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ABSTRACT

Parameter estimation is a critical problem in modeling biological
pathways. It is difficult because of the large number of parameters
to be estimated and the limited experimental data available. In this
paper, we propose a decompositional approach to parameter esti-
mation. It exploits the structure of a large pathway model to break it
into smaller components, whose parameters can then be estimated
independently. This leads to significant improvements in computa-
tional efficiency. We present our approach in the context of Hybrid
Functional Petri Net modeling and evolutionary search for parameter
value estimation. However, the approach can be easily extended to
other modeling frameworks and is independent of the search method
used. We have tested our approach on a detailed model of the Akt
and MAPK pathways with two known and one hypothesized crosstalk
mechanisms. The entire model contains 84 unknown parameters. Our
simulation results exhibit good correlation with experimental data, and
they yield positive evidence in support of the hypothesized crosstalk
between the two pathways.
Contact: thiagu@comp.nus.edu.sg

1 INTRODUCTION

Independent of the framework chosen, modeling the dynamics of
a signaling pathway requires the determination of various reaction
rate constants that control the bio-chemical reactions constituting
the pathway. These rate constants are usually called model parame-
ters. Almost always, only a few of these parameters can be determi-
ned directly through experiments. The rest must be estimated, based
on experimental data, e.g., gene expression or protein concentra-
tion measurements. Unfortunately, the amount of data available is
rather limited in quantity and sometimes corrupted by noise. This,
combined with the large number of unknown model parameters
makes the parameter estimation problem computationally difficult
and sometimes intractable.

In this work, we adopt the recently introduced Hybrid Functional
Petri Net (HFPN) (Matsunet al., 2003) as the modeling frame-
work and propose @ecompositionabpproach to the parameter
estimation problem in signaling pathway modeling. The biological
application driving our study is the Akt and MAPK pathwaasd
their hypothesized crosstalk mechanisms.

A key advantage of our decompositional approach is that it
exploits the structure of a large pathway model to break it into
smaller components, whose parameter estimation problem can then
be solved independently. This leads to significant improvements

Computational models and methods are becoming an integral paii computational efficiency due to the reduction in the dimensio-
of molecular biology. They are being used not only to identify nality of the search space and in the number of local minima.
cellular components, but also to determine how these componentsor the Akt-MAPK pathways with 84 unknown parameters, our
interact with one another. Quantitative modeling of these interactiapproach produced reasonable estimates for all parameters in about
ons will play an important role in understanding fundamental intra-18 hours. In comparison, the common approach, which estimates alll
and inter-cellular processes. In particular, quantitative modelinghe parameters together, cannot even finish after running for 4 days.
of the dynamics of biological pathways has drawn much atten- We present our decompositional approach in the context of the
tion recently (Cheret al, 2003; Matsuncet al,, 2003; Yeet al,  HFPN modeling framework and evolutionary search (Besfeal.,
2005). Our focus here is on modeling the dynamics of intra-cellular2002) for parameter value estimation. However, it can be easily
signaling pathways. extended to other modeling frameworks, such as simultaneous

Thanks to rapid technological advances, the structures of mangystems of differential equations, hybrid automata, etc. (Sorribas
signaling pathways are now available. Using this information,et al., 1988; Yeet al., 2005). Our approach is also independent of
attempts to derive system models that capture dipeamicsof the specific search method used for parameter estimation. In fact,
these pathways are beginning to emerge. For such attempts to lo@e may choose different search methods for different components,
successful, several challenges must be addressed. if this improves computational efficiency.

First, choosing a modeling framework is important, because it We have chosen HFPN as the modeling framework, because it
determines the appropriate level of abstraction at which cellulacaptures both continuous and discrete behaviors that are inherent in
components and their interactions can be described. The choidsiological systems. Another advantage for our purposes is that the
of the modeling framework is also strongly influenced by the
simulation and analysis tools that the framework offers.
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underlying graph of an HFPN model naturally captures the informa- (a)
tion flow and the dependency relations among the basic elements of O [ O—ol I—»O
a pathway. This allows us to systematically decompose a pathway
model into components.
We tested our method on the Akt-MAPK pathways, based on data

from 27 experiments. This pathway model has a total of 84 unknown ®) 3 3

parameters. Our method succeeded in decomposing it into 6 com-

ponents, each of which has no more than 25 unknown parameters, ?PKCO) - g.>K§
which must then be estimated together. Our estimated parameters 3 3

produced fairly good simulation results when compared with expe-

rimental data. We also used our model with its estimated parameters

to check the plausibility of the hypothesized crosstalk between th&i9. 1. ()The basic components and connections of a Petri net model. (b)
protein PDK1 of the Akt pathway and the protein MEK of the Change in markings of a Petri net due to the firing rules.

MAPK pathway.

The rest of this paper is organized as follows. In Section 2, we Crmatets e Test Inhibitory
review background information on the HFPN modeling framework Place Transition Arc Arc
and the Akt-MAPK pathways. We also provide some pointers to @ ) s > —]

related work on parameter estimation techniques. In Section 3, we

describe the HFPN model of the Akt-MAPK pathways and encapsu-

late the (_:rosstalk hypothe5|s_ in the model. In Section 4, we pre_serltlg_ 2 Additional features of an HFPN model.

the details of our decomposition method for parameter estimation.

