Vol. 00 no. 00 2010
Pages 1-9

Markov Dynamic Models for Long-Timescale

Protein Motion

Tsung-Han Chiang '*, David Hsu ' and Jean-Claude Latombe 2

! Department of Computer Science, National University of Singapore, Singapore 117417, Singapore
2Department of Computer Science, Stanford University, Stanford, CA 94305, USA

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Molecular dynamics simulation is a well-established method
for studying protein motion at the atomic scale. However, it is
computationally intensive and generates massive amounts of data,
the sheer size of which often becomes an obstacle to biological
insights. One way of addressing the dual challenges of computation
efficiency and data analysis is to construct simplified models of
protein motion at long timescales, as many important kinetic and
dynamic properties of proteins ultimately depend on such motions. In
this direction, we propose to use Markov models with hidden states,
in which the Markovian states represent potentially overlapping
probabilistic distributions over a protein’s conformation space. We
also propose to evaluate the quality of a model by its ability to predict
long-timescale protein motions. Our method was tested on 2-D
synthetic energy landscapes and two extensively studied proteins,
alanine dipeptide and villin. One interesting finding is that although
a widely accepted model of alanine dipeptide contains 6 states,
a simpler model with only 3 states is equally good for predicting
the long-timescale motions. This finding highlights the importance
of a principled criterion for evaluating model quality. We also used
the constructed Markov models to estimate important kinetic and
dynamic quantities for protein folding, in particular, mean first-
passage time. The results are consistent with available experimental
measurements.
Contact: chiangts@comp.nus.edu.sg

1 INTRODUCTION

Protein motion is the aggregate result of complex interactions
among individual atoms of a protein at timescales ranging over
several orders of magnitudes. Thermal fluctuations, which occur
in picoseconds (10~ *? seconds), are small-amplitude, uncorrelated,
harmonic motions of atoms, but they eventually provide the protein
with enough momentum to overcome energy barriers between meta-
stable states. In contrast, biologically significant conformational
motions, which occur in microseconds to milliseconds, are often
large-scale, correlated, anharmonic motions between meta-stable
states. For example, in a folded protein, they may occur between
binding and non-binding states. The wide range of timescales and
complex relationships among the motions at different timescales
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make it difficult to capture the biologically significant, long-
timescale dynamics of protein motion in a compact and efficient
model.

Molecular dynamics (MD) simulation is a well-established
method for studying macromolecular motion at the atomic
scale [23]. However, it requires a detailed energy function, and
the equations of motion must be integrated with a time step
much shorter than the timescale of atomic thermal fluctuations.
Today’s computers can generate roughly a few nanoseconds of
simulation trajectories in a day, which is insufficient for capturing
events of biological significance. Distributed computing [13] and
specialized computer architectures [12] speed up MD simulation
significantly, but the sheer size of data generated is a major hurdle
that prevents biological insights. One way of addressing both the
issues of computational efficiency and data analysis is to construct
a simplified model that captures the essential features of protein
motion at long timescales. Markov dynamic models (MDM:s)
provide a promising direction towards this goal.

An MDM of a system—here, a protein—can be represented as
a directed graph. Each node of the graph represents a state s of
the system, and each edge represents a transition from state s
to s’. Bach edge (s, s) is also assigned the probability that the
system transitions from s to s’ in one time step. MDMs have
several advantages for modeling protein motion. First, they are
probabilistic and thus naturally capture the stochasticity of protein
motion. Second, MDM s represent states explicitly. This makes them
potentially easier to understand and faster to simulate. Finally, there
are standard algorithmic tools, e.g., first-step analysis [26], for
exploiting MDMs without expensive explicit simulation.

A key issue in constructing an MDM is the choice of states. What
are the Markovian states of a protein needed to accurately model its
long-timescale dynamics? One contribution of this work is to have
states represent not individual protein conformations [3, 25], not
even disjoint regions of the conformation space [7], but overlapping
probabilistic distributions of conformations. This choice reflects the
view that a conformation does not contain enough information to be
uniquely assigned to a single state. Although this may seem odd at
first, it is in fact quite natural in modeling many physical systems.
For example, suppose that we want to classify some physical objects
into two states, table or chair. For a cubic object one meter in size,
if we see a meal on top of it, we may consider it a table; if we
see someone seated on it, we consider it a chair. So, a cube in
itself cannot be assigned a single state because there is insufficient
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information. In many cases, acquiring and representing missing
information, if at all possible, is much more costly than capturing
it in a probabilistic distribution. Hence our choice of Markovian
states that represent probabilistic distributions over the protein
conformation space. This choice leads to MDMs with hidden states,
formally, hidden Markov models (HMMs). In this paper, we present
a method to automatically construct an HMM of the long-timescale
dynamics of a protein from a dataset of MD simulation trajectories.

