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ABSTRACT
Parameter estimation is a critical problem in modeling biological

pathways. It is difficult because of the large number of parameters
to be estimated and the limited experimental data available. In this
paper, we propose a decompositional approach to parameter esti-
mation. It exploits the structure of a large pathway model to break it
into smaller components, whose parameters can then be estimated
independently. This leads to significant improvements in computa-
tional efficiency. We present our approach in the context of Hybrid
Functional Petri Net modeling and evolutionary search for parameter
value estimation. However, the approach can be easily extended to
other modeling frameworks and is independent of the search method
used. We have tested our approach on a detailed model of the Akt
and MAPK pathways with two known and one hypothesized crosstalk
mechanisms. The entire model contains 84 unknown parameters. Our
simulation results exhibit good correlation with experimental data, and
they yield positive evidence in support of the hypothesized crosstalk
between the two pathways.
Contact: thiagu@comp.nus.edu.sg

1 INTRODUCTION
Computational models and methods are becoming an integral part
of molecular biology. They are being used not only to identify
cellular components, but also to determine how these components
interact with one another. Quantitative modeling of these interacti-
ons will play an important role in understanding fundamental intra-
and inter-cellular processes. In particular, quantitative modeling
of the dynamics of biological pathways has drawn much atten-
tion recently (Chenet al., 2003; Matsunoet al., 2003; Yeet al.,
2005). Our focus here is on modeling the dynamics of intra-cellular
signaling pathways.

Thanks to rapid technological advances, the structures of many
signaling pathways are now available. Using this information,
attempts to derive system models that capture thedynamicsof
these pathways are beginning to emerge. For such attempts to be
successful, several challenges must be addressed.

First, choosing a modeling framework is important, because it
determines the appropriate level of abstraction at which cellular
components and their interactions can be described. The choice
of the modeling framework is also strongly influenced by the
simulation and analysis tools that the framework offers.

Independent of the framework chosen, modeling the dynamics of
a signaling pathway requires the determination of various reaction
rate constants that control the bio-chemical reactions constituting
the pathway. These rate constants are usually called model parame-
ters. Almost always, only a few of these parameters can be determi-
ned directly through experiments. The rest must be estimated, based
on experimental data, e.g., gene expression or protein concentra-
tion measurements. Unfortunately, the amount of data available is
rather limited in quantity and sometimes corrupted by noise. This,
combined with the large number of unknown model parameters
makes the parameter estimation problem computationally difficult
and sometimes intractable.

In this work, we adopt the recently introduced Hybrid Functional
Petri Net (HFPN) (Matsunoet al., 2003) as the modeling frame-
work and propose adecompositionalapproach to the parameter
estimation problem in signaling pathway modeling. The biological
application driving our study is the Akt and MAPK pathwaysand
their hypothesized crosstalk mechanisms.

A key advantage of our decompositional approach is that it
exploits the structure of a large pathway model to break it into
smaller components, whose parameter estimation problem can then
be solved independently. This leads to significant improvements
in computational efficiency due to the reduction in the dimensio-
nality of the search space and in the number of local minima.
For the Akt-MAPK pathways with 84 unknown parameters, our
approach produced reasonable estimates for all parameters in about
18 hours. In comparison, the common approach, which estimates all
the parameters together, cannot even finish after running for 4 days.

We present our decompositional approach in the context of the
HFPN modeling framework and evolutionary search (Beyeret al.,
2002) for parameter value estimation. However, it can be easily
extended to other modeling frameworks, such as simultaneous
systems of differential equations, hybrid automata, etc. (Sorribas
et al., 1988; Yeet al., 2005). Our approach is also independent of
the specific search method used for parameter estimation. In fact,
one may choose different search methods for different components,
if this improves computational efficiency.

We have chosen HFPN as the modeling framework, because it
captures both continuous and discrete behaviors that are inherent in
biological systems. Another advantage for our purposes is that the
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underlying graph of an HFPN model naturally captures the informa-
tion flow and the dependency relations among the basic elements of
a pathway. This allows us to systematically decompose a pathway
model into components.

We tested our method on the Akt-MAPK pathways, based on data
from 27 experiments. This pathway model has a total of 84 unknown
parameters. Our method succeeded in decomposing it into 6 com-
ponents, each of which has no more than 25 unknown parameters,
which must then be estimated together. Our estimated parameters
produced fairly good simulation results when compared with expe-
rimental data. We also used our model with its estimated parameters
to check the plausibility of the hypothesized crosstalk between the
protein PDK1 of the Akt pathway and the protein MEK of the
MAPK pathway.

The rest of this paper is organized as follows. In Section 2, we
review background information on the HFPN modeling framework
and the Akt-MAPK pathways. We also provide some pointers to
related work on parameter estimation techniques. In Section 3, we
describe the HFPN model of the Akt-MAPK pathways and encapsu-
late the crosstalk hypothesis in the model. In Section 4, we present
the details of our decomposition method for parameter estimation.
In Section 5, we present simulation results to validate the estima-
ted parameter values and to test the crosstalk hypothesis. In Section
6, we discuss some issues and possible improvements of our cur-
rent decomposition method. Finally, in Section 7, we summarize
the main results and discuss the prospects for future work.

