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Abstract. Why are probabilistic roadmap (PRM) planners “probabilistic”? This paper 
tries to establish the probabilistic foundations of PRM planning and re-examines previous 
work in this context. It shows that the success of PRM planning depends mainly and 
critically on the assumption that the configuration space C of a robot often verifies favor-
able “visibility” properties that are not directly dependent on the dimensionality of C. A 
promising way of speeding up PRM planners is to extract partial knowledge on such 
properties during roadmap construction and use this knowledge to adjust the sampling 
measure continuously. This paper also shows that the choice of the sampling source—
pseudo-random or deterministic—has small impact on a PRM planner's performance, 
compared to that of the sampling measure. These conclusions are supported by both theo-
retical arguments and empirical results. 

1. Introduction 
Probabilistic roadmap (PRM) planners [CLH+05, Chapter 7] solve seem-
ingly difficult motion planning problems such as the one in Figure 1, 
where the robot’s configuration space C is 6-D and the environment con-
sists of tens of thousands of triangles. While an algebraic planner would 
be overwhelmed by the high cost of computing an exact representation of 
the free space F, defined as the collision-free subset of C, a PRM planner 
builds only an extremely simplified representation of F, called a prob-
abilistic roadmap. The nodes of a roadmap R are configurations sampled 
from F with a suitable probability measure. The edges of R are simple 
collision-free paths, e.g., straight-line segments, between the sampled 
configurations.  PRM planners work surprisingly well in practice. Why?  

 
 
 
 
 
 
 
 
  

Previous work has partially addressed this question by identifying 
and formalizing free space properties that provide sufficient conditions to 
guarantee that a PRM planner using a uniform sampling measure works 
                                                 
1 Part of this work was completed while the author was at the National University of 
Singapore, supported by the Kwan Im Thong Hood Cho Temple Professorship.  

Figure 1:  A practical 
motion planning problem. 



 

well. However, the underlying question “Why are PRM planners prob-
abilistic?” has received little attention so far, and consequently the role of 
non-uniform sampling measures in PRM planning remains poorly under-
stood. Since no inherent randomness or uncertainty exists in the classic 
formulation of motion planning problems like the one depicted in Figure 
1, one may wonder why probabilistic sampling helps to solve them. 

In this paper, we attempt to fill this gap, with the intent of identifying 
promising directions to improve future PRM planners. We introduce the 
probabilistic foundations of PRM planning (Section 2). We then examine 
previous work in this context and argue that the empirical success of 
PRM planning tells us as much about the nature of motion planning 
problems encountered in practice as about PRM planning itself (Section 
3). We emphasize the important distinction between the sampling meas-
ure, a notion firmly rooted in probability theory, and the sampling 
source, and show that the source has small impact on a planner’s per-
formance compared to the measure (Sections 4 and 5). 

The main questions addressed in this paper are summarized below: 
• Why is PRM planning “probabilistic”? A foundational choice in 
PRM planning is to avoid computing an exact representation of F. So the 
planner never knows the exact shape of F, in particular, its connectivity. 
It works very much like a robot exploring an unknown environment to 
build a map. At any moment during planning, many hypotheses on F are 
consistent with the configurations sampled so far. The probability meas-
ure for sampling F reflects this uncertainty. Hence, PRM planning trades 
the cost of computing F exactly against the cost of dealing with uncer-
tainty. This choice is beneficial only if a small roadmap can represent the 
shape of F well enough to answer motion-planning queries correctly.  
• Why does PRM planning work well? One can think of the nodes of 
a roadmap as a network of guards watching over F. To guarantee that a 
PRM planner finds a solution quickly whenever one exists, F should sat-
isfy favorable “visibility” properties. A key contribution of PRM plan-
ning is to reveal that in practice, many free spaces satisfy such properties, 
despite their high algebraic complexity. Since visibility properties can be 
defined in terms of volume ratios over certain subsets of F, they do not 
directly depend on dim(C), the dimensionality of C. This explains why 
PRM planning scales up reasonably well when dim(C) increases.  
• How important is the sampling measure? In every PRM planner, a 
probability measure prescribes how sampled configurations are distrib-
uted over F. Since visibility properties are in general not uniformly fa-
vorable over F, this measure plays a critical role in the efficiency of PRM 
planning by allocating a higher density of samples to regions with poor 
visibility properties. Existing PRM planners use mostly simple, heuristic 
estimates of visibility properties, but experiments show that they dra-
matically improve the performance of PRM planning.  
• How important is the sampling source?  A PRM planner needs a 