Another key question is how to measure the quality of a model.
A good model enables us to predict biologically relevant quantities
of protein motion accurately and efficiently. However, a particular
model may do well for one quantity, but poorly for another.
Also, we may not know in advance the quantities to be predicted
when constructing a model. Another contribution of this work
is to evaluate the quality of a model by its ability to predict
long-timescale protein motions, as many interesting kinetic and
dynamic properties of proteins ultimately depend on such motions.
Specifically, we score an HMM probabilistically by its likelihood
for a test dataset of MD trajectories. Using this criterion, we are
able to select models that make good predictions on ensemble
quantities characterizing the folding of alanine dipeptide and villin,
two extensively studied proteins.

We also present an efficient algorithm for computing mean first-
passage time from any conformation of a protein to the folded
conformation, using an HMM of protein dynamics.

In the following, Section 2 reviews previous work. Section 3
describes our model of long-timescale protein motion. Section 4
presents an efficient algorithm for computing ensemble properties
of protein folding, in particular, mean first-passage time. Section 5
describes the algorithm for model construction, Section 6 presents
the results on synthetic landscapes, alanine dipeptide and villin.
Section 7 points out future research directions.

2 RELATED WORK
2.1 Graphical Models of Protein Motion

Our work proceeds from a series of developments that started with
adapting probabilistic roadmap (PRM) planning [16] from robotics
to model molecular motion. PRM is a class of algorithms for
controlling the motion of complex robots.

Roadmap models. A probabilistic roadmap for a robot is an
undirected graph. Each node ¢ of the graph represents a valid robot
configuration sampled randomly from the space of all valid robot
configurations, and each edge between two nodes ¢ and ¢’ represents
a valid motion between the conformations corresponding to ¢ and
¢’. PRM planning is currently the most successful approach for
motion planning of complex robots with many degrees of freedom.
The PRM approach was adapted to model and analyze the motion
of a flexible ligand binding with a protein [24]. The modified
roadmap is a directed graph, in which each node represents a
sampled ligand conformation and each directed edge represents the
transition from one ligand conformation to another. Each edge is
also assigned a heuristic weight measuring the “energetic difficulty”
of the transition. This approach was used to predict active binding
sites of a protein [24] and the dominant order of secondary structure
formation in protein folding [2].

From roadmaps to MDMs. To capture the stochasticity of molecular
motion, a roadmap model was transformed into an MDM by treating
each roadmap node as a state and assigning each edge (q,q’) the
transition probability derived from the energetic difference between
the conformations ¢ and ¢’ [3]. We call this model a point-based
MDM, as each state represents a single conformation. First-step
analysis was applied to the MDM to compute efficiently the p-fold
value, a theoretical measure of folding progress [3]. This approach
was later improved to predict experimental measures of folding
kinetics and dynamics, such as folding rates and ¢-values [6].
An improved sampling method generates the states of an MDM
using MD simulation data [25]. It obtains better coverage of the
biologically relevant part of the protein conformation space, and
also captures the protein dynamics more accurately by labeling each
edge (q,q’) of the MDM with the average transition time between
the conformations g and ¢’

From point-based to cell-based MDMs. In an point-based MDM,
a state represents a single protein conformation. However, a
conformation rarely contains enough information to guarantee the
Markovian property, a fundamental MDM assumption requiring that
the future state of a protein depends on its current state only and
not on the past history. Consequently a large number of states are
needed to construct a good MDM. This drawback led to cell-based
MDMs [7], in which each node represents a region (a cell) of the
conformation space. A cell s roughly matches a basin in a protein’s
energy landscape. The protein interconverts rapidly among different
conformations within a basin before it eventually transitions to
another basin. The assumption is that after many interconversions
within s, the protein “forgets” the history of how it entered s and
transitions into s’ with probability depending on s only. A cell-
based MDM can be built from a set of MD simulation trajectories.
To satisfy the Markovian property well, conformations along these
trajectories are grouped into clusters in such a way that maximizes
self-transition probabilities for the states in the MDM [7]. More
recent work extended this approach to build MDMs at multiple
resolutions through hierarchical clustering [15].

2.2 Other Approaches

Many other approaches have been explored to model and understand
protein motion. See [10] for a recent survey. Here, we only mention
a few that are more closely related to our work.

Normal mode analysis [19] and related approaches, such as
elastic network models [14], simplify the complex dynamic law
that governs protein motion by approximating it near an equilibrium
conformation. One advantage is that they capture the geometry and
mass distribution of a protein structure compactly in a relatively
simple model. However, they are relatively accurate only in the
neighborhood of the equilibrium conformation.

Another approach for building simple dynamic models is to find
reaction coordinates [20]. Significant events are described along a
carefully chosen one-dimensional reaction coordinate. The choice
of this coordinate, however, requires a priori understanding of the
protein motion. Furthermore, not all proteins can have their motions
described and understood along a single coordinate.

