmaps for each task
and average the results, as these methods use randomization. For each task, each
method, and each policy/roadmap, we ran 100 simulation trial runs to test how well
the robot that uses a particular policy/roadmap performs in solving the given task.

6.1.3 Results
The results show that MiGS significantly out-performs other methods for planning
with uncertainty, as well as the fastest POMDP solvers today. It is interesting to
notice that in 3D-Navigation, PRM that does not take uncertainty into consideration
performs better than QMDP. The reason is that the successful runs of PRM are due
to luck. On lucky runs, the shortest path from a possible initial state reaches the
goal state. However, due to uncertainty, most of the time, the shortest path heuristic
moves the robot to a danger zone and prevents it from reaching the goal. QMDP
is able to realize that the shortest path strategy has a very high risk, and therefore
tries to avoid it. However, QMDP’s one lookahead is not sufficient to generate an
alternative policy that reaches the goal. By performing farther lookahead, HSVI2

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 13

MiGS’ results.

2D-Navigation % success
PRM 0.0

QMDP 0.0
HSVI2 0.0
MiGS 83.3

3D-Navigation % success
PRM 14.4

QMDP 0.1
HSVI2 24.0
MiGS 88.2

Target finding % success
PRM –

QMDP 14.5
HSVI2 17
MiGS 96.7

Fig. 3 Experimental results. The time for MiGS includes all initialization and pre-processing
needed to construct the roadmap. The results in the table for MiGS is after 300 seconds of runs for
2D-Navigation, and after 1,000 seconds of runs for 3D-Navigation and Target Finding. The results
for HSVI2 are the results after 2 hours of runs. We do not apply PRM to the target finding task, as it
is unreasonable. The goal (i.e., target) in this problem is moving dynamically, while PRM executes
a pre-computed path blindly.

performs better than QMDP. In fact in general, HSVI2 performs much better than
QMDP or other POMDP solvers today. However, due to the long planning horizon
required to generate a good policy in the above problems, HSVI2 is still unable
to perform well. The main reason for the poor performance of HSVI2 is that they
over-commit to a single heuristic, i.e., the MDP heuristic, to guide its belief-space
sampling. This strategy significantly alleviates the difficulty of planning in a high
dimensional belief space, but at the cost of significant reduction in belief space
exploration ability, which is important for performing well when the heuristic is
misleading. MiGS alleviates this problem by using a more compact representation
of the state space to guide belief-space sampling. This strategy enables MiGS to
explore significantly different parts of the belief space fast.

A video demo of the policy generated for the above scenarios can be seen in
http://bigbird.comp.nus.edu.sg/∼hannakur/migs.html. We have also tested MiGS on
2D navigation with uncertain map. The results are similar to the above results and
we do not reported it here due to space limitation.

6.2 Robustness of The Generated Plan

In many robotics scenarios, the uncertainty model that one

Fig. 4 Simple naviga-
tion scenario.

has for planning may not be accurate. Therefore, a desired
property of motion planning with uncertainty is to generate
motion strategies that are robust enough against slight distor-
tion in the uncertainty model used for planning.

In this set of experiments, we use a simple scenario to test
the robustness of the policy generated by MiGS. The scenario involves a 2-DOFs
mobile robot navigating in a simple environment (Fig 4), represented as a uniform
grid of size 42 × 20. In this scenario, the robot needs to navigate from the initial
position (marked with ”I”) to the goal position (marked with ”G”), while avoiding

14 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

(a) (b)

Fig. 5 The results of generating the policy in 3s. Similar trend holds for the policies generated at
different time. The success rate of the “Correct model” is the benchmark. The policy used by the
robot is generated based on the correct motion and observation models. (a) “Model: 0.9” means
that the policy used by the robot is generated based on motion accuracy 0.9. (b) “Model: 1.0”
means that the policy used by the robot is generated based on perfect observation accuracy.

obstacles and dangerous regions (marked with crosses). Due to limited sensing, the
robot can only localize at places marked with circles. There are two landmarks in
this environment, and we use the sensing model to encode how well the robot is able
to differentiate these two landmarks. At each step, the robot performs an action to
move to one of its eight adjacent cells. However, due to control error, the robot will
not always reach its intended destination. To model the uncertainty of the system,
we need to decide the motion accuracy of the robot and how well its sensing is in
differentiating the two landmarks.