 

source S of uniformly distributed pseudo-random or deterministic num-
bers for sampling C. Usually, it calls S to pick a point uniformly from 
[0,1]dim(C) and then maps the point into C according to a given probability 
measure. The source S has only a limited effect on the efficiency of PRM 
planning. When dim(C) is small, low-discrepancy or low-dispersion de-
terministic sources achieve some speedup over pseudo-random sources 
[LBL04]; however, the speedup is very modest compared to that achieved 
by good sampling measures and fades away quickly, as dim(C) increases. 

This paper does not introduce any new PRM planner or sampling 
strategy. Instead, its contribution is to articulate a coherent framework 
centered on the probabilistic foundations of PRM planning and evaluate 
several ideas, considered separately before, in this framework. It brings 
new understanding of what makes PRM planning effective, which in turn 
may help us to design better planners in the future. 

2. Why is PRM planning “probabilistic”? 
For many robots, computing an exact representation of the free space F 
takes prohibitive time, but fast, exact algorithms exist to test whether a 
given configuration or path is collision-free [LM04]. PRM planners use 
two probes based on such algorithms to access geometric information 
from the configuration space C:  
• For any q ∈ C, FreeConf(q) is true if and only if q ∈ F. 
• For any pair q, q’∈ C, FreePath(q,q’) is true if and only if q and q’ 
can be connected with a straight-line path lying entirely in F. 

The choice of using only these two probes is foundational for PRM 
planning. Since a PRM planner does not compute the exact shape of F, it 
never gains this information. At any moment, many hypotheses on F are 
consistent with the information gathered so far by the probes, and each 
hypothesis has some probability of being correct. The probabilistic na-
ture of PRM planners comes from the fact that this uncertainty is mod-
eled implicitly by a probability measure over the set of hypotheses. 

In this paper, we use the following scheme, which we call Basic-
PRM, as a reference planner. Like the original PRM planner [KSLO96], it 
operates in two stages, roadmap construction and roadmap query. 
• Roadmap construction. The procedure below takes a single input 
argument N, the number of nodes for the roadmap R to be constructed. 
The nodes of R are collision-free configurations sampled from F. The 
edges represent collision-free straight-line paths between the nodes. 
 
 
 
 
 
 
 
 

 

Procedure Roadmap-Construction(N) 
1. repeat until N nodes have been generated 
2. Sample a configuration q from C uniformly at random. 
3. if FreeConf(q) is true  then add q as a new node of R. 
4. for every node q’ of R  such that  q’ ≠ q do 
5. if FreePath(q, q’) is true  then add (q, q’) as a new edge of R. 
6. return R. 
 



 

Most PRM planners use better sampling strategies than the uniform ran-
dom one in Line 2, as well as better connection strategies in Lines 4–5.   

A sampling strategy (π, S) is characterized by a probability measure 
π that prescribes how sampled configurations are distributed over C and 
a source S of uniformly distributed pseudo-random or deterministic num-
bers. We will show in Sections 4–5 that designing good sampling meas-
ures is one of the most promising ways to speed up PRM planning.  
• Roadmap query. A query is defined by two configurations q1 and q2 
in F. Given a roadmap R, the procedure Roadmap-Query tries to con-
nect each qi, i=1,2, to a node of R. For each qi, it samples uniformly at 
random K configurations so that for each such configuration q, 
FreePath(qi,q) is true. It then checks whether there is a node vi of R 
such that FreePath(q,vi) is true. If so, qi and vi can be connected via q. 
If either q1 or q2 cannot be connected to a node of R, Roadmap-Query 
returns FAILURE. Otherwise, it searches for a path in R between v1 and v2.. 
If one is found, it returns a path between q1 and q2.  Otherwise, it returns 
NO PATH. 

If Roadmap-Query returns a path, the answer is always correct, 
but the NO PATH answer may not be correct, as disconnected components 
of R may lie in the same connected component of F. The answer FAILURE 
means that R is insufficient to answer the query. 