Instead of building simplified dynamic models, one may analyze
MD simulation data directly through dimensionality reduction
methods [1, 27]. Unlike normal mode analysis, this approach




provides a global view of protein motion. It may also help identify a
good reaction coordinate. However, this approach does not provide
a predictive model that generalizes the simulation data. Nor does it
identify interesting states of protein dynamics.

3 MARKOV DYNAMIC MODELS WITH HIDDEN
STATES

A MDM O of a protein can be represented as a weighted directed
graph. A node s of O represents a state of the protein, and a directed
edge (s,s’) from node s to s’ represents a transition between the
corresponding states. Each edge (s, s’) is assigned a weight a
representing the probability that the protein in state s transitions
to state s’ in a time step of fixed duration h. The probabilities
associated with the outgoing edges from any node s must sum up
to 1. The duration h is the time resolution of the model.

An MDM describes how the state of the protein changes
stochastically over time. Given an initial state so of the protein
at time 0, we can use the MDM to predict a sequence of future
states s1, S2, . .., where s; is the state of the protein at time ¢ X h,
where t = 1,2,.... If s; = s, then we predict the next state s;41
by choosing an outgoing edge (s, s’) from s with probability a4
and setting s;+1 = s’. The simple and explicit structure of MDMs
allows such predictions to be computed efficiently.

In a point-based MDM, a state represents a single conformation.
In a cell-based MDM, a state represents a set of conformations (see
Section 2.1). The definition of states is critical. The choice of a
single conformation as a state is more precise and informative than
the choice of a set of conformations. However, it often leads to
violation of the Markovian property and consequently reduces the
predictive power of the MDM. We now address the delicate question
of defining the states.

3.1 Why Hidden States?

By defining states as regions of the protein conformation space,
rather than single conformations, cell-based MDMs achieve the
dual objectives of better satisfying the Markovian assumption and
reducing the number of states. This is a major step forward.
However, cell-based MDMs still violate the Markovian assumption
in a subtle way. Consider a protein at a conformation g near the
boundary of a cell. The future state of the protein depends not
only on ¢, but also on the protein’s velocity, in other words, on
the past history of how the protein reaches q. By requiring each
conformation to belong to a single state, cell-based MDMs violate
the Markovian assumption, especially near the cell boundaries.
Similar violations also occur in cells corresponding to shallow
energy basins, where the protein’s energy landscape is flat.

One way of fixing such violations is to define more refined
states using information on both conformation and conformational
velocity. However, this necessarily increases the number of states,
thus partially reversing a key advantage of cell-based MDMs.
Furthermore, a much larger dataset is needed for model construction
in order to capture the detailed transition probabilities among the
refined states. In contrast, we propose to assign a conformation
to multiple states and use probabilities to capture the uncertainty
of state assignment. This leads to an MDM with hidden states,
formally, an HMM. Our HMM for protein dynamics is specified
asatuple © = (S,C, 11, A, E):

e Thesetof states S = {s; [i=1,2,...,K};

e The conformation space C of a protein;

e II={m |i=1,2,..., K}, where ; is the prior probability
that the protein is in state s; € S attime ¢t = 0;

o A={ai |i,j=1,2,...,K}, where a;; = p(s;|s;) is the
probability of transitioning from state s; € Stos; € Sina
single time step of duration h;

e £ ={e; |1 =1,2,...,K}, where e;(q) = p(q]|s;) is the
emission probability of observing conformation ¢ € C' when
the protein is in state s; € S.

The state space S is discrete, while the conformation space C' is
continuous. Intuitively each state s; € S loosely matches an energy
basin of the protein, and the corresponding emission probability
ei(q) = p(q|si) connects states with conformations by modeling
the distribution of protein conformations within the basin.

In an HMM, we cannot assign a unique state for a given
conformation g. Instead we calculate p(s;|q), the probability that
q belongs to a state s;. The uncertainty in state assignment arises
because at a conformation ¢, the protein may have different
velocities, as well as other differences, which we choose not to
model or do not know about. We model the uncertainty due to this
lack of information with the emission probability distributions.

In contrast, a cell-based MDM partitions C' into disjoint regions
C1,Ca,. .., and each state s; represents a region C;. So we can
assign a conformation ¢ to a unique state. If we define e; as a step
function such that e;(q) is a strictly positive constant for ¢ € C;
and 0 otherwise, then the states are no longer hidden, and our model
degenerates into a cell-based MDM. Our distribution-based models
are therefore more general than cell-based MDMs.

3.2 What is a good model?

Another difficulty with cell-based MDMs is the lack of a principled
criterion for evaluating model quality. To satisfy the Markovian
property well, the algorithm for constructing cell-based MDMs
maximizes the self-transition probabilities for the states in the
model [7]. This criterion, however, results in the paradoxical
conclusion that a trivial one-state model is perfect, as all transitions
are self-transitions. Since simple models are usually preferred, how
do we determine that a simple model is as good as or better than a
more complex one?