2 THE BACKGROUND
There are many approaches to modeling biological pathways (de
Jong, 2002). We first explain the modeling framework that we have
chosen and then the specific signaling pathway setting in which we
have carried out our parameter estimation work.

2.1 Hybrid Functional Petri Nets
Petri nets are a fundamental model of distributed discrete event
systems (Reisig, 1992). They offer an appealing visual notation
which resembles the graphical notations often deployed by biolo-
gists to depict the components and their interactions in biological
pathways. The Petri net model, however, has a precise semantics
which fixes the meanings of the nodes and the arcs of the model as
well as itsdynamics.

A Petri net can be viewed as a bipartite graph with two kinds
of nodes, usually calledplacesandtransitions. The places represent
local states and the transitions represent local change-of-states. Enti-
ties called tokens are used to mark the places to specify the current
distributed state of the system. The transitions, according to afiring
rule associated with them, effect local transformations of the token
distribution to model the system evolving from the current state to
a new one. In the graphical representation, the places are drawn as
circles, the transitions as boxes, and the tokens as small bullets pla-
ced inside the places. A standard firing rule is that if all the places
pointing into the transition currently carry at least one token each,
then the transition may fire. When it does so, one token is removed
from each of its input places and one token is added to each of its
output places. To improve modeling power, one can also associate
weightswith the arcs so that the firing of a transition can depend on,
remove and add multiple tokens from its surrounding places. This
is illustrated in Figure 1(b). There are a large number of variations

Fig. 1. (a)The basic components and connections of a Petri net model. (b)
Change in markings of a Petri net due to the firing rules.

Fig. 2. Additional features of an HFPN model.

of this basic model, and they have been deployed in a wide variety
of application domains. A recent collection of such efforts in bio-
logical settings can be found in Chenet al. (2003); Matsunoet al.
(2003); Vosset al. (2003); Zevedei-Oanceaet al. (2003).

The classical Petri net is a model of a discrete event system
whereas a crucial aspect of biological pathways is the various bio-
chemical reactions which are best specified as continuous differen-
tial equations. Indeed, both discrete and continuous features appear
to be an integral part of fundamental biological processes (Lincoln
et al., 2004). To account for this, varioushybrid dynamic models
have been proposed in the literature (Lincolnet al., 2004). In the
setting of Petri nets, the hybrid version of interest to us is the Hybrid
Functional Petri Net developed by Matsunoet al. (2003).

In an HFPN, places and transitions can be discrete or continuous.
The marking associated with a continuous place can be a real num-
ber, which can change smoothly according to the speed assigned to
the continuous transition(s) to which it serves as an input or output
place. In addition, an edge can be one of three types: normal, inhi-
bitory, or test. An inhibitory edge points from a discrete place to a
transition, and it specifies that the transition is inhibited from firing
whenever a token ispresentin the place. A test edge from a place
to a transition specifies that the transition can only fire if a token is
present in the place,but the firing of the transition does not change
the token count on this place. See Figure 2 for HFPN features that
are not present in ordinary Petri nets.

A typical biochemical equation depicting an enzyme catalyzed
reaction can be written as Equation 1. In this reaction, the enzyme
E binds reversibly to the substrate S, before converting it into the
product P and releasing it. The parametersk1, k2 andk3 are the rate
constants that govern the speed of these reactions.

S + E
k1­
k2

S.E
k3−→ E + P (1)

The HFPN representation of such a reaction is shown in
Figure 3(a). Each molecular type is represented by a continuous
place, and its concentration corresponds to the marking associated
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Fig. 3. (a) HFPN representation of the biochemical reaction. Assuming
Michaelis-Menton kinetics, the model can be simplified into (b).

with that place. The continuous transitions then represent the reacti-
ons. Each continuous transition is associated with a function which
determines the speed of firing. In a biological setting, the rate of
a reaction is often a function of its reactants’ concentration level
(denoted as [E], [S], and [E.S], respectively). In an HFPN model,
this function will be attached to the continuous transition.

Assuming quasi-steady-state approximations, the HFPN model
can be simplified into Figure 3(b). The function of the transition will
be expressed as the Michaelis-Menton equationVmax[S]/(KM +
[S]) where

Vmax = k3[E] and KM =
k2 + k3

k1

We have adopted the HFPN to model the Akt and the MAPK
pathways and their crosstalk. Our choice of this formalism has been
influenced by the fact that it serves as the front-end of the software
Cell Illustrator with which the HFPN-based models can be simula-
ted (Nagasakiet al., 2003). In many settings, an attractive alternative
is thehybrid automatamodeling framework (Henzinger, 1996) with
its direct use of differential equations to capture the continuous
dynamics. This model has an extensive theory and an emerging set
of simulation, analysis, and verification tools (Lincolnet al., 2004).
It has been used to study, for instance, the excitable behavior of car-
diac cells (Yeet al., 2005), Delta-Notch protein signaling (Ghosh
et al., 2001) and quorum sensing in bacteria (Aluret al., 2001).

2.2 The Akt Pathway
The kinase Akt plays an important role in the regulation of cellu-
lar functions. Its downstream targets include kinases, transcription
factors and other regulatory molecules (Khwaja, 1999). Akt has
also been identified as a major factor in many types of cancer.
The schematic describing the Akt pathway, its interactions with
the mitogen-activated protein kinase (MAPK) pathway, and their
downstream targets are shown in Figure 4.

