APPEARED IN
Proc. IEEE International Symposium on Assembly and Task
Planning, pp. 280-285, 1999

Placing a Robot Manipulator Amid Obstacles for Optimized Execution

David Hsu Jean-Claude Latombe Stephen Sorkin

Computer Science Department, Stanford University
Stanford, CA 94305, U.5.A.
{dyhsu, latombe, ssorkin} @cs.stanford.edu

Abstract

This paper presents an efficient algorithm for optimizing
the base location of a robot manipulator in an environ-
ment cluttered with obstacles, in order to execute specified
tasks as fast as possible. The algorithm uses randomized
motion planning techniques and exploits geometric “coher-
ence” in configuration space to achieve fast computation.
The performance of the algorithm is demonstrated on both
synthetic examples and real-life CAD data from the auto-
motive industry. The computation time ranges from under
a minute for simple problems to a few minutes for more
complex ones.

1 Introduction

The base placement of a robot manipulator is an impor-
tant issue in many robotics applications. Given a de-
scription of a robot manipulator and its environment,
the goal is to find a base location for the manipula-
tor so that specified tasks are executed as efficiently as
possible. In this paper, we present an algorithm that
makes use of randomized motion planning techniques
to compute simultaneously a base location and a cor-
responding collision-free path that are optimized with
respect to the execution time of tasks.

Our work i1s motivated mainly by robotics applica-
tions in the manufacturing industry, where the base
placement of a manipulator has a big impact on the cy-
cle time of tasks executed, for example, spot welding.
An automated means to determine the best placement
can both increase the throughput of workcells and re-
duce set-up time. Our algorithm can also be used to po-
sitioning mobile manipulators, manipulators mounted
on mobile bases. For many mobile manipulators, the
base remains stationary while the mounted manipula-
tor is in motion, because of operational constraints and
increased control complexity [17]. Thus positioning the
mobile base for efficient operation of such a system is
the same problem as the one for a fixed-base manipu-
lator.

A minimum requirement for the base location of a
manipulator is that the reachable workspace of the ma-
nipulator covers all the task points. Furthermore the
robot should be placed to enable efficient task execu-
tion. Previous work on this problem usually consid-
ers the first and sometimes also the second criterion,
but few systems take into account obstacles in the en-
vironment at the same time, partly because planning
a collision-free path for a robot with more than four
or five degrees of freedom (DOF) is a difficult prob-
lem. However, robot manipulators share the space with

part feeders and various other devices in a workcell, and
must avoid collision with them while in motion (see Fig-
ure 4, Scene 4). We therefore believe that it is essential
to consider the impact of obstacles on the placement of
robot manipulators.

Our algorithm first computes a collision-free path
for an initial base location, using the randomized path
planner described in [11]. This planner was chosen be-
cause 1t is one of the few that can efficiently plan a
path for a many-DOF robot in a complex environment.
Unlike most other randomized path planners, it does
not pre-compute a roadmap of the whole configuration
space C, but samples only parts of C that are relevant
to the current task. The path computed by the planner
is then deformed to obtain a locally optimal path. Fi-
nally we iteratively move the base to better locations.
At each iteration, we perturb the base location and
recompute a new collision-free path. If the path plan-
ner were invoked every time, the computation would be
prohibitively expensive. However, locally optimal paths
for two different base locations are usually “close” to
each other in the configuration space of the manipula-
tor base and joints, if the two base locations are close.
Exploiting this spatial “coherence”, we use the path
found in the previous iteration as a starting point for
finding a new path in the current iteration. This allows
us to save considerable computation time.

The rest of the paper is organized as follows. Sec-
tion 2 briefly surveys related work. Section 3 gives
a mathematical characterization of the problem. Sec-
tion 4 and 5 describe the algorithm and experiments, re-
spectively. Section 6 summarizes the results and points
out direction for future research.