Our goal is to build a model © of the long-timescale dynamics
of a protein from a given dataset D of MD simulation trajectories.
The model © is then used to predict various kinetic and dynamic
properties of protein motion, such as mean first-passage times [18],
p-fold values [9], transition state ensembles [18], efc.. A model ©1
has stronger predictive power than a model O, if ©; predicts the
kinetic and dynamic properties more accurately than ©2. Clearly it
is impossible to check the predictive power of a model © on all
such properties, as we may not even know them all in advance.
However, since many kinetic and dynamic properties are determined
by protein motion trajectories, we can check instead the ability of ©
to predict these trajectories. In our HMM framework, we do this by
calculating the likelihood p(D|®), which is the probability that a
dataset D of MD simulation trajectories occur under the model ©.
The likelihood p(D|©) measures the quality of ©.
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Specifically, let D = {D; | ¢ = 1,2,...} be a
dataset of trajectories. Each trajectory D; is a sequence of
protein conformations (qo,q1,...,qr), where g is the protein
conformation at time ¢ X h. The likelihood of © for D; is

p(Di16) = 7 (p(so) [T pselse—1) [T placlse)), (1)

QesT

where s; is the state of the protein at time ¢ X h and p(so),
p(st|st—1), and p(g¢|st) are given by the model parameters I, A,
and E of ©, respectively [4]. The summation ZQ is performed
over all possible state assignments @ = (so, $1,...,57) € S” to
the conformations (qo, q1, - . ., gr) in D;. The likelihood of © for
the entire dataset D is simply p(D|©) = [], p(D:|©).

In contrast to the cell-based MDM, the likelihood p(D|©)
provides a quantitative measure of model quality and enables us to
compare models with different number of states. This is possible,
because our model uses emission probabilities e;(q) = p(q|s;) to
connect states with conformations, while a cell-based MDM does
not. The likelihood criterion shows that a single-state MDM is in
fact not good. Although the transition probabilities p(s¢|st—1) = 1
for all ¢, the emission probabilities p(g:|s:) are small, because the
model relies on a single state to capture variability over the entire
conformation space. Hence the overall likelihood p(D|©) is small.

4 MODEL EXPLOITATION

Before discussing how to automatically construct our model from
MD simulation data, let us first consider how to make use of it.

First, our MDM is a graphical model. We can gain various
insights of the underlying folding process by inspecting the structure
and the edge weights of the graph. We give an example in Section 6.

Next, our MDM is generative and can be used for simulation.
To generate a simulation trajectory of length 7', we first sample
a state sequence (so,$1,...,Sr) from the model. We sample
the initial state sp according to a prior distribution adapted to
the environmental condition of the biological events under study.
We then sample each subsequent state s; conditioned on the
previous state s;—; according to the transition probabilities A.
After obtaining the state sequence, we generate the trajectory
(go,q1,...,qr) by sampling each ¢; conditioned on s; with
probability p(g:|s:) according to the emission probabilities F.

Furthermore, an important advantage of MDMs is that they can
be analyzed systematically without explicitly generating simulation
trajectories. In particular, our model allows for efficient computation
of ensemble properties of protein folding. Ensemble properties,
such as mean first-passage time (MFPT) and p-fold value,
characterize the average behavior of a folding process over myriad
pathways at the microscopic level. In principle, we can compute
ensemble properties by simulating many individual pathways and
then averaging over them, but explicit simulation is computationally
expensive. In the following, we describe a more efficient algorithm
to compute MFPT using our model. P-fold value and other ensemble
properties can be computed similarly.

The MFPT of a conformation q is the expected time for a protein
to reach a folded conformation, starting from g. It measures the
speed of folding. A straightforward way of estimating the MFPT of
q is to simulate many folding trajectories, each starting from ¢ and
terminating upon reaching a folded conformation. The estimated

MFPT is then the average length of these trajectories. This approach
typically requires a huge number of simulation trajectories to get a
reliable estimate for a single conformation q.

Instead we apply first-step analysis [26] from Markov chain
theory to our model. It implicitly simulates infinitely many
trajectories, resulting in much faster and reliable computation of
MFPTs. However, since our model is constructed from a dataset
of MD simulation trajectories, an interesting question is “How can
the model give more reliable MFPT estimates than the simulation
trajectories themselves?” Intuitively, the answer is that the model
generalizes the data under the Markovian property and thus contains
a lot more trajectories than the dataset used for model construction.
For example, a dataset contains two trajectories with state sequences
(s0,81,52) and (sp, s1,s5). Using the Markovian property, the
model assumes that two additional state sequences (so, s1,55)
and (s, s1,s2) are also valid. Thus the model in fact contains
exponentially more trajectories than the dataset and can give more
reliable MFPT estimates provided that the Markovian property
holds and that all the trajectories can be processed efficiently.