The activation of the Akt signaling pathway is a multi-step pro-
cess (Bellacosaet al., 1998). When ligands such as fibroblast
growth factors, epidermal growth factors and insulin bind to their
specific membrane receptors, the cytosolic domains of the recep-
tors will undergo conformational changes, allowing them to act
as scaffolds for certain types of proteins in the cell. Phosphoi-
nositide 3-kinase (PI3K) is one such protein that gets recruited

Fig. 4. Schematic of the (a)MAPK pathway, (b)Akt pathway and their
crosstalk interactions. Known crosstalk interactions are marked with dashed
arrows while the hypothesized interaction is marked with a bold arrow.

and as a result, its catalytic subunit will be activated. The acti-
vated PI3K will then phosphorylate the membrane phospholipid
phosphatidylinositol-4,5-biphosphate (PIP2) at the 3-OH position
to phosphatidylinositol-3,4,5-triphosphate (PIP3) and this is tightly
regulated by the phosphatase and tensin homolog (PTEN), which
removes the phosphate group from the same position.

PIP3 recruits Akt and the phosphoinositide-dependent kinase-
1 (PDK1) to the plasma membrane allowing the phosphorylation
of Akt by PDK1. Akt is activated by a sequential phosphoryla-
tion at its threonine residue 308 (Thr308) and serine residue 473
(Ser473) by PDK1 and an unknown kinase (named PDK2) respec-
tively (Nicholsonet al., 2002). Activated Akt further phosphorylates
and activates its downstream targets such as Forkhead transcription
factor (FKHR) and glycogen synthase kinase 3β (GSK-3β).

Another important molecular target for Akt signaling is Bad, a
protein that regulates apoptosis. Bad can bind to the anti-apoptotic
proteins Bcl-2 and Bcl-XL, allowing the pro-apoptotic protein Bax
to oligomerize at the mitochondria and promote the release of cyto-
chrome c into the cytosol. This would lead to the activation of
caspases and cell death. Upon phosphorylation by Akt at the Ser136

residue, Bad is sequestered in the cytosol by 14-3-3 proteins, thus
Bcl-2 and Bcl-XL can bind to Bax, hence preventing the release of
cytochrome c and inhibiting apoptosis. Constitutive Akt signaling
promotes cell survival and proliferation, leading to the formation of
tumors.

2.2.1 MAPK Crosstalk The significance of the Akt pathway lies
not only in the several cellular functions it regulates, but also in its
interactions with other pathways (Heldin, 2001). The MAPK signa-
ling cascade is one such pathway that is influenced by components
of the Akt pathway.

The MAPK pathway is a highly conserved pathway that is linked
to mitogenic responses and cell proliferation. It can be activated by
a wide range of growth factors and hormones and it too has several
target molecules. Some of the signals that activate the Akt pathway
can also activate the MAPK pathway. Upon activation, the tyrosine
residues of the receptor is phosphorylated, serving as docking sites
for proteins such as Grb2 and SOS. The exchange factor SOS then
replaces guanosine 5’-diphosphate (GDP) on the Ras protein with
guanosine 5’-triphosphate (GTP), thus activating it. Activated Ras
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then binds to the protein Raf, triggering a wave of downstream phos-
phorylation where Raf activates the MAPK kinase (MEK) which in
turn activates p44/42 MAPK (ERK).

Recent studies show that the Akt pathway can regulate the MAPK
pathway by competitively phosphorylating Raf at Ser259 (Moelling
et al., 2002), preventing further activation. However, this Akt-
MAPK regulation is not entirely inhibitory. PI3K has been shown to
activate Raf via the intermediate protein PAK-1 (Chaudharyet al.,
2000). Recently, Satoet al. (2004) have shown that PDK1 is invol-
ved in the activation of MEK. Moreover, our data also shows that
the repression of PDK1 gene expression using small interference
RNA (siRNA) leads to a decrease in activated MEK and ERK in a
prostate cancer model (Teonget al., 2006). Thus these support our
hypothesis that PDK1 could be involved in the activation of MEK
by phosphorylating it, as indicated by a bold arrow in Figure 4.

2.3 Parameter Estimation
Various techniques based on global optimization have been pro-
posed for estimating the parameters of pathway models (see, e.g.,
Kikuchi et al., 2003; Moleset al., 2003). However, these techni-
ques, which usually estimate all the model parameters together, do
not scale up well for large pathway models with many parameters,
due to the high dimensionality of the search space and the presence
of many local minima.

For larger pathway models, it is natural to try to decompose it
into small, independent components and estimate the parameters
for each component separately, thus reducing the computational
complexity. The general idea of model decomposition for para-
meter estimation has been successfully applied in many domains,
e.g., Bayesian model learning (Neapolitan, 2003), geometric curve
fitting (Jianget al., 2005), control of large dynamical systems (Wil-
liamset al., 1998), etc.