In Section 5, we present simulation results to validate the estima-

ted pargmeter values_and totestthe crosst_alk hypothesis. In Sectl%? this basic model, and they have been deployed in a wide variety

6, we discuss some issues and possible improvements of our cur; o . . L
" . . ) ._“of application domains. A recent collection of such efforts in bio-

rent decomposition method. Finally, in Section 7, we summarizg

the main results and discuss the prospects for future work. ogical settings can be found in Chetal. (2003); Matsuncet al

(2003); Vos=t al. (2003); Zevedei-Oances al. (2003).
The classical Petri net is a model of a discrete event system
2 THE BACKGROUND whereas a crucial aspect of biological pathways is the various bio-

There are many approaches to modeling biological pathways (dghemicallreactions which are best specified as continuous differen-

Jong, 2002). We first explain the modeling framework that we havdid! equat_lons. Indeed, both discrete an_d cormnuous features_appear

chosen and then the specific signaling pathway setting in which w&° P€ an integral part of fundamental biological processes (Lincoln

have carried out our parameter estimation work. et al, 2004). To account for this, variods/brid dynamic models
have been proposed in the literature (Lincelnal., 2004). In the

2.1 Hybrid Functional Petri Nets setting of Petri nets, the hybrid version of interest to us is the Hybrid

Petri nets are a fundamental model of distributed discrete even'%unCtlonal Petri Net developed by Matsueical (.2 003). .
In an HFPN, places and transitions can be discrete or continuous.

sy;tems (Reisig, 1992). Tlf_wey offer an appealing visual nota_ltlon].he marking associated with a continuous place can be a real num-
which resembles the graphical notations often deployed by biolo; er, which can change smoothly according to the speed assigned to

gists to depict the components and their interactions in biologica : - L .
. . .the continuous transition(s) to which it serves as an input or output
pathways. The Petri net model, however, has a precise semantic o . S
ace. In addition, an edge can be one of three types: normal, inhi-

which fixes the meanings of the nodes and the arcs of the model gs L . )
: . Itory, or test. An inhibitory edge points from a discrete place to a
well as itsdynamics

A Petri net can be viewed as a bipartite graph with two I(indstransnlon, and it specifies that the transition is inhibited from firing

o whenever a token ipresentin the place. A test edge from a place

of nodes, usually calleglacesandtransitions The places represent - b o o .
o 0 a transition specifies that the transition can only fire if a token is
local states and the transitions represent local change-of-states. Enti-

ties called tokens are used to mark the places to specify the curreﬁ{esent In the placutthe firing of the transition does not change

- Iy P e token count on this place. See Figure 2 for HFPN features that

distributed state of the system. The transitions, accordinditing . ISP - 9
; . . are not present in ordinary Petri nets.

rule associated with them, effect local transformations of the token : . . . -

L . A typical biochemical equation depicting an enzyme catalyzed
distribution to model the system evolving from the current state to ; . . . )

. : reaction can be written as Equation 1. In this reaction, the enzyme

a new one. In the graphical representation, the places are drawn

. o binds reversibly to the substrate S, before converting it into the
circles, the transitions as boxes, and the tokens as small bullets pIa-rOduct P and releasing it. The paramefarsk, andks are the rate
ced inside the places. A standard firing rule is that if all the place git P 2 3

oo o constants that govern the speed of these reactions.
pointing into the transition currently carry at least one token each, 9 P

then the transition may fire. When it does so, one token is removed k

A . X 1 k3
from each of its input places and one token is added to each of its S+E=S8E—-5E+P (1)
output places. To improve modeling power, one can also associate :
weightswith the arcs so that the firing of a transition can depend on, The HFPN representation of such a reaction is shown in
remove and add multiple tokens from its surrounding places. Thisigure 3(a). Each molecular type is represented by a continuous
is illustrated in Figure 1(b). There are a large number of variationglace, and its concentration corresponds to the marking associated
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Fig. 4. Schematic of the (a)MAPK pathway, (b)Akt pathway and their
crosstalk interactions. Known crosstalk interactions are marked with dashed
arrows while the hypothesized interaction is marked with a bold arrow.

t 2 Vi ST/ (Ku + [S])

Fig. 3. (a) HFPN representation of the biochemical reaction. Assuming
Michaelis-Menton kinetics, the model can be simplified into (b).

with that place. The continuous transitions then represent the reacti-

ons. Each continuous transition is associated with a function whictand as a result, its catalytic subunit will be activated. The acti-

determines the speed of firing. In a biological setting, the rate ofvated PI3K will then phosphorylate the membrane phospholipid

a reaction is often a function of its reactants’ concentration levelphosphatidylinositol-4,5-biphosphate (RJRat the 3-OH position

(denoted as [E], [S], and [E.S], respectively). In an HFPN model.to phosphatidylinositol-3,4,5-triphosphate (PYRnd this is tightly

this function will be attached to the continuous transition. regulated by the phosphatase and tensin homolog (PTEN), which
Assuming quasi-steady-state approximations, the HFPN modeemoves the phosphate group from the same position.