Our computation proceeds in two stages. First, we compute the
MFPTs for all the states in S. Let Cr C C be the subset of folded
conformations of a protein. Let 7; be the first-passage time (FPT)
of a folding trajectory that starts in state s;. First-step analysis
considers what happens in the very first time step of the folding
trajectory:

e If the initial conformation go € Cp, then obviously v; = 0.
This event happens with probability e;(Cr) = [, op € (¢) dg.

o If qo ¢ C, then ; depends on the MFPT of the state that
the trajectory reaches after a one-step transition. This event
happens with probability 1 — e;(Cy).

The MFPT for s; is ; = E(:), where the expectation is taken over
all trajectories that start in s; and end in Cr. By conditioning on the
events in the first time step, we obtain the following equation for 7;:

%= 0-ei(Cr) + (1+ 3 plssls)hs) - (L-elCr). @
s5€ S

The values for p(s;|s;) are given by the transition probabilities in
A. The only unknowns in (2) are the MFPTs 7; fori = 1,2,..., K.
Since there is one such equation for each 7;, we get a linear system
of K equations with K unknowns, which can be solved efficiently
using standard numerical methods. The algebraic process of solving
the linear system implicitly enumerates all possible state sequences
of the folding trajectories in an efficient way.

After obtaining the MFPTs for the states, we compute the MFPT
for a given conformation qo. Let v denote the FPT of a folding
trajectory that starts at go. Conditioning on the initial state so at
t = 0, we see that the MFPT of qq is given by:

E(vlg0) = > E(vlg0, s0)p(s0l40)- 3)
spES

We calculate p(so|qo) using the Bayesian rule:

P(go|s0)p(so) \
soes P(qo]so)p(s0)’ 4)

p(SO‘qO) = Z

where p(so) and p(go|so) can be obtained from the prior
probabilities IT and the emission probabilities £ of the model,




respectively. Calculating E(v|qo, so) is more subtle. Suppose that
the initial state so is some particular state s; € S. It is tempting
to think that E(vy|qo, s0) = #;. This is incorrect, because 7; =
E(v|so) and the additional information provided by go may alter
the expected value of 7. To calculate E(y|qo, so), we condition once
more on the state s; at time ¢ = 1:

E(7l90,50) = > E(7lg0, 50, 51)p(5140, 50) )
s1€S

=Y (1+E(y[s1))p(s1]50), )
s1€S

where the last line follows from the conditional independence
properties of HMMs [4]. Now the values for E(y|s1) can be
obtained from the MFPTs 4; where ¢ = 1,2, ..., K, and the values
for p(s1]so), from the transition probabilities A. Substituting (4)
and (6) into (3) gives us the desired result.

In practice, when we compare with experimental measures, we
are interested in the MFPT for a region C’ of C rather than a single
conformation gy € C. To calculate E(v|C”), we need to modify (3),
(4), and (6) slightly by integrating qo over C”.

5 MODEL CONSTRUCTION

Under the likelihood criterion, we want to construct a model ©
that maximizes p(D|©) for a given dataset D of MD simulation
trajectories. Expectation maximization (EM) is a standard algorithm
for such optimization problems. However, EM is computationally
intensive. It may also get stuck in a local maximum and fail to find
the model with maximum likelihood. To alleviate these difficulties,
we proceed in three steps. First, we preprocess the input trajectories
to remove the “noise”, i.e., motions at timescales much shorter than
those of interest. Next, we use K-medoids clustering to build an
initial model ©¢. Since clustering is much faster than EM, we run
the clustering algorithm multiple times and choose the best result
as ©¢. This reduces the chance of ending up with a bad local
maximum. Finally, we initialize EM with ©¢ and search for the
model with maximum p(D|O). Since both K-medoids clustering
and EM are well known algorithms (see, e.g., [4]), we only describe
the relevant details of these steps below.

Data preparation. The time resolution h of the model should be
compatible with the timescale of biological events under study.
If h is too large, the resulting model may miss the events under
study. If A is too small, the model will try to capture fine details at
uninteresting short timescales and become unnecessarily complex
with reduced predictive power. In our tests, a relatively wide
range of h values led to models with similar predictive power. We
typically set h to be 1/100 to 1/10 the timescale of interest. We
then apply standard signal processing techniques [21] to smooth and
downsample each trajectory in D so that the time duration between
any two successive conformations along a trajectory is exactly h.

Emission probability distributions. The emission probability e;
models the distribution of protein conformations in state s;. We
approximate e; with a Gaussian distribution:

1 1
ei(q) = N(qlpi, 07) = Wexp(fﬁcf(q,uﬁ), @)

where d(g, pt;) denotes a suitable distance measure between the
conformations ¢ and p;. Other approximating distributions are
possible. There are two main considerations in choosing the
distribution: it should match the shape of s; well and be simple
enough to be learned effectively with a limited amount of data.