In related work on Akt and MAPK pathways (Hatakeyamaet al.,
2003), a simplified model based on simultaneous differential equati-
ons is proposed. The model has about 30 unknown rate parameters,
which are estimated with an in-house genetic algorithm. There is
no report of computation time required. It is also not clear how
much experimental data was used and how the estimated parameters
were validated. To ease the computational burden, in subsequent
work (Kimura et al., 2004), the model is decomposedmanually
based on the observation that parameters in upstream components
of enzyme catalyzed reactions can be estimated independent of
parameters in downstream components, if there are no feedback
loops connecting them. Our decompositional approach uses a simi-
lar observation, but is more general, as it is not restricted to enzyme
catalyzed reactions. It is also fully automatic.

3 THE HFPN MODEL OF THE AKT-MAPK
PATHWAYS

We have modeled the Akt pathway and the MAPK pathway as well
as the hypothesized crosstalk as an HFPN model. The full struc-
ture of the model is shown in Figure 5. The parameters associated
with the transitions and the initial protein concentration levels are
shown in Table 1 and Table 2. In Table 1, the four parameters whose
values have been taken from literature are marked with a∗ while the
remaining parameters have values that have been estimated by our
technique. The sources of information of the four known parameters
can be found in: http://www.comp.nus.edu.sg/∼rpsysbio/ismb2006.

Table 1. Rate reactions and their associated parameters. The Michaelis-
Menton constants (KM ) are given in nM. The maximal rate constants (V )
are expressed in nM.s−1. The first order and second order rate constants (k)
are given in s−1 and nM−1.s−1 respectively.

No Rate Equation Parameter

1 k1[R] k1 = 0.01

2 k2[Ract] k2 = 0.002

3 k3[Rint] k3 = 0.001

4 k4[Ract][PI3K]/(Km4 + [PI3K]) k4 = 0.3 Km4 = 78

5 V5[PI3Ka]/(Km5 + [PI3Ka]) V5 = 46.2 Km5 = 117

6 k6[PI3Ka][PIP2]/(Km6 + [PIP2]) k6 = 0.05 Km6 = 6170

7 k7[PTEN][PIP3]/(Km7 + [PIP3]) k7 = 5.5 Km7 = 80.9

8 k8[PIP3][AKTcyto] k8 = 0.045

9 k9[PIP3.AKT] k9 = 0.089

10 k10[PDK1][PIP3.AKT]/(Km10 + [PIP3.AKT]) k10 = 20 Km10 = 80000∗
11 k11[PP2A][PIP3.AKTp]/(Km11 + [PIP3.AKTp]) k11 = 0.037 Km11 = 8800

12 k12[PDK2][PIP3.AKTp]/(Km12 + [PIP3.AKTp]) k12 = 20 Km12 = 80000∗
13 k13[PP2A][PIP3.AKTpp]/(Km13 + [PIP3.AKTpp]) k13 = 0.04 Km13 = 48000