2 Related work

Planning a path for a robot amid obstacles is a classic
problem in robotics [15]. The best complete planner [4],
that is, a planner that finds a path whenever one exists
and reports that none exists otherwise, takes time expo-
nential in the number of degrees of freedom of a robot.
In the last decade, several practical planners have been
developed for many-DOF robots [2, 5,9, 13]. A particu-
larly interesting development has been the introduction
of random sampling into path planning [1, 10, 11, 13].
Randomized path planners are capable of solving path
planning problems for many-DOF robots in very com-
plex environments. Some of them satisfy a property
called probabilistic completeness: the probability that

a path planner fails to find a path when one exist de-
creases exponentially with the running time.

A problem closely related to path-planning is that of
finding the shortest path in an environment with obsta-
cles. Research in computational geometry has yielded
many efficient algorithms in 2-D environments for vari-
ous metrics [8, pp. 445-466]. The shortest path problem
in three or higher dimensions is considerably harder: it
has been proven to be NP-hard in 3-D [3]. Therefore
if we want to find a minimum-time path for a many-
DOF manipulator, we may have to resort to approxima-
tion techniques. One possibility is to plan a collision-
free path first and then deform the path iteratively to
reduce the execution time [18]. This is the approach
taken here. Alternatively, for a simple robot with two
or three DOFs, one may discretize the state space of
the robot and search this space for an approximation
to the minimum-time path [6].

Several variants of the robot placement problem have
been proposed in the literature. Seraji considers the
placement of a 7-DOF Robotics Research arm by an-
alyzing its reachability [17]. Kolarov presents an algo-
rithm that can place a robot made up of n telescop-
ing links amid obstacles in a planar environment [14].
Ozedou formulates the base placement problem as that
of kinematic synthesis and solves it with general op-
timization techniques [16]. These work addresses the
placement problem mainly from the reachability point
of view. Feddema proposes an algorithm that places a
manipulator for minimum-time joint-coordinated mo-
tion [7], but he assumes an environment with no ob-
stacles. Hwang and Watterberg’s formulation of the
placement problem [12] is more closely related to ours.
Their algorithm discretizes the space of all base loca-
tions and uses a path planner to exhaustively search the
space in order to find the optimal solution. They report
that the exhaustive search took 50 hours on a grid of
175 base locations for an environment with relatively
simple geometry.

3 Preliminaries

Suppose that the base of a manipulator A is fixed. A
configuration of A is a set of parameters that completely
determines the position and orientation of all rigid parts
of A. Typically these parameters are the joint angles of
A. A configuration ¢ is free if A does not overlap with
obstacles when placed at q. The set of all configurations
forms the configurations space C, and the set of all free
configurations forms the free space F, a subset of C.
The complement of F, C\ F, is called the configuration-
space obstacle (C-obstacle).

A path in C is a continuous mapping from [0, 1] into
C. The cost of a path can be measured in many ways,
the most important ones being the time and energy that
it takes a manipulator to execute the path.

If the end-effector frame (position and orientation) of
amanipulator 4 is T, then for a given base location, we
can solve for a configuration of the manipulator joints
that achieves T via inverse kinematics (IK). The solu-
tions define a mapping ¢: X — C from the space X of

~

q
2 dinit(=)

~
2goal ()

(b)

Figure 1. The base placement problem in the configuration space.
The robot is a two-link planar arm with joint angles ¢; and gs.
The base of the robot lies on a line parameterized by z. (a)
Schematic drawing of the configuration space of the robot base
and joints. Shaded parts indicate obstacles. (b) Cross-section for
the optimal base location 7 and the optimal path a

all base locations to the space C of manipulator joint
configurations. Since IK solution is not unique in gen-
eral, the mapping can be one-to-many. However, for
the simplicity of presentation, we will assume that the
IK solution is unique, when it exists. Our algorithm
easily generalizes to deal with multiple IK solutions.
In a base placement problem, we are given an initial
end-effector frame Tj,;; and a goal end-effector frame
Tyoat- Let qne(x) and g o4 (x) be the IK solutions to
Tinit and Tyoq at base location x, respectively. The
objective is to find the best base location z € X such
that the path between the g,,,,(z) and q ., /(%) has the
minimum cost. We can write this more compactly as

rR e

where L(7) is the cost of path =, and T'; denotes the
set of all collision-free paths such that for each v € Ty,
Y(0) = qinie(x) and (1) = q 44 (2). Figure 1 illustrates
the statement for a planar robot with two links. The
base of the robot is assumed to be constrained on a line.
So the configuration space of the robot base and joints
i1s three-dimensional. For each base location, there is
a cross-section of joint angles. Finding the best base
placement Z is equivalent to finding the cross-section
that contains the optimal path.