Let us now return to the question “Why is PRM planning probabilis-
tic?”. Suppose that while constructing a roadmap, Roadmap-
Construction could maintain a representation (H,η), where H � �is the 
set of all hypotheses over the shape of F�and η �is a probability measure 
that assigns to each hypothesis in H � the probability of it being correct. 
Suppose further that we can define what a good roadmap is (see Section 
3). Then, in each iteration of Roadmap-Construction, the optimal 
sampling measure π* � is the one that minimizes the expected number of 
remaining iterations until a good roadmap is reached, and π* can be in-
ferred from� (H,η). However, maintaining (H,η)�explicitly is expensive. 
So existing PRM planners use heuristics to select the sampling measure 
π (see Section 4). 

3. Why does PRM planning work well? 
In general, Basic-PRM may return an incorrect NO PATH or FAILURE an-
swer with some probability γ, but the efficiency of PRM planners in 
practice indicates that γ  is usually small. Experiments show that even in 
complex geometric environments, γ  often converges to 0 quickly, as N, 
the number of roadmap nodes, increases (Figure 2). Yet one can also eas-
ily construct apparently simple environments where PRM planners per-
form terribly (Figure 3). Together these two examples suggest that many 
environments encountered in practice satisfy favorable properties that 
PRM planners exploit well. What are these properties?  
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We now review results from [KLMR95, HLM97], showing that if F 

satisfies a rather general visibility property, called expansiveness, 
then Basic-PRM answers planning queries correctly with high 
probability. In the following, the phrase “with high (low) probabil-
ity in n” means that the probability converges to 1 (0) at an expo-
nential rate, as n increases.  

3.1. Visibility in the free space 
We say that two points q and q’ in F see each other if FreePath(q, q’) is 
true. The visibility set of q∈F is the set V(q) = { q’∈F | FreePath(q, q’) 
is true}. The definition of a visibility set is extended to any set M of 
points in F by setting V(M) = ∪q∈M V(q). 

The first two theorems below say that if F satisfies a property called 
ε-goodness, then Basic-PRM generates a roadmap that provides good 
coverage of F so that FAILURE rarely occurs. 

Definition 1 Given a constant ε ∈ (0,1], a point q∈F is ε-good if it sees 
at least an ε-fraction of F, i.e., if µ(V(q)) ≥ ε×µ(F), where µ(S) denotes 
the volume of S for any S ⊆ C. F is ε-good if every point q∈F is ε-good.   

Definition 2 A roadmap R provides adequate coverage of an ε-good free 
space F if the subset of F not seen by any node of R has volume at most 
(ε/2)µ(F). 
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Figure 2: The experimental convergence rate of Basic-PRM.  The plot shows the per-
centage of unsuccessful outcomes out of 100 independent runs for the same query in the 
environment shown on the right, as the number of roadmap nodes increases. 
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Figure 3: A difficult example for PRM planning. F consists of two rectangular chambers 
connected by a narrow corridor. The plot shows the average running time for Basic-
PRM to connect the two query configurations, as the corridor width decreases. 



 

Theorem 1 [KLMP95] If F is ε-good, then with high probability in N, 
Roadmap-Construction(N) generates a roadmap that provides ade-
quate coverage of F.  

Theorem 2 [KLMP95] If a roadmap provides adequate coverage of F, 
then Roadmap-Query returns FAILURE with low probability in K. 

(Recall that K is the number of configurations sampled randomly in the 
neighborhood of each of the query configurations. See Section 2.) 

Adequate coverage only protects us from FAILURE, but does not pre-
vent an incorrect NO PATH answer, because ε-goodness is too weak to im-
ply anything on roadmap connectivity. A stronger property is needed to 
“link” a visibility set to its complement in F. 

Definition 3 Let F’ be a connected component of F, G be any subset of 
F’, and β be a number in (0,1]. The β-LOOKOUT of G is the set of all 
points in G that see at least a β-fraction of the complement of G in F’:  

β-LOOKOUT(G) = {q ∈ G | µ(V(q)\G) ≥ β×µ(F’ \G)}. 

Suppose that the volume of β-LOOKOUT(G) is at least α×µ(G). If ei-
ther α or β is small, then it would be difficult to sample a point in G and 
another in F’\G so that the two points see each other, hence to build a 
roadmap that represents the connectivity of F’ well. This happens in the 
free space of Figure 3 when the corridor is very narrow. These considera-
tions lead to the concept of expansiveness.  