14 k14[PP2A][PIP3.AKTpp]/(Km14 + [PIP3.AKTpp]) k14 = 0.163 Km14 = 48000

15 k15[Ract][Ras]/(Km15 + [Ras]) k15 = 50 Km15 = 20000

16 V16[Rasa]/(Km16 + [Rasa]) V16 = 15000 Km16 = 7260

17 k17[Rasa][Raf]/(Km17 + [Raf]) k17 = 0.09 Km17 = 50

18 k18[Pakp][Raf]/(Km18 + [Raf]) k18 = 0.183 Km18 = 500

19 V19[Rafp]/(Km19 + [Rafp]) V19 = 78 Km19 = 30

20 k20[PIP3.AKTpp][Rafp]/(Km20 + [Rafp]) k20 = 0.1 Km20 = 13.2

21 k21[Rafp][MEK]/(Km21 + [MEK]) k21 = 5.6 Km21 = 7200

22 k22[PDK1cyto][MEK]/(Km22 + [MEK]) k22 = 0.04 Km22 = 2600

23 k23[PP2A][MEKp]/(Km23 + [MEKp]) k23 = 0.45 Km23 = 1250

24 k24[Rafp][MEKp]/(Km24 + [MEKp]) k24 = 5.17 Km24 = 24500

25 k25[PDK1cyto][MEKp]/(Km25 + [MEKp]) k25 = 0.05 Km25 = 2150

26 k26[PP2A][MEKpp]/(Km26 + [MEKpp]) k26 = 0.4 Km26 = 4316

27 k27[MEKpp][ERK]/(Km27 + [ERK]) k27 = 0.089 Km27 = 52000

28 k28[MKP3][ERKp]/(Km28 + [ERKp]) k28 = 30 Km28 = 160

29 k29[MEKpp][ERKp]/(Km29 + [ERKp]) k29 = 0.0308 Km29 = 55000

30 k30[MKP3][ERKpp]/(Km30 + [ERKpp]) k30 = 32 Km30 = 60

31 k31[ERKpp][P90RSK]/(Km31 + [P90RSK]) k31 = 0.0017 Km31 = 97.6

32 k32[ROS][P90RSK]/(Km32 + [P90RSK]) k32 = 0.76 Km32 = 181

33 V33[P90RSKp]/(Km33 + [P90RSKp]) V33 = 468 Km33 = 2.8

34 k34[P90RSKp][Bad]/(Km34 + [Bad]) k34 = 0.798 Km34 = 10

35 k35[Pakp][Bad]/(Km35 + [Bad]) k35 = 0.04 Km35 = 30000

36 V36[Badp112]/(Km36 + [Badp112]) V36 = 821 Km36 = 43300

37 k37[PIP3.AKTpp][Bad]/(Km37 + [Bad]) k37 = 0.397 Km37 = 20700

38 k38[Pakp][Bad]/(Km38 + [Bad]) k38 = 0.04 Km38 = 30000

39 V39[Badp136]/(Km39 + [Badp136]) V39 = 821 Km39 = 43300

40 k40[PI3Kp][Bax]/(Km40 + [Bax]) k40 = 0.0659 Km40 = 42000

41 k41[Baxcyto] k41 = 0.0148

42 k42[Bad][Bcl2] k42 = 0.0561

43 k43[Bcl2.Bad] k43 = 0.0624

44 k44[Bax][Bcl2] k44 = 0.002∗
45 k45[Bcl2.Bax] k45 = 0.02∗
46 k46[NOX5] k46 = 0.00038

47 k47[ROS] k47 = 0.0155

48 k48[ROS][PI3Kp][Pak]/(Km48 + [Pak]) k48 = 0.14 Km48 = 482

49 V49[Pakp]/(Km49 + [Pakp]) V49 = 83000 Km49 = 29100

50 k50[PIP3][PDK1cyto] k50 = 0.0007

51 k51[PDK1] k51 = 0.98

Table 2. Initial concentration of the cellular components.

Place Concentration (nM) Place Concentration (nM)
R 80 MEK 36500

PI3K 100 ERK 34900

PIP2 7000 MKP3 2.4

PTEN 0.1 P90RSK 5

AKTcyto 200 BCL2 100

PDK1cyto 1000 BAD 100

PDK2 3 BAX 100

PP2A 150 NOX5 2000

RAS 18900 ROS 200

RAF 66.4 PAK 500

The model can be viewed as separate modules interacting with
one another via shared nodes. Figure 5(a) models the reactions that
take place when the receptors are activated by external signals (indi-
cated by the place ‘Serum’). It also includes the reactions of the Akt
pathway. A point to note is that under prolonged activation, the cells
become desensitized to the signals and respond less to it. We have
modeled this phenomena as receptor internalization (Reaction 2).

The MAPK pathway is depicted by Figures 5(b),(c) and (d). After
activation by the receptors, Ras will catalyze the phosphorylation of
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Fig. 5. HFPN model of the Akt and MAPK pathways. The hypothesized crosstalk interaction is emphasized by bold test arcs. The members of downstream
components should include the places of the upstream components which they are directly linked from. However to reduce clutter, we show the components
as separate modules.

Raf. Phosphorylated Raf, denoted as ‘Rafp’, will then phosphorylate
MEK at two sites, forming the doubly phosphorylated MEKpp
(Figure 5(c)). Finally, ERK will be phosphorylated by MEKpp in
the same manner, as shown in Figure 5(d).

In our model, there are three possible paths for crosstalk interac-
tions: Active PI3K can upregulate the phosphorylation of Raf via
PAK1(Reactions 48 and 18). Akt can inhibit Raf activity (Reaction
20), and PDK1 can affect MEK phosphorylation (Reactions 22 and
25) by the hypothesized interactions. The protein PP2A is an ubi-
quitous phosphatase which reverses the action of several kinases in
our pathway. Hence it is not considered as exclusively belonging to
the Akt pathway or the MAPK pathway.

Figure 5(f) models the activity of the Bcl-2 family members,
which include the proteins Bcl-2, Bad and Bax. As mentioned in the
previous section, these proteins play important roles in regulating
apoptosis. It has also been shown that ERK can regulate Bad phos-
phorylation through the activation of the protein P90RSK, shown in
Figure 5(e).

Our model consists of 44 places connected to 51 transitions. For
most of the transitions, their dynamics are driven by Michaelis-
Menton equations (e.g. Reactions 4, 5, 6). The rest are either
association/dissociation reactions (e.g. Reactions 42, 43) or syn-
thesis/degradation reactions (e.g. Reactions 46, 47) whose rates are
governed by the mass action laws. Each of these reactions have one
or two parameters associated with them.
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4 PARAMETER ESTIMATION
Parameter estimation can be viewed as an optimization problem
with differential-algebraic constraints. The input to the problem
consists of the values of state variables at selected discrete time
points. In the present setting, these are steady-state or time-series
measurements of protein concentration levels. The problem is to
determine the values of them parametersp ∈ Rm

+ and all the
unknown protein concentration levels such that they minimize the
following objective function:

J(p) =
X
i,j,te

s
(xij(te, p)− x

exp
ij (te))2

w2
ij

(2)

subject to
ẋ = f(x, t) (3)

h(x, t) ≥ 0 (4)

pL ≤ p ≤ pU (5)

Heref is the set of differential constraints describing the system
dynamics.h is the state constraints for the variablesx ∈ x for all
t ∈ [0, T ]. pL andpU are the lower and upper bound constraints
on the parametersp. The time pointste ∈ Te ⊂ [0, T ] describe
the set of time instances where experimental data are available. The
expressionxij(te, p) is the model predicted value of the variable
xi in experimentj at time te using parametersp while xexp

ij (te)
is the experimental measurement of the same variable.wij is the
weight that is used to normalize the contributions of each term to the
objective function. This value is usually taken to be the maximum
value ofxi in experimentj.