4 The base placement Algorithm

Our algorithm for robot placement makes use of two
sub-algorithms. The first is a randomized path planner.
Assume that the base location z 1s known. The planner
generates a collision-free path 4 between two configura-
tions ¢,,;¢(z) and g, (). Usually vy contains too many
unnecessary turns because of the random steps taken
by the planner, and must be optimized. The second
sub-algorithm takes v as input and computes a locally
optimal piecewise-linear path. The restriction to piece-
wise paths is not severe, as any reasonable path can
be well-approximated by a piecewise-linear one. Using
these two building blocks, the robot placement algo-
rithm iteratively searches for the best base location, as
described in Subsection 4.1.

491

Our algorithms do not represent C-obstacles explic-
itly. Instead, a collision-checker determines whether a
configuration is free or not. To check whether a path is
collision-free, we can discretize it into a sequence of con-
figurations and regard the path free if all these config-
urations are free. Problems may arise if the discretiza-
tion is not fine enough, but they can be eliminated by
making use of the distance information returned by the
collision-checker [11].

In the next three subsections, we will first look at
the overall algorithm and then the two sub-algorithms
in detail.

4.1 Searching for the optimal placement

In principle, given a path-planning and a path-
optimization algorithm, we can search for a good base
location in a brute-force way. At each candidate base
location, simply call the path planner to get a collision-
free path and then optimize it. However, this would
be very expensive computationally due to the repeated
invocation of the path planner.

Notice that if B, is the C-obstacle for a manipulator
placed at z, for sufficiently small Az, Byiaz can be
obtained from B, by a small deformation. Therefore
a collision-free path for a manipulator placed at z 1is
likely to be collision-free in Cyyaz, the configuration
space for the manipulator placed at x + Az. If not, we
may hope to transform it into a collision-free one by a
small deformation.

Using this observation and a fast path optimization
routine, we can quickly recompute an optimal path at
each new base location, and iteratively move the base
towards the best location. The algorithm is described
in the pseudo-code below. It selects new base locations
by randomly sampling the neighborhood of the best one
found so far.

Algorithm Robot Placement

1. Find a collision-free path for an initial base loca-

tion xg, and optimize it to obtain a piecewise-linear
path v = (v1,ve,...,vn), where v1 = q,,.;:(20),
Vo, ..., UN_1,UN = qgoal(mo) are the vertices of ~.
if a collision-free path 4 is found
then z+ zg
else return FAILURE.

repeat
z’ < z + Az for some random Az.
Compute ¢,,;:(z’) and q,,4(2") for the base lo-
cation z’ using the manipulator TK. If ¢;,,;. (')
OT qg0q (") is in collision, then continue to the
next iteration (line 6).

8. if the path (qm”(l"), V2,...,UN-1, ngal(xl)) s

collision-free

9. then v < (q,ni(2), v2, ..., UN-1, 4o (7))

10. else sample S new configurations in the
neighborhoods of wvy,vs,...,un_1, for
some constant S.

11. Try to find a path 4" between ¢,,;.(z)
and qg,q(2') through the new configu-
rations. Continue to the next iteration
(line 6) if no collision-free path is found.

=1 O O i W N

12. Optimize v'.

13, i L(y') < L(y) then z « ', vy =+".
14. until the termination condition is satisfied.
15. return z and ~.

In lines 10-11, we find a collision-free path at the
new base location by randomly sampling in the neigh-
borhood of the path at the previous base location. This
deformation technique is simple to implement and usu-
ally quite effective. However, at certain critical loca-
tions, no local deformation is sufficient to obtain a new
path. In this case, we call the planner to re-plan a new
path, but re-planning does not happen very frequently
in practice.