Initialization. The states in our model roughly correspond to energy
basins. Within a basin, a protein interconverts rapidly, which allows
inter-state protein motions to satisfy the Markovian property well.
Rapid interconversion results in a high-density cluster of protein
conformations inside the basin. So, to get an initial estimate of the
states, we treat the input dataset D as a set of conformations and use
the K-medoids algorithm to partition the conformations in D into
K clusters, where K is a pre-specified parameter. K -medoids forms
compact clusters by minimizing the sum of intra-cluster distances
between conformations [4] under the same distance d used for
specifying the emission probability distributions (7). The center of
a cluster C' is a conformation ¢ € C' that minimizes the sum of
distances from ¢ to other conformations in C'.

Each cluster then becomes a state of our initial model ©y.
Using the cluster labels of the conformations in D, we can
easily compute the prior probabilities II and transition probabilities
A for ©¢ by simply counting. To get the emission probability
ei(q) = N(q|ui,0?), we set p; to the center of the cluster
corresponding to state s; and o to the variance of conformations
in this cluster.

Optimization. We use Oy to initialize the EM algorithm and search
for a K-state HMM © that maximizes the likelihood p(D|®).
EM iterates over two steps, expectation and maximization, to
improve the current model until no further improvement can be
achieved. Inspection of (1) shows that our main difficulty is the
summation of all possible state assignments to the conformations
(90,91, --.,qr) along a trajectory D;. Performing this summation
by brute force takes time O(K ™), which is exponential in the length
T of the trajectory. EM overcomes this difficulty through dynamic
programming. See [4] for details.

The number of states. The number of states K controls the model
complexity. It must be specified in both K-medoids clustering and
EM. A complex model with many states can in principle fit the data
better, thus achieving higher likelihood. However, it may suffer from
overfitting when there is insufficient data. A complex model is also
more difficult to analyze and understand. Typically a simple model
is preferred when it does not sacrifice much predictive power. To
choose a suitable K value, we pick a small random subset D’ of
D as a test dataset. We start with a small K value and gradually
increases it until the likelihood p(D’|©) levels off. It is important
to note that we can perform such a search over model complexity
because our likelihood criterion enables us to compare models with
different number of states.
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6 RESULTS

We tested our approach on 2-D synthetic energy landscapes and on
two extensively studied proteins, alanine dipeptide and villin. The
results are reported in the subsections below.

6.1 Synthetic Energy Landscapes

Synthetic energy landscapes are useful for testing our algorithms in
controlled settings where the ground truth is known. In particular,
we want to examine whether our likelihood criterion and model
construction algorithm can identify simple models with strong
predictive power.

We created a series of five energy landscapes in two dimensions
(Fig. 1). Landscapes A and B each contains a single energy basin,
but B’s basin is slighted more elongated. Landscapes C, D, and
E each contains two basins, but the separation between the basins
varies. For each landscape, we used Langevin dynamics to generate
1000 trajectories of 200 time steps each. We set aside half of the
trajectories as the training dataset for model construction and the
other half as the test dataset D’ for checking the quality of the model
constructed.

For each landscape, we built models with increasing number of
states. In all the models, the resolution A is 10 simulation time steps.
The distance measure d used in defining the emission probabilities
is the Euclidean distance in the plane.

Fig. 2 plots the scores of all the models. The score is the
average log-likelihood of a model for a single transition step along a
trajectory. It is computed by dividing the log-likelihood of a model
given D’ by the total number of conformations in D’. Fig. 2 shows
that for landscape A, which contains only 1 basin, the 1-state model
is slightly better than the 2-state model. As we move from landscape
A to E, the predictive power of the 1-state model degrades. The 2-
state model performs fairly well on all five energy landscapes. Fig. 1
shows the differences between the 1-state and 2-state models by
simulating them and plotting the resulting conformations. Fig. 2 also
shows that increasing the number of state beyond 2 has negligible
benefit. This is expected, because the underlying energy landscapes
have at most two basins.

6.2 Alanine Dipeptide

Alanine dipeptide (Ace-Ala-Nme) is a small molecule widely used
for studying biomolecular motion, as it is simple and exhibits an
the extensive range of torsional angles. We use the same dataset as
that from a previous study [7]. It consists of 1000 MD simulation
trajectories totaling 20 ns in length. Again, we divide them equally
into training and test datasets.

We built models with with up to 7 states. They are named Al to
A7. As alanine dipeptide is very small, its motion is fast. So the
time resolution h of the models is set to 1.0 ps. A conformation
of alanine dipeptide is specified by three backbone torsional angles
(¢, ¢, w), and the distance between two conformations is defined
as the root squared angular differences between the corresponding
torsional angles.

The conformation space of alanine dipeptide can be manually
decomposed into 6 disjoint region, each corresponding to a
metastable state. This well-accepted decomposition has led to
several dynamic models of alanine dipeptide [7, 8]. For comparison,

Contour plots of synthetic energy landscapes.

Training dataset generated from Langevin dynamics.