Definition 4 Let ε, α, and β  be constants in (0,1]. A connected compo-
nent F’ of F is (ε,α,β)-expansive if (i) every point q∈F’ is ε-good and (ii) 
for any set M of points in F’, µ(β-LOOKOUT(V(M))) ≥  α×µ(V(M)). F is 
(ε,α,β)-expansive, if its connected components are all (ε,α,β)-expansive. 
 

Theorem 3 [HLM97] If F is (ε,α,β)-expansive, then with high probability 
in N, Roadmap-Construction generates a roadmap whose connected 
components have one-to-one correspondence with those of F. 

Expansiveness guarantees that the visibility set V(M) of any set 
M of points in a connected component F’ of F has a large lookout. 
So it is easy to sample at random a set of configurations and con-
struct a roadmap that both provides good coverage of F and repre-
sents the connectivity of F well. The values of ε, α, and β measure 
the extent to which F is expansive.  For example, if F is convex, 
then ε=α=β=1. The larger these values are, the smaller N needs to 
be for Basic-PRM to answer queries correctly. Although for a given 
motion planning problem, we often cannot compute these values in 
advance, they characterize the nature of free spaces in which PRM 
planning works well. 



 

Figure 4: Comparison of 
three strategies with differ-
ent sampling measures. The 
plot shows the average run-
ning times over 30 runs on 
the problem in Figure 3, as 
the corridor width de-
creases. 
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3.2. What does the empirical success of PRM planners imply? 
In practice, a small number of roadmap nodes are often sufficient to an-
swer queries correctly. This frequent success suggests that the main rea-
son for the empirical success of PRM planners is that free spaces encoun-
tered in practice often satisfy favorable visibility properties, such as ex-
pansiveness. If a connected component F’ of F�had very small values of 
ε, α, and β, then a planner would likely encounter a set M of sampled 
nodes such that V(M) has a small lookout. It would then be difficult to 
sample a node in this lookout and eventually create a connected roadmap 
in F’. PRM planners scale up well when dim(C) increases, because visi-
bilities properties can be defined in terms of volume ratios over subsets 
of F and do not directly depend on dim(C). So, the empirical success of 
PRM planning says as much about the nature of motion-planning prob-
lems encountered in practice as about the algorithmic efficiency of PRM 
planning. The fact that many free spaces, despite their high algebraic 
complexity, verify favorable visibility properties is not obvious a priori. 
An important contribution of PRM planning has been to reveal this fact.  

We do not have a proof that expansiveness is the minimal property 
that F must satisfy for PRM planners to work well, but few alternatives 
exist (e.g., path clearance and ε-complexity) and they are more specific. 
However, since the values of ε, α, and β are determined by the worst 
configurations and lookouts in F, they do not reflect the variation of visi-
bility properties over F. This is precisely what non-uniform sampling 
measures described below try to exploit. 

4. How important is the sampling measure?  
In the previous section, we have analyzed the performance of Basic-
PRM when the uniform sampling measure is used. However, most PRM 
planners employ non-uniform sampling measures that dramatically im-
prove performance. To illustrate, Figure 4 compares the average running 
times of three versions of Basic-PRM using sampling strategies with 
different measures: the uniform strategy, the two-phase connectivity ex-



 

Figure 5: Sampled configurations generated by (a) the two-phase connectivity expansion 
strategy and (b) the Gaussian strategy. 

(b) (a) 

pansion strategy [KSLO96], and the Gaussian strategy [BOvdS99]. The 
last two strategies perform much better than the uniform one. How can 
such improvement be explained? What information can a PRM planner 
use to bias the sampling measure to its advantage?  

If nothing is assumed on F, all hypotheses on the shape of F are 
equally likely.  There is no reason to sample one region of C more 
densely than another, and the uniform sampling measure is the best that a 
PRM planner can use. More generally, with no prior assumptions, there is 
little that we can say about the expected performance of PRM planners. If 
we persist in using PRM planners, the reason must be that F is expected 
to satisfy certain favorable properties. Note here the analogy with the 
theory of PAC learning, where one can expect to learn a concept from 
examples only if the concept is assumed to have a simple representation. 
Similarly, we can expect a PRM planner to work well – i.e., to “learn” 
the shape of F from sampled configurations – only if we assume that F 
satisfies favorable visibility properties, which allow it to be adequately 
represented by a small roadmap. 