A typical parameter estimation algorithm starts by randomly
choosing parameter values from the search spaceRm

+ . It uses (3)
to simulate the system according to the chosen parameters and then
uses (2) to compare the results with the input data. The results of
this comparison provide the information to improve the parameter
values through gradient descent or stochastic search (Pardaloset al.,
2002). This process repeats until a better solution can no longer be
found or a pre-specified maximum number of iterations is reached.

Our optimization problem is highly non-linear and we will use the
evolution strategies algorithm to solve this problem. This algorithm
keeps a working set ofµ candidate solutions. Each solution consists
of a vector of parameter values. In each iteration, it randomly selects
two parent solutions from the working set and generates a new one,
possibly by interpolating the values of parent vectors. Thereafter,
it alters the values slightly and scores the new solution by simula-
ting the model according to these parameter values and applying the
objective function. A number of such solutions are generated and
from the combined set, the best scoringµ solutions are selected for
the next iteration. This carries on for a certain number of iterations,
or until no better solutions can be obtained (Beyeret al., 2002).

Common approaches to parameter estimation try to estimate all
the parameters together. This leads to a high-dimensional search
space and hence to very high computational complexity. The key
feature of our approach is to exploit thestructureof a pathway,
to break down the parameter estimation problem into a series of
smaller problems. The structure of a pathway model determines the
causal links and dependencies between the system variables. We
use this dependency relationship to extract pathway components that
can be handled independently.

This decompositional approach can be applied to different mode-
ling frameworks. Furthermore, it is independent of the specific
search method (Beyeret al., 2002; Kirkpatricket al., 1983; Moles
et al., 2003) used for parameter optimization. Here we present
our method in the context of the HFPN model combined with
evolutionary search (Beyeret al., 2002).

4.1 Pathway Decomposition
The goal of pathway decomposition is to extract components from
the pathway model whose parameter estimation problems can be
solved independently. A component is an executable subgraph of
the HFPN model. By an “executable” subgraph we mean a subgraph
that can be simulated as a model by itself, assuming we have the
values for the parameters and initial conditions relative to the nodes
in this subgraph. It is not difficult to see that a component is executa-
ble if and only if its set of nodes (places and transitions) areclosed
relative to the full model in the following sense. If a place node is
present in the component, all its incoming transitions must also be
present in the component. Furthermore, all the transitions to which
the place is connected via normal arcs must also be present in the
component. This is so since the reactions associated with these tran-
sitions are precisely those that determine the concentration levels of
the protein associated with the place. If a place is connected to a
transition via an inhibitory arc or a test arc then the reaction asso-
ciated with the transition does not affect the concentration level of
the place in any way. By similar reasoning, if a transition is present
in a component, all its input places must also be in the component.

Since there are many components (the whole model itself is a
component), we must choose them in a systematic fashion so as
to help decompose the parameter estimation problem. To do so,
we first color the nodes of the model. We then compute a compo-
nent using the criterion to be described below. We then solve the
parameter estimation problem for this component. This is followed
by updating the colors of some of the nodes. We then proceed to
compute a second component and so on.

As a first step, we assign colors to each place. We assume we
have experimental data that has been produced byK experiments
conducted under different conditions. With each place we associate
aK-dimensional color vector. Suppose thejth experiment produces
time series values and/or the steady state concentration level of the
protein associated with the placep. Then thejth component of the
color vector ofp is set to be grey. Otherwise it is fixed to be white.
If one or more components of the color vector of a place is grey then
the color of the place is defined to be grey. Otherwise it is defined to
be white.

The transitions are initially colored as follows. Due to the nature
of the reactions being represented by the transitions, each transition
can have one or two rate parameters associated with it. If all the
parameters associated with a transition are known, then the transi-
tion is colored black. If none of the parameters associated with a
transition are known then it is colored white. If one but not both the
parameters associated with a transition are known, then it is colored
grey.

To see how we choose our first component, letH =
(P, T, h, C, a) be an HFPN where

- P is the set of places,

- T is the set of transitions,
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- h : P ∪ T → {discrete, continuous} labels the places and the
transitions as being discrete or continuous.

- C ⊆ {(P × T ) ∪ (T × P )} is the set of arcs.

- a : C → {normal, test, inhibitory} labels arcs as being normal,
test or inhibitory.

Let p be a grey colored place. Then a particular component con-
tainingp -let us denote this component ascomp(p)- is defined to be
the least set of nodes ofH satisfying the following conditions.

(C1) p ∈ comp(p).

(C2) Supposex ∈ comp(p) ∩ P andx is colored grey or white and
(y, x) is an arc inH theny is also incomp(p).

(C3) Supposex ∈ comp(p) ∩ T and(y, x) is an arc inH theny is
also incomp(p).

(C4) Supposex ∈ comp(p)∩P , x is colored grey or white, (x, y) is
an arc inH and (x, y) is a normal arc, theny is also incomp(p)

It is easy to see thatcomp(p) is indeed a component. Now from
among all components{comp(p)} wherep ranges over the set of
grey places, we choose the one which has a minimum number of
white/grey transitions while maximizing the number of grey places.
Thus choosing a component is a non-trivial task. A number of stra-
tegies can be adapted to ease this task but we will not address them
here. In any case, this part of the procedure consumes only a small
fraction of the overall time needed.