The termination condition in line 14 can be imple-
mented in various ways. A simple one is to keep track
of the improvement between successive iterations and
terminate if the improvement falls below some thresh-
old. We also bound the maximum number of iterations.

Note that the outcome of the algorithm may depend
on the initial location z¢ and the initial path computed
by the randomized path planner. To remove this bias,
one may run the algorithm several time with different
values for zg and the initial path, and keep the best
result.

4.2 Randomized path planning

The goal here is to find a collision-free path between two
configurations ¢,,;, and q,,,. Our planner proceeds as
follows. First sample at random 1n the neighborhood of
qinit, but retain only those configurations that are con-
nected to ¢;,,; by a straight-line path. Then continue
sampling in the neighborhoods of configurations that
have been retained. The same procedure is repeated
for q4,q;- Periodically we check for a straight-line path
between a configuration path-connected to ¢,,;; and a
configuration path-connect to g 4. If there is, a path
between q,,,;, and q,4; is found. This simple algorithm
is capable of solving complex path planning problems
in cluttered environments in a few minutes. More de-
tails on this algorithm and implementation issues can
be found in [11]. Note that if a manipulator has multi-
ple IK solutions, we can easily extend this planner by
considering multiple ¢,,;, and q,,,. Under reasonable
geometric conditions on the configuration space, this
planner is probabilistically complete.

4.3 Optimizing a path

The specific choice of a path optimization algorithm
depends on the robot and the cost measure used. To
fit into our overall algorithm, path optimization must
be very fast because it 1s done at every candidate base
location. A straightforward method for path optimiza-
tion is to start with some initial path v, sample a large
number of free configurations in the neighborhood of
~, find the best path going through these configura-
tions, and searche for a local minimum iteratively. This
method is very general and can handle many different
cost, functions, but it can be quite slow.

For the purpose of this paper, we define the cost of
a path to be the time that it takes an n-joint manipu-

Figure 2. Shortcut gets stuck at ~1, which is far from the mini-
mum ~. The path v is the the input to Shortcut, and v; shows
the path after one iteration.

lator to execute the path, assuming that all joints can
achieve maximum velocity in negligible amount of time.
Thus if each joint of A has maximum speed o;, for
i=1,2,...,n, the time that it takes .4 to travel along
a straight-line path in C between two configurations

p = (p17p21 . apn) and q = (QLQZ’ . 7Qn) iS then the
maximum of time required by each joint

lpi — il
dp.9) = max = M

The cost of a piecewise-linear path v = (v1,va,...,vn)
is then is the sum of the cost of straight-line
paths between successive vertices on =5, L(y) =
SN d(vi, vig).

The function d 1s a scaled [, metric on C, which
implies that d(p,q) < d(p,r) + d(r,q) for all p,q,r € C.
It follows that if we replace a portion of a path by a
straight line-segment in C, the cost of the path can only
decrease (or stay the same).

Lemma 1 If p and q are two points on a path v, and
~' is a new path obtained by replacing the part of v
between p and q by the straight-line path between p and

q, then L(y") < L(%).

Lemma 1 helps to characterize paths of minimum cost:
there 1s a minimum-cost path that is locally “straight”
at each point where the path is not touching the C-
obstacle. More precisely, let ¥ be a collision-free path
of minimum-cost, and let I' be the set of collision-free
paths such that for each v € T, v has zero curvature at
each point p on v where « is not tangent to C-obstacle.
If 5 is not in ', we can repeatedly replacing sub-paths
of ¥ by straight-line paths and in the limit reach a path
4" € T'. By Lemma 1, the cost of 4’ cannot be higher
than that of 4. Hence the following lemma.

Lemma 2 The set I' contains a collision-free path of
minimum cost.

A simple way to optimize v is then to recursively
break v into two sub-paths v; = (v1,v2,...,v|n/2)) and
Yo = (v|Ny/2), V|N/2) 415 - - UN), and check whether v,
and 75 can be replaced by straight-line paths. If they
can, Lemma 1 guarantees that the cost of the new path
is lower than that of v. We will call this simple recursive
procedure Shortcut.