can be simplified into Figure 3(b). The function of the transition will ~ PIP; recruits Akt and the phosphoinositide-dependent kinase-

be expressed as the Michaelis-Menton equatipn.[S]/(Kam + 1 (PDK1) to the plasma membrane allowing the phosphorylation

[S]) where of Akt by PDK1. Akt is activated by a sequential phosphoryla-
tion at its threonine residue 308 (PA?) and serine residue 473

Vimaz = ks[E] and Ky = k2 + ks (Sef™®) by PDK1 and an unknown kinase (hamed PDK2) respec-
ki tively (Nicholsonet al., 2002). Activated Akt further phosphorylates

We have adopted the HFPN to model the Akt and the MAPKand activates its downstream targets such as Forkhead transcription
pathways and their crosstalk. Our choice of this formalism has beefactor (FKHR) and glycogen synthase kinase(&SK-35).
influenced by the fact that it serves as the front-end of the software Another important molecular target for Akt signaling is Bad, a
Cell lllustrator with which the HFPN-based models can be simula-protein that regulates apoptosis. Bad can bind to the anti-apoptotic
ted (Nagasaket al., 2003). In many settings, an attractive alternative proteins Bcl-2 and Bcl-XL, allowing the pro-apoptotic protein Bax
is thehybrid automatanodeling framework (Henzinger, 1996) with to oligomerize at the mitochondria and promote the release of cyto-
its direct use of differential equations to capture the continuoushrome c into the cytosol. This would lead to the activation of
dynamics. This model has an extensive theory and an emerging seaspases and cell death. Upon phosphorylation by Akt at tHé®Ser
of simulation, analysis, and verification tools (Lincahal,, 2004).  residue, Bad is sequestered in the cytosol by 14-3-3 proteins, thus
It has been used to study, for instance, the excitable behavior of caBcl-2 and Bcl-XL can bind to Bax, hence preventing the release of
diac cells (Yeet al, 2005), Delta-Notch protein signaling (Ghosh cytochrome ¢ and inhibiting apoptosis. Constitutive Akt signaling
et al, 2001) and quorum sensing in bacteria (Adtial., 2001). promotes cell survival and proliferation, leading to the formation of

2.2 The Akt Pathway tumors.

The kinase Akt plays an important role in the regulation of cellu-2.2.1 MAPK Crosstalk The significance of the Akt pathway lies
lar functions. Its downstream targets include kinases, transcriptiomot only in the several cellular functions it regulates, but also in its
factors and other regulatory molecules (Khwaja, 1999). Akt hadnteractions with other pathways (Heldin, 2001). The MAPK signa-
also been identified as a major factor in many types of canceiing cascade is one such pathway that is influenced by components
The schematic describing the Akt pathway, its interactions withof the Akt pathway.
the mitogen-activated protein kinase (MAPK) pathway, and their The MAPK pathway is a highly conserved pathway that is linked
downstream targets are shown in Figure 4. to mitogenic responses and cell proliferation. It can be activated by
The activation of the Akt signaling pathway is a multi-step pro- a wide range of growth factors and hormones and it too has several
cess (Bellacosat al, 1998). When ligands such as fibroblast target molecules. Some of the signals that activate the Akt pathway
growth factors, epidermal growth factors and insulin bind to theircan also activate the MAPK pathway. Upon activation, the tyrosine
specific membrane receptors, the cytosolic domains of the recepesidues of the receptor is phosphorylated, serving as docking sites
tors will undergo conformational changes, allowing them to actfor proteins such as Grb2 and SOS. The exchange factor SOS then
as scaffolds for certain types of proteins in the cell. Phosphoiteplaces guanosine 5'-diphosphate (GDP) on the Ras protein with
nositide 3-kinase (PI3K) is one such protein that gets recruitedyuanosine 5’-triphosphate (GTP), thus activating it. Activated Ras
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Table 1. Rate reactions and their associated parameters. The Michaelis-
Menton constantsK ;) are given in nM. The maximal rate constants)(
are expressed in nMg . The first order and second order rate constats (

then binds to the protein Raf, triggering a wave of downstream phos:
phorylation where Raf activates the MAPK kinase (MEK) which in

turn activates p44/42 MAPK (ERK).