Suppose we have chosen the componentcomp(p0) correspon-
ding to the grey place as the best according to our criterion. In the
model shown in Figure 5,p0 is PIP3.AKTpp and the component it
generates is highlighted in Figure 5(a). We now apply the evolutio-
nary search procedure tocomp(p0) using a reserved fraction of the
experimental data that provides values for the concentration levels
of the proteins associated with the grey places incomp(p0). This
search involves simulating the component several times, adjusting
the parameters in each iteration to get a better result according to the
specifics of the evolutionary procedure which we will not get into
detail here. During this phase, the estimation procedure might get
stuck in a local minima while significantly differing from the repor-
ted data. Such situations are dealt with in two possible ways. The
first consists of using biological intuition to bump the current esti-
mated parameter values out of the local minima trap. The second is
to examine the concerned experimental data and discard it as being
too noisy or as being improperly conditioned to be reliable.

At the end of this first phase, all the parameters associated with
the transitions incomp(p0) would have been estimated. We now
color all the nodes incomp(p0) as black.

We now choose a suitable grey placep1 in P − comp(p0) and
computecomp(p1) and repeat the above process. It is worth noting
that when computingcomp(p1), black-colored places ofcomp(p0)
will form the boundary nodes of this new component. This is
because, according to our back-tracing procedure for computing
components, the input transitions of a black-colored place willnot
be included in the new component. This implies that each new com-
ponent will include only a small portion of components that have
already been computed. This leads to reduced computation time for
each of our parameter estimation task.

After a finite number of iterations all the parameters would have
been estimated and all the nodes would have been colored black. For

the model shown in Figure 5, the sequence of components chosen is
(a), (b), (c), (d), (e) and (f).

We then check the accuracy of the estimated parameters by simu-
lating the model using the estimated parameters and the fraction of
the experimental data that has been reserved for this purpose.

5 SIMULATION AND RESULTS
We now describe our results on parameter estimation (Section 5.1)
and on the hypothesized Akt-MAPK crosstalk mechanisms (Sec-
tion 5.2).

5.1 Parameter Estimation
Using the method described in the previous section, we perfor-
med parameter estimation for the Akt-MAPK pathways. The data
for the estimation problem was obtained from 27 experiments, of
which 10 provided time-series data and 17 provided steady-state
data. The 27 experiments were performed under 18 different initial
conditions. We used data from 23 experiments as inputs to our para-
meter estimation procedure and reserved data from 4 time-series
experiments to validate the results of estimation. The data reser-
ved for validation was not revealed to the estimation procedure.
All the data files that we used are available for download from
http://www.comp.nus.edu.sg/∼rpsysbio/ismb2006.

The Akt-MAPK pathways consist of 51 reactions and a total of
88 parameters, of which 4 are known. We assume that the initial
conditions for all the places are known, and this is supported partly
by experimental data. For other situations where not all the initial
values are known, the missing protein concentrations can be treated
as parameters to be estimated as well.

We ran the estimation procedure on a Pentium 4 PC with a
2.8GHz processor and 2.5GB memory. Our procedure broke the
pathways into 6 components (Figure 5(a)-(f)). The average time to
estimate the parameters for each component was about 3 hours, and
the total time to estimate all the parameters was about 18 hours.

For comparison, we also tried to solve the same parameter estima-
tion problem using the global approach; in other words in which one
tries to estimate all the parameters together using the evolutionary
search method. On the same computational platform, after running
for 4 days, the global method failed to produce a set of parameters
that can produce reasonable simulation results. See Figure 6 for a
comparison.

An obvious measure to assess the accuracy of the parameters and
the reliability of the parameter estimation method is the deviation

Fig. 6. Comparison of the simulation results of Akt against experimental
data using the parameters estimated with (a) the decompositional method and
(b) the conventional method. (‘¤’ - experimental data points, ‘—’ simulation
profiles).
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Fig. 7. Simulation profiles of (a) MEK and (b) ERK activation levels.

Fig. 8. Simulation profiles of Bad activation levels compared to experimen-
tal data.

of the simulation results from experimental data. Figure 7 shows
the simulation results of both MEK and ERK activity and Figure 8
shows the Bad phosphorylation levels for the experiment where the
cells are treated with diphenyleneiodonium (DPI), a NADPH oxi-
dase inhibitor, in the presence of serum. Due to the lack of space,
we do not show the results for all the proteins here. Figure 7 shows
that the match between the simulation results and experimental data
is good, though not perfect. Given the limited, noisy data availa-
ble and the high dimensionality of the search space, these results
represent a reasonable first step. We expect that as we generate bet-
ter data both in terms of quantity and quality, a better match will
be obtained. Longer running time for the estimation procedure may
also potentially help.

Among the results obtained, we indeed have cases in which the
match between the simulation results and experimental data is not
good. Figure 8 shows the simulation results and experimental data
for phosphorylated Bad. There is a systematic, constant difference
between them. From a static analysis of the model in Figure 5, the
inhibition of the production of superoxide (ROS) by treatment with
DPI will propagate downstream and we would expect the level of
phosphorylated Bad at Ser112 to decrease (Figure 5(f)). However,
the experimental data points for activated Bad in Figure 8 are consi-
stently higher than those from the cells which have not been treated
with DPI. This difference could be due to unknown reactions and
needs to be further investigated.