Shortcut is fairly efficient, taking O(N) time to exe-
cute, but unfortunately it may stop far short of reaching
the minimum-cost path. In the example shown in Fig-
ure 2, 1t terminates when it obtains the path ;. No
further improvement is possible because the straight-
line path (vg, v4) is in collision. Of course, if there were
more vertices on 71, we might be able to reach the true

q2

91

Figure 3. Piecewise linear approximations to a smooth path. The
paths 1,72, s are three-, five-, and nine-vertex piecewise-linear
paths approximating ? In the right portion of a, all approxima-
tions are reasonable good, while in the left portion of /w\, only s
approximates 2 well.

minimum-cost path, but it is difficult to know in ad-
vance how many vertices are needed.

To address this problem, after Shortcut stops, we use
an oracle to scan through each vertex v; in the path and
add additional vertices around wv; if necessary. Specifi-
cally the oracle puts two additional vertices v; and v,
on the straight line-segments (v;_1, ;) and (v;, vi41) re-
spectively and try to replace the sub-path (v, v;, v,) by
the straight line-segment (v;, v,). A bisection method is
used to determine v and v, so that (v, v,) is collision-
free. First set v to be the midpoint of (v;_1,v;),
and v, to be the midpoint of (v;,v;41). If the line-
segment (v, v,) is not collision-free, bisect again and
set v; to be the midpoint between v; and the previous
vy, and v, to be the midpoint between v; and the pre-
vious v,. Continue until (v, v,) lies completely in the
free space. In general, v; = 1/2%v;_; + (28 — 1)/2%v;
and v, = 1/2%v;41 + (28 — 1)/2%v;, at kth step for
k =1,2,... The procedure is guaranteed to terminate
because v; is a free configuration and hence there ex-
ists an open ball B that contains v; and lies entirely in
the free space. Once both v; and v, are inside B, the
line-segment v; and v, must be collision-free, since B is
convex.

After the oracle adds additional vertices to the path,
Shortcut is invoked again. The process terminates when
no further improvement is possible. Shoricut with an
oracle will be referred to as Adapiive Shortcut.

We can shed some light on the efficiency of Adaptive
Shortcut by analyzing the space of paths that it oper-
ates on. Let F; be the space of piecewise linear paths
having i vertices. Any path with ¢ vertices can also be
represented by a path with j vertices for j > ¢. Hence
F; C Fyfore < j; Fy, i =2,3,...form anested sequence
of function spaces. Let F' = U2, F; be the space of all
piecewise-linear paths. We are interested in ¥, the op-
timal path in F. If we restrict the space of paths being
considered to F; for some fixed 7, 5;, the optimal path in
F;, remains a good approximation to 4 provided 7 is suf-
ficiently large. However, a large i means more vertices
(variables) needed to represent a path, and thus the op-
timization procedure may take longer to converge to a
minimum. On the other hand, if i is too small, 5; can be
a poor approximation to 5. Furthermore, different por-
tions of 4 may have different levels of smoothness. On
the part where ¥ is smooth, a few vertices are enough to
approximate it well; on the part where 5 varies widely,
many more vertices are needed. See Figure 3 for an
example in two dimensions. In Adaptive Shortcut, the
Shortcut procedure removes unnecessary vertices when

replacing sub-paths by straight line-segments, and the
oracle adds more vertices where needed. By moving
up and down among various spaces Fy, F3, ..., Adaptive
Shortcut quickly converges to a good approximation to
5. This algorithm is inspired by multi-resolution repre-
sentation of curves in computer graphics [19].

In practice, the cost of a path that we have defined
does not take into account manipulator dynamics and
is only an approximation to the time that it takes a
manipulator to execute a path. It is a good approxima-
tion if the manipulator can reach the maximum speed
quickly. If dynamics must be considered, we will have to
resort to the general technique mentioned at the begin-
ning of the subsection or some other path optimization
methods, but they are likely to be much slower than
Adaptive Shortcut.