are given in s and nM~1.s~1 respectively.
Recent studies show that the Akt pathway can regulate the MAPK

pathway by competitively phosphorylating Raf at 8er(Moelling No T Rate Equaion Er—
et al, 2002), preventing further activation. However, this Akt- ; Hg] ] tl = 8332
MAPK regulation is not entirely inhibitory. PI3K has been shownto | 5 | s e — 0.001
activate Raf via the intermediate protein PAK-1 (Chaudhetrgl., 4| alRacl 13K/ (kg + (P13K]) kg = 0.3 Kmy =78
L 5 V5 [PI3Ka] / (Kmg + [PI3Ka]) Vg = 46.2 Kmg = 117
2000). Recently, Satet al. (2004) have shown that PDKZ1 is invol- | 6 | kelPi3Ka[PIP,]/ (Kmg + [PIPy]) kg = 0.05 Kmg = 6170
ved in the activation of MEK. Moreover, our data also shows that ; | |7 ZlEms)/ e = (7P T e T
B . . . cyto = 0.
the repression of PDK1 gene expression using small interferencee | kolPiPs.axT] ko = 0.089
RNA (siRNA) leads to a decrease in activated MEK and ERK in @] 1, | ooml e acraps s, o ity | o0 Z oo kol oo
prostate cancer model (Teoergal., 2006). Thus these support our | 2 klZ%PDKQ]] [[P|P3'AKTP]]/(K"‘12 + ['["Pa-AKTP])] ki = 20 Kmyp = 80000*
. . . . . 13 k13 [PP2A][PIP3.AKT, Kmqy3 + [PIP3.AKT] k = 0.04 Km = 43000
hypothesis that PDK1 could be involved in the activation of MEK | 14 kﬁ[PPZA][PIP;AKTEI};];EK"‘S + [PIP;AKTEE]; k4 = 0163 Kmyg = 48000
by phosphorylating it, as indicated by a bold arrow in Figure 4. 15 | ki5[Race][Ras)/ (Kmys + [Ras)) k15 = 50 Kmys = 20000
16 | Vig[Rasa]/(Kmyg + [Rasa]) Vig = 15000 Kmyg = 7260
. . 17 | ky7[Rasa][Raf]/(Kmy7 + [Raf]) k17 = 0.09 Kmi7 = 50
2.3 Parameter Estimation 18 | kyg[Pakp][Raf] /(Kmyg + [Raf]) kig = 0.183  Kmjg = 500
19 | Vig[Rafp]/(Kmyg + [Rafp]) Vig = 78 Kmpg = 30
Various techniques based on global optimization have been prc-20 koo [PIP3 - AKTpp] [Rafp] / (Kmag + [Rafp]) kag = 0.1 Kmyg = 13.2
ko1 [Rafp] [MEK] / (Kma1 + [MEK]) kpp = 5.6 Kmpp = 7200
posed for estimating the parameters of pathway models (see, e.g. 22 ka2 [PDKIeyto] MEK] / (Kmay + [MEK]) kop = 0.04  Kmagy = 2600
_ ko3 [PP2A] [MEKp] / (Kma3 + [MEKp]) ko3 = 0.45 Kmos = 1250
Kikuchi et al., 2003; Moleset al., 2003). However, these techni 24 e MEKs Ko MK o s
ques, which usually estimate all the model parameters together, ds | ks POK1cyto] IMEKp]/ (Kmos + [MEKp]) ko = 0.05  Kmps = 2150
: 26 kog [PP2A] [MEKpp] / (Kmog + [MEKpp]) kog = 0.4 Kmyg = 4316
not scale up weII_ for Iafge p_athway models with many parameters, ;. | 25 icre ) (kme s (£rK]) e e e
due to the high dimensionality of the search space and the presenfes | ksMKP3][ERKp]/ (Kmog + [ERKp]) kog = 30 Kmog = 160
of many local minima. 29 | kpg[MEKpp][ERKp]/(Kmpg + [ERKp]) kpg = 0.0308  Kmpg = 55000
. 30 | k3g[MKP3][ERKpp]/(Km3q + [ERKpp]) k3g = 32 Km3g = 60
For larger pathway models, it is natural to try to decompose iff 31 | ks1[ERKpp][POORSK]/(Kmg; -+ [POORSK]) kg =0.0017  Kmg; = 97.6
. . . 32 | k3p[ROS][P9ORSK]/(Km3p + [P9ORSK]) k3p = 0.76 Km3p = 181
into small, independent components and estimate the parametarss | vs,poorskp)/ (kmys + (P9ORSKp]) Vi — 468 Kmgs — 2.8
for each component separately, thus reducing the computational®* | *s[Po0RSKp][Bad]/(Kms, + [Bad]) k3q = 0.798  Kmgy = 10
. i . 35 | kzg[Pakp][Bad]/(Kmss + [Bad]) k3g = 0.04 Km3g = 30000
complexity. The general idea of model decomposition for paraq ss | vsslBadp1i2]/(Kmse + [Badpl12]) Vg = 821 Kmgg = 43300
meter estimation has been successfully applied in many domains,;; | 37 fCierioael/ (s o (5 Ao
e.g., Bayesian model learning (Neapolitan, 2003), geometric curveso | Vig[Badp13e]/ (Kmsg + [Badp136]) Vzg =821  Kmgg = 43300
fitting (Jianget al, 2005), control of large dynamical systems (Wil- | 1 | o[22/ (mo (520 0 a0 T
liamset al., 1998), etc. 2 tngaé} [BBCLZ]J iz = 0.0561
Cl2. Ba = 0.
In related work on Akt and MAPK pathways (Hatakeyagtal., aa | o (B Be2] ey — 0.002"
2003), a simplified model based on simultaneous differential equati- ;° t%%ﬁ(fxf]] as = ggﬁm
H 46 46 = 0.
ons is proposed. The model has about 30 unknown rate parametefsy | ks (ros] kg7 = 0.0155
: : . : : . <& 48 | kgg[ROS][PI3Kp][Pak] / (Kmyg + [Pak]) kgg = 0.14 Kmgg = 482
which are estimated Wlth an |n-hou§e genetic algorithm. There i$ s | (2 00 Gr s eualy R e
no report of computation time required. It is also not clear how| 50 | kso[PIP3][PDK1cyto] kso = 0.0007
51 | ks1[PDK1] kg; = 0.98