To test the robustness of the policy generated by MiGS, we first generate the poli-
cies for the above scenario with a particular motion and sensing model of the robot,
and then use the generated policies for robots with different motion and sensing un-
certainty to accomplish the same task. Since MiGS uses randomization, we generate
30 policies for a particular robot motion and sensing uncertainty. These policies are
generated for robots with 0.9 motion accuracy and perfect sensing ability to differ-
entiate which landmark it sees. We then use each of the 30 policies on robots with
motion accuracy ranging from 0.8 to 0.5, and sensing accuracy ranging from 0.9 to
0.5. The average success rates are shown in Fig 5.

The results show that the policy generated by MiGS based on inaccurate motion
or observation model can still be used by the robot to accomplish the given task well.
The reason is that knowing a rough idea of a good motion strategy is often sufficient
to accomplish the task. For instance, in this environment, as long as the robot knows
to stay away from the passages containing dangerous regions, regardless of the exact
motion it performs, the robot would reach the goal with high probability. This result
corroborates the intuition that many paths in the belief space generate policies with
similar quality.

7 Conclusion & Future Work
We have proposed Milestone Guided Sampling (MiGS), a new point-based POMDP
solver that uses a set of sampled states, called milestones, to guide belief-space sam-

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 15

pling. MiGS uses the milestones to construct a more compact representation of the
state space, and then uses this more compact representation of the state space to
guide belief-space sampling. Reasoning using a more compact representation of the
state space significantly reduces the planning horizons while still capturing most
of the useful beliefs. Preliminary experimental results are very promising. They in-
dicate that long planning horizons problems that are impossible to solve using the
fastest POMDP solvers today, can be solved by MiGS in just a few minutes.

Two main challenges for enabling POMDP to be practical for realistic robotics
problem are the large number of states and the long planning horizon typical of
robotics problems. The recently introduced point-based algorithms have shown im-
pressive progress in solving POMDP problems with very large number of states.
However, the performance of point-based POMDP degrades significantly when the
required planning horizon is long. By alleviating the difficulty of solving problems
that require long planning horizon, we hope our work would bring POMDP a step
closer to becoming a practical tool for robot motion planning in uncertain and dy-
namic environment.

Acknowledgements We thank Sylvie Ong and Shao Wei Png for reading the first draft of this
paper and helping with scripting a POMDP model. This work is supported in part by AcRF grant
R-252-000-327-112 from the Ministry of Education of Singapore.

Appendix 1 Proof of Theorem 1
Proof. The optimal value function V ∗ can be approximated arbitrarily closely by a piecewise-
linear convex function and represented as V ∗(b) = maxα∈Γ (α·b) for a suitable set Γ of α-vectors.
Let α and α′ be the maximizing α-vectors at b and b′, respectively. Without loss of generality,
assume V ∗(b) ≥ V ∗(b). Thus V ∗(b) − V ∗(b′) ≥ 0. Since α′ is a maximizer at b′, we have
α′ · b′ ≥ α · b′ and V ∗(b)− V ∗(b′) = α · b− α′ · b′ ≤ α · b− α · b′ ≤ α · (b− b′). It then follows
that

|V ∗(b)− V ∗(b′)| ≤ |α · (b− b′)|.
Next, we calculate the inner product over the partitioned state space:

|V ∗(b)− V ∗(b′)| ≤
˛̨̨X
s∈S

α(s)(b(s)− b′(s))
˛̨̨
≤
˛̨̨ X
K∈K

X
s∈K

α(s)(b(s)− b′(s))
˛̨̨

Let sK denote any state in the subset K ∈ K. We have

|V ∗(b)− V ∗(b′)|

≤
˛̨̨ X
K∈K

X
s∈K

(α(s)− α(sK) + α(sK))(b(s)− b′(s))
˛̨̨

≤
˛̨̨ X
K∈K

X
s∈K

(α(s)− α(sK))(b(s)− b′(s))
˛̨̨
+
˛̨̨ X
K∈K

X
s∈K

α(sK)(b(s)− b′(s))
˛̨̨
. (6)