Conformations generated from 1-state models.
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Fig. 2. Average log-likelihood scores of the models for synthetic energy
landscapes.

we built a 6-state model based on the same manual decomposition.
During the model construction, instead of applying K -medoids, we
group conformations into a cluster if they belong to the same disjoint
region of the manual decomposition. Other steps of the construction
algorithm remain the same. The resulting model is named M6.

Fig. 3 plots the average log-likelihood scores of all the models
constructed. Models A3 to A7 all achieve scores comparable to
that of M6. The interesting finding is that although the score jumps
substantially as we move from Al to A3, the score of A3 is almost
as good as those of A6 and M6. This indicates, in particular,
that for predicting the motion of alanine dipeptide, the simpler
3-state model A3 is almost as good as the 6-state model M6, which
is obtained from the well-accepted manual decomposition of the
alanine dipeptide conformation space!

To see the differences between A3 and M6, we simulated the
two models and plotted the resulting conformations (Fig. 4). Both
models capture accurately the frequently visited regions of the
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Fig. 3. Average log-likelihood scores of alanine-dipeptide models.

Fig. 4. Conformations generated from the 3-state model A3 (left) and the
6-state model M6 (right).

Table 1. Estimated MFPTs between ar and 3/C5 regions of the alanine
dipeptide conformation space.

MEPT (ps)
A3 M6

ar — B/C5 26.5 285

B/C5 — ar 187.0 124.0

conformation space, shown in red and blue in Fig. 4. These densely
sampled regions correspond to energy basins that dominate the
long-term dynamics, and accurate modeling of these regions is
crucial. Next, for A3, the conformations shown in green capture
a large, but less frequented region of the conformation space.
Although M6 models the same region as two closely spaced
clusters of conformations, the overall density and the location of
the conformations are similar in both models. Finally, M6 also
models the rarely visited region between 0 < ¢ < 90. Due
to the transient nature of the protein in these conformations, any
contribution from this additional complexity is minimal in terms
of any long-term dynamical phenomena that are experimentally
measurable. Therefore, the leveling of the log-likelihood scores
with respect to the number of states corresponds to the diminishing
returns in modeling any additional complexity of the long-term
dynamics.

To further validate our models, we used both A3 and M6
to compute MFPTs between the ar and 3/C5 regions of the
conformation space. We designate conformations with (¢ = —70 &
15,9 = —40 £ 15, w = 180 £ 15) to be within the a.r region, and
conformations with (¢ = —140+15, ¢ = 160+£15, w = 180+ 15)
to be within the 3/C5 region. Although the results for A3 and
M6 differ somewhat in details, they are consistent (Table 1). Both
indicate that the transition from ar to 3/C5 is roughly an order of

magnitude faster than the reverse transition. This matches well with
the results reported by Chekmareyv et al. [S].

To assess the efficiency of our algorithm for MFPT computation
(Section 4), we also computed the MFPTs by explicitly generating
simulation trajectories from our constructed models. It took our
algorithm less than 1 second to compute one MFPT, as the alanine
dipeptide models are all very simple. In comparison, it took
120 seconds to generate a sufficiently large number of simulation
trajectories from the same HMM in order to bring the standard
deviation of the MFPT estimate down to 1% of its value.

6.3 Villin

Here we present results on data collected by the Folding@home
project on the fast-folding variant of the villin headpiece HP-35
NleNle. This data consists of 410 MD trajectories initiated from
9 unfolded conformations denoted by I, k = 0, ..., 8. We set aside
half of the trajectories for training and the other half for testing.

Due to the higher dimensionality of the conformation space
(35 residues) and the huge number of conformations, we define
a graph-based distance d between conformations (recall that d is
used by the clustering algorithm and the emission probabilities)
that better captures the kinetics than the usual RMSD metric and
avoids computing all pair-wise distances between conformations.
In order to define this distance, we first group conformations
into microstates. We sample 8000 conformations uniformly along
the trajectories in the training dataset to serve as the microstate
centers. The rest of the conformations are then clustered to the
nearest microstate based on the RMSD of all heavy atoms to the
microstate centers. As in [22], we approximate the kinetics in high-
dimensional space by assuming that the protein can only transit
between microstates that are close RMSD wise. This leads us
to create a graph where each microstate is connected to each of
its nearest neighbors with an edge of length equal to the RMSD
between the two microstate centers. Only a small number of nearest
neighbors (less than 10) needs to be connected to ensure that the
graph is connected. The distance between two microstates is then
defined as the shortest-path distance between them in the graph, and
the distance between two conformations is the distance between the
microstates they belong to.

We constructed HMMs of different number of states, all at
h = 5 ns. The average log-likelihood scores (Fig. 5) improve
significantly when the number of states grows from 1 to 20. They
only improve gradually between 20 and 200 states. Beyond 200
states, the scores remain approximately constant.