much experimental data was used and how the estimated parameters
were validated. To ease the computational burden, in subsequent
work (Kimura et al, 2004), the model is decomposetanually ~ 12ble 2.
based on the observation that parameters in upstream components

Initial concentration of the cellular components.

. . . Pl Ci trati M Pl Ci trati M
of enzyme catalyzed reactions can be estimated independent of — onoenvaon (o) e ooncenraton (0
parameters in downstream components, if there are no feedback P o | 2
. oy . . 2 .
loops connecting them. Our decompositional approach uses a simi- PTEN 0.1 POORSK | 5
H H - H AKT, 200 BCL2 100
lar observatlon,. butis more general, as it |§ not restricted to enzyme PDKK:ZO 1000 o 100
catalyzed reactions. It is also fully automatic. PDK2 3 BAX 100
PP2A 150 NOX5 2000
RAS 18900 ROS 200
RAF 66.4 PAK 500

3 THE HFPN MODEL OF THE AKT-MAPK
PATHWAYS

We have modeled the Akt pathway and the MAPK pathway as well The model can be viewed as separate modules interacting with
as the hypothesized crosstalk as an HFPN model. The full struosne another via shared nodes. Figure 5(a) models the reactions that
ture of the model is shown in Figure 5. The parameters associatetéke place when the receptors are activated by external signals (indi-
with the transitions and the initial protein concentration levels arecated by the place ‘Serun’). It also includes the reactions of the Akt
shown in Table 1 and Table 2. In Table 1, the four parameters whospathway. A point to note is that under prolonged activation, the cells
values have been taken from literature are marked wittvhile the become desensitized to the signals and respond less to it. We have
remaining parameters have values that have been estimated by amodeled this phenomena as receptor internalization (Reaction 2).
technique. The sources of information of the four known parameters The MAPK pathway is depicted by Figures 5(b),(c) and (d). After
can be found in: http://www.comp.nus.edu-sgssysbio/ismb2006. activation by the receptors, Ras will catalyze the phosphorylation of
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Serum

(a)

PIP;.AKT]

Badp136 BaXeyo

MKP3

44

PYORSK

Fig. 5. HFPN model of the Akt and MAPK pathways. The hypothesized crosstalk interaction is emphasized by bold test arcs. The members of downstream
components should include the places of the upstream components which they are directly linked from. However to reduce clutter, we show the components
as separate modules.

Raf. Phosphorylated Raf, denoted as ‘Rafp’, will then phosphorylate Figure 5(f) models the activity of the Bcl-2 family members,
MEK at two sites, forming the doubly phosphorylated MEKpp which include the proteins Bcl-2, Bad and Bax. As mentioned in the
(Figure 5(c)). Finally, ERK will be phosphorylated by MEKpp in previous section, these proteins play important roles in regulating
the same manner, as shown in Figure 5(d). apoptosis. It has also been shown that ERK can regulate Bad phos-
In our model, there are three possible paths for crosstalk interaghorylation through the activation of the protein P9ORSK, shown in
tions: Active PI3K can upregulate the phosphorylation of Raf viaFigure 5(e).
PAK1(Reactions 48 and 18). Akt can inhibit Raf activity (Reaction Our model consists of 44 places connected to 51 transitions. For
20), and PDK1 can affect MEK phosphorylation (Reactions 22 andnost of the transitions, their dynamics are driven by Michaelis-
25) by the hypothesized interactions. The protein PP2A is an ubiMenton equations (e.g. Reactions 4, 5, 6). The rest are either
quitous phosphatase which reverses the action of several kinasesassociation/dissociation reactions (e.g. Reactions 42, 43) or syn-
our pathway. Hence it is not considered as exclusively belonging tdhesis/degradation reactions (e.g. Reactions 46, 47) whose rates are
the Akt pathway or the MAPK pathway. governed by the mass action laws. Each of these reactions have one
or two parameters associated with them.
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4 PARAMETER ESTIMATION This decompositional approach can be applied to different mode-

Parameter estimation can be viewed as an optimization probleri"d frameworks. Furthermore, it is independent of the specific
with differential-algebraic constraints. The input to the problem S€arch method (Beyet al, 2002; Kirkpatricket al,, 1983; Moles
consists of the values of state variables at selected discrete tinf al, 2003) used for parameter optimization. Here we present
points. In the present setting, these are steady-state or time-seri@§" Method in the context of the HFPN model combined with
measurements of protein concentration levels. The problem is t§velutionary search (Beyet al., 2002).