Now, if F is expansive, can non-uniform sampling measures work 
better than the uniform one? Since visibility properties are not uniformly 
favorable over F, a PRM planner should exploit the partial knowledge 
acquired during roadmap construction to identify regions with poor visi-
bility properties and adjust the probability measure to sample these re-
gions more densely. Now not only is the sampling measure non-uniform 
over F, but also it changes over time. In each sampling operation, the 
optimal measure is the one that minimizes the expected number of re-
maining sampling operations needed to reach a good roadmap. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
The problem of constructing good sampling measures is still poorly 

understood. Existing strategies mostly rely on simple, heuristic estimates 
of visibility properties, for instance: 
• The two-phase connectivity expansion strategy [KSLO96] builds an 
initial roadmap by sampling C uniformly at random. While doing so, it 



 

identifies the nodes that frequently fail to connect to other nodes nearby. 
Then the strategy samples more configurations around these identified 
nodes. The final distribution of sampled configurations is denser in re-
gions having poor visibility. See the circled region in Figure 5a around 
the corridor.                        
• In each sampling operation, the Gaussian strategy [BOvdS99] sam-
ples a pair of configurations, whose distance between them is chosen 
according to the Gaussian measure. If exactly one configuration lies in F, 
this configuration is retained as a roadmap node. Otherwise, both con-
figurations are discarded. This strategy yields a distribution of sampled 
configurations that is denser near the boundary of F (Figure 5b). The ra-
tionale is that points inside narrow passages, which have poor visibility, 
often lie near the boundary. Focusing on the boundary may increase the 
sampling density inside narrow passages.  

Figure 4 shows that these two strategies are effective in exploiting 
the non-uniformity of visibility properties in F. When the corridor width 
is small, regions near the corridor have poor visibility, and the non-
uniform strategies achieve huge speedup over the uniform one. As the 
corridor width increases, visibility properties become more uniformly 
favorable. The benefit of non-uniform sampling then decreases. 

The above two non-uniform strategies are chosen here only for illus-
tration. Other strategies have been proposed, and some of them achieve 
even greater speedup. They use various techniques to increase sampling 
density in subsets of F expected to have poor visibility. For instance, the 
bridge test extends the Gaussian strategy and samples three configura-
tions, instead of two, to better identify narrow passages [HJRS03]. Other 
techniques identify narrow passages in a robot’s workspace (e.g., by 
computing the medial axis) and use this information to sample more 
densely in regions of F likely to contain narrow passages [GHK99, 
FGLM01, YB04]. For a robot manipulator arm, it has been shown that 
over-sampling near singular configurations improves performance 
[LH02]. Indeed, at a singular configuration qs, the arm’s end-effector 
loses some degrees of freedom. Thus the region of F near qs has a flat-
tened shape, resulting in poor visibility. Instead of using heuristics to 
locate regions with poor visibility, an alternative is to check directly the 
definition of visibility to prune a roadmap and avoid wasting effort in 
regions with good visibility [SLN00], but this may involve high computa-
tional cost. A quite different approach is to slightly dilate F [HKL+98, 
SL05]. As visibility in dilated F is more favorable, planning becomes eas-
ier. A path found in the dilated space is then deformed into one in F.  

5. How important is the sampling source? 
We have mentioned in Section 2 that a sampling strategy (π, S) is charac-
terized by a probability measure π and a source S. The most commonly 
used source in PRM planning is the pseudo-random source Sran. Given a 



 

fixed seed, Sran generates a sequence of numbers that closely approximate 
the statistical properties of true random numbers. In particular, a pseudo-
random sequence is slightly irregular to simulate the effect that each 
number is chosen independently. Note that if we fix the seed of a pseudo-
random source, the numbers generated are in fact deterministic. To get 
multiple independent runs of a PRM planner, we must use a different 
seed for each run. In the proofs of Theorems 1–3, this independence 
guarantees that samples spread evenly over F according to the uniform 
measure. However, deterministic sources can achieve the same goal, 
sometimes even better [LBL04]. A familiar deterministic source is a grid. 
In this section, we compare pseudo-random and deterministic sources. 
We also compare the impact of sampling sources with that of sampling 
measures on the overall efficiency of PRM planning. 