5.2 Effects of PDK1 on MEK and ERK
A key biological motivation for this work was to test the plausibi-
lity of the hypothesized crosstalk interaction between the Akt and
the MAPK pathways. Experiments show that in LNCaP, a pro-
state cancer cell line (Horoszewiczet al., 1983), transfected with
PDK1 siRNA, which reduces the total PDK1 in the cell, results in a
significant decrease in the phosphorylation of MEK and ERK. This
suggests a possible crosstalk with PDK1 activating MEK by phos-
phorylation. We performed the same simulations, decreasing the

Fig. 9. Simulation of MEK and ERK activation levels with decreasing
amounts of PDK1.

levels of PDK1 (from 1000 nM to 0 nM) to mimic the knock-down
of PDK1 using siRNA. Figure 9 shows the results of the simulations.
ERK activity is being reduced to negligible levels after decreasing
the amounts of PDK1.

However, PDK1 seems to exist in an active conformation under
normal conditions (Vanhaesebroecket al., 2000). With the hypothe-
sized interaction, one would assume that in the absence of exter-
nal signals, PDK1 will continuously activate the MAPK pathway,
causing uncontrolled growth. This contradicts the current view
that the MAPK pathway is activated by external signals. However,
simulations show that under serum starved conditions, PDK1 does
activate ERK, but its activation is maintained at a low basal level of
0.02% (Figure 10). This suggests that PDK1 may indeed be a neces-
sary but not sufficient condition to fully activate the MAPK pathway,
therefore lending support to the presence of the interaction.

Fig. 10. ERK activation levels in the absence of serum.

We also tested the possibility ofnot having this crosstalk inter-
action between PDK1 and MEK by removing it from our model.
Simulations of this pathway configuration revealed that the ERK
activity was kept low throughout even in the presence of serum.
This, we suspect, could be due to the inhibitory effect of activated
Akt (Moelling et al., 2002). To further confirm this observation, we
took into account the fact that our model was based on the LNCaP
cell line which has defective PTEN due to a frameshift mutation in
thePTENgene. Hence we re-simulated the model (with the PDK1-
MEK interaction removed) with 10 nM of PTEN. This simulation
produced a similar outcome (Figure 11). However, these simulati-
ons should not be taken as a conclusive comparison as the modified
configuration (without the interaction) could not fit the experimental
data.

Although more experiments are needed to confirm the role of
PDK1 in the regulation of MAPK activity, the above simulations
suggest that the interaction is not only present but also necessary
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Fig. 11. MEK and ERK activation levels without PDK1 crosstalk.

for enabling the MAPK pathway. This also seems to imply that
knocking down PDK1 to reduce Akt activity may affect the proper
functioning of the MAPK pathway.

6 DISCUSSION
Decomposition of a large system into smaller sub-systems is an
effective way to make the parameter estimation problem managea-
ble. The method proposed here is our first attempt at systematically
decomposing dynamical models of signaling pathways. It can be
improved in several ways. Currently, we decompose a pathway
into components by using the dependency relations among the pla-
ces and transitions of the HFPN model. For inverse problems such
as parameter estimation, information from the downstream com-
ponents can also possibly aid in constraining the search space for
upstream components. At present, we are not taking advantage
of this. It should be possible to use techniques such as constraint
propagation (Tuckeret al., 2005) to push up information from
downstream components to upstream components.

Also, our decomposition method is most effective when the flow
of information is one-way or when the feedback loops are short. If
the pathway components are tightly coupled together or if there are
long feedback loops, our method may return the entire pathway as
the first component. One possible way of dealing with this is to use
splines to approximate the concentration profiles of grey places, so
that they can be viewed as black places. By doing so, these places
can then serve as the boundaries for the smaller components that
will be generated.

7 CONCLUSION
In this work, we have built an HFPN model for the Akt and MAPK
signaling pathways and investigated their hypothesized crosstalk
interaction. Pathway simulation results based on our estimated
model parameters exhibit good correlation with experimental data
and support a new hypothesized crosstalk mechanism linking the
Akt pathway to the MAPK pathway.

One main contribution of this work is a decompositional method
for model parameter estimation, based on the HFPN representa-
tion. By breaking a large pathway model into smaller, independent
components, the new method offers significant improvement in
computational efficiency. It shows considerable potential for sca-
ling up to large pathways with hundreds of parameters, a task too
daunting for conventional methods. As described in Section 6, there
are several improvements that can be made on our current decom-
position method, and we are currently working on them. We also
plan to extend our approach to other modeling frameworks, such as

simultaneous differential equations, hybrid automata, and stochastic
Petri nets. The idea is to capture the dependency relations among the
pathway elements in the form of a dependency graph similar to the
bipartite graph that underlies an HFPN model. On the biological
side, it will be important to study the effectiveness of our method on
other signaling pathways as well as metabolic and gene regulatory
pathways.

ACKNOWLEDGEMENT
We would like to thank Lisa Tucker-Kellogg for fruitful discus-
sions, and the anonymous referees for their valuable comments.
D. Hsu is supported in part by NUS grant R252-000-145-112.
M.V. Clément is supported by grant R-185-000-106-213 from the
National Medical Research Council (NMRC), Singapore.

REFERENCES
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