determine the values of thes parameterp € RY and all the

unknown protein concentration levels such that they minimize the.1 Pathway Decomposition

following objective function: The goal of pathway decomposition is to extract components from
the pathway model whose parameter estimation problems can be
J(p) = Z (ij(te,P) — ;5 (te))? @) solved independently. A component is an executable subgraph of
the HFPN model. By an “executable” subgraph we mean a subgraph

that can be simulated as a model by itself, assuming we have the
subject to values for the parameters and initial conditions relative to the nodes
X = f(x,1) (3)  inthis subgraph. Itis not difficult to see that a component is executa-

h(x,t) >0 @) ble if_ and only if its set of_nodes (plac_es and transitions)cdoeed _
- relative to the full model in the following sense. If a place node is

pL <p< DU (5) present in the component, all its incoming transitions must also be

present in the component. Furthermore, all the transitions to which
the place is connected via normal arcs must also be present in the
t € [0,T]. p* andp” are the lower and upper bound constraints cpmponent. Thi.s is so since the reactigns associated with these tran-
sitions are precisely those that determine the concentration levels of

on the par_ame_tens. The time pomtste_ € T. C [0,7] des_crlbe the protein associated with the place. If a place is connected to a
the set of time instances where experimental data are available. qu

. . . . ransition via an inhibitory arc or a test arc then the reaction asso-
expressionc;;(te, p) is the model predicted value of the variable . : o .
. . ' . ) . exp ciated with the transition does not affect the concentration level of
x; in experiment; at timet. using parameterp while . "(t.)

. . U the place in any way. By similar reasoning, if a transition is present
is the experimental measurement of the same variabjgis the . P yway. By 9 : P
in a component, all its input places must also be in the component.

weight that is used to normalize the contributions of each termto the ' _. . ;
2 ; A - : Since there are many components (the whole model itself is a
objective function. This value is usually taken to be the maximum . : .
component), we must choose them in a systematic fashion so as

value ofz; in experiment;. Lo
: N . to help decompose the parameter estimation problem. To do so,
A typical parameter estimation algorithm starts by randomly )
. we first color the nodes of the model. We then compute a compo-
choosing parameter values from the search sfiEe It uses (3) . o ;
. . nent using the criterion to be described below. We then solve the
to simulate the system according to the chosen parameters and then

uses (2) to compare the results with the input data. The results (ﬁarametgr estimation problem for this component. This is followed
this comparison provide the information to improve the parameterC ())/rzpsset I;iégin?:g; O(];:grr:t]?a\r?(; tsf(;eorr:odes. We then proceed to
values through gradient descent or stochastic search (Paedals P P :

. . ) As a first step, we assign colors to each place. We assume we
2002). This process repeats until a better solution can no longer he, . )
o . - . . ave experimental data that has been produced bsxperiments
found or a pre-specified maximum number of iterations is reached.

L o . - conducted under different conditions. With each place we associate
Our optimization problem is highly non-linear and we will use the

. . . . . .. aK-dimensional color vector. Suppose tith experiment produces
evolution strategies algorithm to solve this problem. This algorithm . .
. . : . . time series values and/or the steady state concentration level of the
keeps a working set gf candidate solutions. Each solution consists

of a vector of parameter values. In each iteration, it randomly selectgmte'n associated with the plapeThen thejth component of the

two parent solutions from the workina set and aenerates a new on color vector ofp is set to be grey. Otherwise it is fixed to be white.
P ) . 9 Y i one or more components of the color vector of a place is grey then

possibly by interpolating the values of parent vectors. Thereafterfhe color of the place is defined to be grey. Otherwise it is defined to

it alters the values slightly and scores the new solution by simulabe white '

ting the model according to these parameter values and applying the The transitions are initially colored as follows. Due to the nature

objective function. A number of such solutions are generated and . . - "
. . . of the reactions being represented by the transitions, each transition
from the combined set, the best scorjagolutions are selected for

: : . . . - . _can have one or two rate parameters associated with it. If all the
the next iteration. This carries on for a certain number of 'teratlonsbarameters associated with a transition are known. then the transi-
or until no better solutions can be obtained (Begeal., 2002). '

lﬂon is colored black. If none of the parameters associated with a

Common approaches to pgrameter estlmgtlon 'try o .estlmate athansition are known then it is colored white. If one but not both the
the parameters together. This leads to a high-dimensional searc

. ) . parameters associated with a transition are known, then it is colored
space and hence to very high computational complexity. The ke re
feature of our approach is to exploit tis¢ructure of a pathway, Y- )
L . 4 To see how we choose our first component, Bt =
to break down the parameter estimation problem into a series o
. P, T, h,C,a) be an HFPN where
smaller problems. The structure of a pathway model determines th
causal links and dependencies between the system variables. We )
use this dependency relationship to extract pathway components that - £ iS the set of places,
can be handled independently. - T is the set of transitions,

ijte j

Here f is the set of differential constraints describing the system
dynamics.h is the state constraints for the variablese x for all
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- h: PUT — {discretecontinuoug labels the places and the the model shown in Figure 5, the sequence of components chosen is
transitions as being discrete or continuous. (@), (b), (c), (d), (e) and (f).