Let e1 and e2 denote the two terms in (6), respectively. We now bound e1 and e2 separately. By
the definition of ε-partitioning, |α(s)− α(sK)| ≤ ε for all s and sK in K ∈ K. Thus,

e1 ≤
X
K∈K

X
s∈K

ε|b(s)− b′(s)| = ε
X
s∈S
|b(s)− b′(s)| ≤ 2ε, (7)

where the last inequality holds because the L1 distance between any two beliefs is no greater than
2. Let us now consider e2. Since the absolute values of α-vector coefficients are no more than
Rmax/(1− γ), it follows that

16 Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee

e2 ≤
X
K∈K

˛̨̨
α(sK)

˛̨̨˛̨̨X
s∈K

(b(s)− b′(s))
˛̨̨
≤
X
K∈K

Rmax

1− γ

˛̨̨X
s∈K

b(s)− b′(s)
˛̨̨
.

Using the condition dK(b, b′) ≤ δ, we get e2 ≤ Rmax
1−γ δ. Combining this with (6) and (7) gives

the desired result. ut

References

1. R. Alterovitz, T. Simeon, and K. Goldberg. The stochastic motion roadmap: A sampling
framework for planning with markov motion uncertainty. In Proc. Robotics: Science and
Systems, 2007.

2. H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, and S. Thrun.
Principles of Robot Motion : Theory, Algorithms, and Implementations. The MIT Press, 2005.

3. M. Erwig. The graph voronoi diagram with applications. Networks, 36(3):156–163, 2000.
4. Kaijen Hsiao, L.P. Kaelbling, and T. Lozano-Perez. Grasping POMDPs. In Proc. IEEE Inter-

national Conference on Robotics & Automation, pages 4685–4692, 2007.
5. D. Hsu, J.C. Latombe, and H. Kurniawati. On the probabilistic foundations of probabilistic

roadmap planning. International Journal of Robotics Research, 25(7):627–643, 2006.
6. D. Hsu, W.S. Lee, and N. Rong. A point-based POMDP planner for target tracking. In Proc.

IEEE International Conference on Robotics & Automation, pages 2644–2650, 2008.
7. L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable

stochastic domains. Artificial Intelligence, 101:99–134, 1998.
8. L.E. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for

path planning in high-dimensional configuration space. IEEE Transactions on Robotics &
Automation, 12(4):566–580, 1996.

9. H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In Proc. Robotics: Science and Systems,
2008.

10. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.
11. J. Pineau and G. Gordon. POMDP planning for Robust Robot Control. In Proc. International

Symposium on Robotics Research, 2005.
12. J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for

POMDPs. In International Joint Conferences on Artificial Intelligence, pages 1025–1032,
August 2003.

13. J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards robotic assistants in
nursing homes: Challenges and result. Robotics and Autonomous Systems, 42(3–4):271–281,
2003.

14. Sam Prentice and Nicholas Roy. The Belief Roadmap: Efficient Planning in Linear POMDPs
by Factoring the Covariance. In Proc. International Symposium on Robotics Research, 2007.

15. N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief
compression. Journal of Artificial Intelligence Research, 23:1–40, 2005.

16. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2
edition, 2002.

17. R.D. Smallwood and E.J. Sondik. The optimal control of partially observable Markov pro-
cesses over a finite horizon. Operations Research, 21:1071–1088, 1973.

18. T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proc. Uncertainty
in Artificial Intelligence, 2004.

19. T. Smith and R. Simmons. Point-based POMDP algorithms: Improved analysis and imple-
mentation. In Proc. Uncertainty in Artificial Intelligence, July 2005.

20. M.T.J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs.
Journal of Artificial Intelligence Research, 24:195–220, 2005.

21. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, 2005.