In our experiments, we use a pseudo-random source Sran as well as 
two deterministic sources, the Halton sequence Shal [Mat99] and the in-
cremental discrepancy-optimal sequence Sopt [LL03], both of which have 
been reported to often outperform Sran [GO02, LL03, LBL04]. We then pair 
each source with two probability measures, the uniform measure πU and 
the measure πG used in the Gaussian strategy. This leads to six sampling 
strategies {πU,πG}×{Sran,Shal,Sopt}, each embedded in a distinct version of 
Basic-PRM to be tested experimentally. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The sampling measure versus the sampling source. Figure 6a 
compares the six strategies on the example in Figure 3, when the corridor 
width is set to 0.03. Each table entry gives the ratio of the running time 
of the uniform random strategy (πU,Sran) versus that of the strategy of the 
entry. So, the table reports the speedup over (πU,Sran). The running times 
for (πU,Sran) and (πG,Sran) are averaged over 30 independent runs. The 
second column (πU) shows that Shal and Sopt indeed achieve some speedup 
over Sran, but far greater speedup is achieved by switching to πG. Fur-
thermore, the advantage of Shal and Sopt over Sran observed with πU van-

Figure 6: Comparison of six 
sampling strategies on the prob-
lem of Figure 3 when (a) the 
corridor width is set to 0.03 and 
(b) the width decreases. 
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Sran 1.0 40.3 

Shal 3.9 33.2 
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Figure 7: Comparison of 
six sampling strategies on a 
more realistic problem. 
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ishes when we switch to πG. These results are reinforced in Figure 6b, 
which plots the running times of the six strategies, as the corridor width 
decreases. The three curves bundled together at the bottom of the plot all 
correspond to strategies using πG, demonstrating the importance of the 
sampling measure on the overall efficiency of the planner. Similar results 
have been obtained on more realistic problems, e.g., the one in Figure 7, 
in which a 6-degrees-of-freedom robot manipulator needs to access the 
bottom of a car through the narrow space between the lift supports. 
 
 
 
 
 
  
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
• Dependence on dimensionality. The main basis for deterministic 
sources is that they minimize criteria such as discrepancy or dispersion. 
However, the computational cost of maintaining a fixed discrepancy or 
dispersion increases exponentially with dim(C) [Mat99]. The samples 
generated by a deterministic source distribute evenly and regularly over 
[0,1]dim(C), and so they roughly correspond to a grid with N1/dim(C) discre-
tized intervals per axis, where N is the number of samples. In typical 
PRM planning problems, N � is relatively small, while dim(C) could be 

Figure 8: The dependence of six sampling strategies on dim(C). The inset in the left plot 
is a zoom of the lower portions of the curves. 
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large (greater than 6). This leads to large discrepancy and dispersion, 
even when a deterministic source is used. Hence, the advantage that de-
terministic sources can possibly achieve over pseudo-random sources 
fades away as dim(C) increases. Figure 8 gives an example, showing the 
running times of the six strategies as dim(C) increases from 3 to 8.  The 
robot is a planar linkage with a mobile base. We increase dim(C) by add-
ing more links. Figure 8 shows that the running time of (πU,Sopt) in-
creases quickly with dim(C). The increase is slower with (πU,Shal) and 
even slower with (πU,Sran). It is interesting to observe that (πU,Shal) per-
forms slightly better than (πU,Sran) when dim(C) ≤ 6, but worsens after-
wards (see the inset in the plot). The three strategies using πG all have 
only moderate increases in running times. As dim(C) increases, visibility 
properties become less uniformly favorable over F, and the advantage of  
πG over πU grows. 

6. Conclusion 
The success of PRM planning depends mainly and critically on the as-
sumption that, in practice, free spaces often verify favorable visibility 
properties. Non-uniform sampling measures dramatically improve the 
efficiency of PRM planning by exploiting these properties. In contrast, 
the choice of sampling sources has only small impact. 
 To speed up PRM planning, one promising research direction is to 
design better sampling strategies (and perhaps connection strategies as 
well) by exploiting the partial knowledge acquired during roadmap con-
struction to adjust the sampling measure π continuously. Initial work 
along this line has appeared recently [BB05, HSS05]. In [BB05], an ap-
proximate model of the configuration space is built and used to sample 
configurations so that the expected value of a utility function is maxi-
mized. A crucial issue here is to define a utility function that closely ap-
proximates the expected cost of reaching a good roadmap. In [HSS05], 
the sampling measure π is constructed as a linearly weighted combina-
tion of component measures with complementary strengths. To adjust π, 
the weights are updated after each sampling operation during roadmap 
construction to favor the component measures that give the most promis-
ing results. An important issue here is then to develop good criteria to 
assess the performance of component measures. 
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