- C C{(PxT)U(T x P)}is the set of arcs. We then check the accuracy of the estimated parameters by simu-

lating the model using the estimated parameters and the fraction of

- a: €' — {normal test inhibitory} labels arcs as being normal, the experimental data that has been reserved for this purpose.

test or inhibitory.

Let p be a grey colored place. Then a particular component cond SIMULATION AND RESULTS
tainingp -let us denote this componentasnp(p)- is defined to be  We now describe our results on parameter estimation (Section 5.1)
the least set of nodes éf satisfying the following conditions. and on the hypothesized Akt-MAPK crosstalk mechanisms (Sec-
tion 5.2).

(C1) p € comp(p). N
(C2) Supposer € comp(p) N P andz is colored grey or white and 5.1 Parameter Estimation

(y,z) is an arc inH theny is also incomp(p). Using the method described in the previous section, we perfor-
med parameter estimation for the Akt-MAPK pathways. The data
for the estimation problem was obtained from 27 experiments, of
which 10 provided time-series data and 17 provided steady-state
data. The 27 experiments were performed under 18 different initial
conditions. We used data from 23 experiments as inputs to our para-
meter estimation procedure and reserved data from 4 time-series

Itis eaﬁy to see thatlbmp(p) Is |ndhe9d a component. tl;l]ow frtonf1 experiments to validate the results of estimation. The data reser-
among all componentfcomp(p)} wherep ranges over the set of .4 o \ajigation was not revealed to the estimation procedure.

grey places, we phoose _the one V.Vh.'Ch has a minimum number 0AII the data files that we used are available for download from
white/grey transitions while maximizing the number of grey places'http'llwww comp.nus.edu.sgfpsysbio/ismb2006
Thus choosing a component is a non-trivial task. A number of stra- The Akt-MAPK pathways consist of 51 reactions and a total of

theglesl can be adaptr(]a_d to easfe :]h's task g)ut we will not addlress th%ﬁ parameters, of which 4 are known. We assume that the initial
ere. In any case, this part of the procedure consumes only a sm nditions for all the places are known, and this is supported partly

fraction of the overall time needed. by experimental data. For other situations where not all the initial

_Suppose we have chosen the compomtzp(po) COMespon- - yalues are known, the missing protein concentrations can be treated
ding to the grey place as the best according to our criterion. In th%s parameters to be estimated as well

model fhownhi.ng.igﬁzeﬁ” |':S PIP‘*?KT% and the ccl)rrlﬁonentl itt, We ran the estimation procedure on a Pentium 4 PC with a
generates is highlighted in Figure 5(a). We now apply the evolu 10 8GHz processor and 2.5GB memory. Our procedure broke the

nary search procedure tomp(po) using a reserved fraction of the pathways into 6 components (Figure 5(a)-(f)). The average time to

experimental data that provides values for the concentration Ieveléstimate the parameters for each component was about 3 hours, and
of the proteins associated with the grey placesdmyp(po). This the total time to estimate all the parameters was about 18 hours.

search involves simulating the component several times, adjusting . comparison, we also tried to solve the same parameter estima-

the parameters in each iteration to get a bet.ter result.according.to Bn problem using the global approach; in other words in which one
prc.'lf'ﬁs of tge gvoltl;t_loniry protﬁedur;a_ WT.Ch we W'lclj not g(_et k':to tries to estimate all the parameters together using the evolutionary

etai here. uring this phase, the estimation procedure mig 9%earch method. On the same computational platform, after running
stuckin a local minima while S|gn|f|car.1tly.d|ffer|ng fro.m the repor- for 4 days, the global method failed to produce a set of parameters
t?d data._Such sm_Jatlor_15 are de_alt \.’\{'th in two possible ways. T_h?hat can produce reasonable simulation results. See Figure 6 for a
first consists of using biological intuition to bump the current es“'comparison

mated parameter values out of the local minima trap. The second is An obvious measure to assess the accuracy of the parameters and

to examine the co_nce_rned expenmen@a_ll data and dlsgard itas be"?ﬂe reliability of the parameter estimation method is the deviation
too noisy or as being improperly conditioned to be reliable.

At the end of this first phase, all the parameters associated with
the transitions incomp(po) would have been estimated. We now (g
color all the nodes imomp(po) as black.

(C3) Suppose: € comp(p) N T and(y, z) is an arc inH theny is
also incomp(p).

(C4) Supposer € comp(p) N P, x is colored grey or white, (x, y) is
an arcinH and (x, y) is a normal arc, thenis also incomp(p)

G

Akt Activation Akt Activation

We now choose a suitable grey plgeein P — comp(po) and § o E o
computecomp(p; ) and repeat the above process. It is worth noting & . o ;B ;2 o i
that when computingomp(p: ), black-colored places @bmp(po) 5 g o o
will form the boundary nodes of this new component. This is t:> © ‘Z 30
because, according to our back-tracing procedure for computing £ ;| /= @ C

components, the input transitions of a black-colored placenweil e e e B o

be included in the new component. This implies that each new com- Time (s) Time (s)

ponent will include only a small portion of components that have

already been computed. This leads to reduced computation time fafig. 6. Comparison of the simulation results of Akt against experimental

each of our parameter estimation task. data using the parameters estimated with (a) the decompositional method and
After a finite number of iterations all the parameters would have(b) the conventional method [l - experimental data points, ‘—' simulation

been estimated and all the nodes would have been colored black. Fpiofiles).
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Fig. 7. Simulation profiles of (a) MEK and (b) ERK activation levels.