-3.4

-3.6.

avg. log-likelihood

A

-4.2 .
0 200 400 600 800
no. of states

Fig. 5. Average log-likelihood scores for villin HMMs at b = 5ns.
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a) State transition diagram

b) Most probable folding transitions

State Sequence Probability
U—4—F 0.0281
U—-9—F 0.0143
U—-5—-4—F 0.00702
U—-9—4—-F 0.00677
U—11—4— F 0.00436

Fig. 6. Main state transitions of the 20-state model at b = 5 ns. The size of
each node is proportional to the stationary probability of the corresponding
state. The size of each arrow is proportional to the transition probability.
States with stationary probability less than 0.01, self transitions, and
transitions with probabilities less than 0.0005 are not shown to avoid clutter
the diagram. Given an initial conformation, g/, state U is the most likely
state (p(U|qu) = 0.54 on average). Given the native conformation, gp,
under stationary distribution, state F is the most likely state (p(F'|gr) =
0.49).

To see the main features of villin dynamics, consider the the 20-
state model. The model reveals that given the initial conformations,
state U in Fig. 6a is the most likely state of the protein and
helix 1 is likely to be in the wrong orientation despite having
attained a significant degree of helical structure (see Fig. 7). Once in
state U, several transitions to other states are possible with similar
probabilities. The common feature among these states is that both
helix 2 and helix 3 have achieved a high degree of helical structure
(61% for helix 2 and 78% for helix 3 achieved on average), whereas
helix 1 is totally disordered in half of the states. Therefore, attaining
both the helical structure and the correct orientation for helix 1
appears to be the barrier limiting folding. In [11], the presence of
helix 1 in the initial conformations I, and I7 was considered one of
the possible reasons why trajectories starting at these conformations
fold faster (on average) than trajectories starting at the other initial
conformations.

The folding of villin has been extensively studied in the wet
lab using various experimental techniques. In order to obtain a
reliable estimate of the experimental quantities, we define the set
of folded conformations to be the 5% microstates that are closest
to the experimentally determined native structure (PDB: 2F4K),
and compute the MFPT for the set of initial conformations. The
emission probability distribution of the folded set is then given by:

PDB: 2F4K

Fig. 7. Conformations of state centers in Fig. 6. Helix 1 in U is in the wrong
orientation despite having a high degree of helical structure.

Table 2. MFPT for each of the nine initial conformations in the MD dataset.
Each conformation [}, is used to initiate a set of trajectories.

a) Slow folding initial conformations
MFPT (us)
I() ]1 12 13 15 -[6 -[8
899 142 109 107 8.75 105 10.8

b) Fast folding initial conformations
MFPT (us)

N 17
4.87 4.12

Yo er P(ailsy)
ei(F) = ST
and G the set of all microstates.

The computed MFPT for the initial conformations I through
Is in Table 2 are in the same microsecond range of the
experimental 4.3 ps measured using laser temperature jump by
Kubelka et al. [17], and the 10 s measured using NMR line-shape
analysis by Wang et al. [28]. In addition, the MFPTs for 14 and I~
are smaller, which is consistent with the computational analysis of
Ensign et al. in [11]. We also attempted to compute each MFPT by
generating trajectories with the HMM and averaging the trajectory
lengths. However, instead of the less than 1 minute it takes to solve
(3), after 30 minutes of generating trajectories, the estimated MFPT
is still two orders of magnitude less than the values in Table 2.

where F' is the set of folded microstates

7 CONCLUSION

During the past decade, there has been increasing interest in
graphical models of protein motion at long timescales. Most
recently, the focus has been on cell-based Markov dynamic models
built from pre-computed MD simulation data. Existing methods,
however, suffer from two main shortcomings. First, defining states
by partitioning the conformation space of a protein into disjoint




cells results in violation of the Markovian property. Second, there
is no systematic criterion for evaluating the quality of a Markov
dynamic model. This paper addresses these two shortcomings
by defining states as probabilistic distributions of conformations.
This reflects the view that a single conformation does not contain
enough information to be assigned to a unique state. The resulting
HMM-based modeling framework evaluates model quality by the
likelihood of a model given a test dataset of simulation trajectories.
This allows for comparison of models, in particular, with different
number of states. Test results on two widely studied proteins
validate our approach.

One important issue remaining is to scale up our approach to
handle larger proteins. MD simulation is computationally expensive,
but advances in computer technology are making it more affordable
than before, and large simulation data repositories will become
readily available over time. Increasingly, the future challenge will
be to gain biological insights from this data by building simple and
yet powerful models. A computational bottleneck in our current
model construction algorithm is distance computation during the
clustering. However, we believe that the graph-based method
developed for villin is reasonably scalable, as it avoids performing
all pair-wise distance computations.

As we scale up to larger proteins, the dynamics of protein motion
will also become more complex. For large proteins, it is likely
that motions at different timescales contribute to different biological
functions. A hierarchy of HMMs constructed at different timescales
may capture such multi-timescale dynamics.
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