Fig. 9. Simulation of MEK and ERK activation levels with decreasing
Bad Activation amounts of PDK1.

levels of PDK1 (from 1000 nM to 0 nM) to mimic the knock-down
of PDK1 using siRNA. Figure 9 shows the results of the simulations.
ERK activity is being reduced to negligible levels after decreasing
the amounts of PDK1.
L e T However, PDK1 seems to exist in an active conformation under
normal conditions (Vanhaesebroeztal.,, 2000). With the hypothe-
) . ) ) - . sized interaction, one would assume that in the absence of exter-
Fig. 8. Simulation profiles of Bad activation levels compared to experimen- . . . .
tal data. nal signals, PDK1 will continuously activate the MAPK pathway,
causing uncontrolled growth. This contradicts the current view
that the MAPK pathway is activated by external signals. However,
of the simulation results from experimental data. Figure 7 showssimulations show that under serum starved conditions, PDK1 does
the simulation results of both MEK and ERK activity and Figure 8 activate ERK, but its activation is maintained at a low basal level of
shows the Bad phosphorylation levels for the experiment where th8-02% (Figure 10). This suggests that PDK1 may indeed be a neces-
cells are treated with diphenyleneiodonium (DPI), a NADPH oxi- Sary but not sufficient condition to fully activate the MAPK pathway,
dase inhibitor, in the presence of serum. Due to the lack of spacdherefore lending support to the presence of the interaction.
we do not show the results for all the proteins here. Figure 7 shows
that the match between the simulation results and experimental data o ERK Activity
is good, though not perfect. Given the limited, noisy data availa-
ble and the high dimensionality of the search space, these results
represent a reasonable first step. We expect that as we generate bet-
ter data both in terms of quantity and quality, a better match will
be obtained. Longer running time for the estimation procedure may
also potentially help. o —
Among the results obtained, we indeed have cases in which the T Time fo)
match between the simulation results and experimental data is not
good. Figure 8 shows the simulgtion results {ind experimeptal dat'e_ng_ 10. ERK activation levels in the absence of serum.
for phosphorylated Bad. There is a systematic, constant difference
between them. From a static analysis of the model in Figure 5, the
inhibition of the production of superoxide (ROS) by treatment with We also tested the possibility @bt having this crosstalk inter-
DPI will propagate downstream and we would expect the level ofaction between PDK1 and MEK by removing it from our model.
phosphorylated Bad at Séf to decrease (Figure 5(f)). However, Simulations of this pathway configuration revealed that the ERK
the experimental data points for activated Bad in Figure 8 are consiactivity was kept low throughout even in the presence of serum.
stently higher than those from the cells which have not been treated@his, we suspect, could be due to the inhibitory effect of activated
with DPI. This difference could be due to unknown reactions andAkt (Moelling et al.,, 2002). To further confirm this observation, we
needs to be further investigated. took into account the fact that our model was based on the LNCaP
cell line which has defective PTEN due to a frameshift mutation in
5.2 Effects of PDK1 on MEK and ERK thePTENgene. Hence we re-simulated the model (with the PDK1-
A key biological maotivation for this work was to test the plausibi- MEK interaction removed) with 10 nM of PTEN. This simulation
lity of the hypothesized crosstalk interaction between the Akt andoroduced a similar outcome (Figure 11). However, these simulati-
the MAPK pathways. Experiments show that in LNCaP, a pro-ons should not be taken as a conclusive comparison as the modified
state cancer cell line (Horoszewiet al., 1983), transfected with configuration (without the interaction) could not fit the experimental
PDK1 siRNA, which reduces the total PDK1 in the cell, results in adata.
significant decrease in the phosphorylation of MEK and ERK. This Although more experiments are needed to confirm the role of
suggests a possible crosstalk with PDK1 activating MEK by phosPDK1 in the regulation of MAPK activity, the above simulations
phorylation. We performed the same simulations, decreasing theuggest that the interaction is not only present but also necessary

Badp112 Concentration (%)

ERKpp Activity (%)
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MEK Activity - ERKActivity simultaneous differential equations, hybrid automata, and stochastic
Petri nets. The idea is to capture the dependency relations among the
0002 pathway elements in the form of a dependency graph similar to the
0001 bipartite graph that underlies an HFPN model. On the biological
side, it will be important to study the effectiveness of our method on
................. oo other signaling pathways as well as metabolic and gene regulatory
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Fig. 11. MEK and ERK activation levels without PDK1 crosstalk.

for enabling the MAPK pathway. This also seems to imply tha
knocking down PDK1 to reduce Akt activity may affect the proper
functioning of the MAPK pathway.
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