5 Computed examples

We have implemented our algorithm in C+4 and
tested 1t on several data sets. Four examples in our
test suite are shown here (Figure 4). They vary in the
complexity of workspace and motion needed to com-
plete the specified tasks. Scene 1 i1s a simple blocks-
world, and the motion required of the robot is straight-
forward. Scene 2 1s much more complex in terms of both
the workspace geometry, and the motion required. The
robot has to go through openings in the window and
sun-roof of the car in order to reach the task-points.
Scene 3 has relatively simple geometry, but in one of
the tasks (p2), the robot has to execute complicated
maneuvers in order to pull the big end-effector through
a small rectangular hole. Scene 4 is a large CAD model
containing about 72,100 triangles. The robot has to
maneuver among fixturing devices and reach under the
side-panel of a car in order to access the task-points.
Scene 1-3 were synthesized for testing; Scene 4 was de-
rived from CAD data provided to us by General Mo-
tors Corporation. For each of these scenes, we specify a
number of tasks in the form of a pair of initial and goal
end-effector frames (Cartesian frames at the wrist-point
of the robot), labeled by pl, p2, or p3 in the figure.

Two types of robot are used in the tests. Scene 1
and Scene 2 use a PUMA robot that has six DOFs and
about 460 triangles describing its geometry. Scene 3
and Scene 4 use a modified version of a FANUC-200
robot. We have replaced the four-bar linkage of the
FANUC-200 by a simple revolute joint in order to sim-
plify the IK solution. The geometry of the robot is
mostly preserved. The modified robot has six DOFs
and is modeled by 1,260 triangles.

The results of our experiments are shown in Table 1.
The running time was collected on an SGI Indigo 2
workstation with an 195 MHz R10000 processor and
384 MB memory. In all the tests, our algorithm took
only a few minutes to finish the computation, and less
than a minute for simpler problems. The cost of the
paths was reduced by about 50% by choosing a good
base location and optimizing the path. Column 2 of
the table lists the total number of triangles contained
in all the objects in the environment, including the

Table 1. Running time and cost of paths for tested scenes.

Scene Ny Task Tplan Nplan Topt Nopt Clinit Cz—opt Cﬁnal

|| l(sec)] [ec)| |||

1 560| pl 0.3 309| 15.1| 9955||1.36 | 0.52 | 0.32
p2 0.3 362 8.8| 7016(/1.08| 0.48 | 0.39
p3 0.3 353| 9.0| 6831/ 1.26| 0.77 | 0.50

2 [21400] p1 3.4| 2831| 39.8|17647|[2.25| 1.51 | 1.16
p2 4.2| 3806| 31.7|10053|[2.57 | 1.53 | 1.08
p3 16.5| 14794| 34.1|10255|(2.80| 1.69 | 1.44

3 1368| p1 4.4| 4331| 25.5(17859|[1.13 | 0.84 | 0.48
p2 |[197.0{210829| 55.4|23566| 2.17 | 1.43 | 1.30

4 |72100| p1 11.4| 7425|107.4|24436|/1.78 | 1.18 | 0.82
p2 25.1| 28263|133.6/19453(|1.24| 0.79 | 0.59

robot. It gives an idea of the complexity of the en-
vironment. Columns 4 and 5 give the running time
and number of collision checks needed to find an initial
collision-free path. The randomized motion planning
algorithms performed very well in these examples. All
problems except for one were solved in less than 30
seconds. In the case where the planner took a rela-
tively long time, the robot must pull the welding-gun
(end-effector) through a small hole, a very challeenging
situation for a randomized motion planner. Columns
6 and 7 show the running time and number of colli-
sion checks spent searching for the best base placement
and a corresponding collision-free path. The running
time ranges from a few seconds to 2-3 minutes. Recall
that at each new base location, the algorithm must find
a new collision-free path and optimize it. Both oper-
ations require a large number of collision checks and
are very expensive. The computation time was siginif-
icantly reduced by exploiting the spatial coherence in
the configuration space as we have discussed previously.
The last three columns of the table list respectively the
cost, of the initial path, the cost of the optimized path
at the initial base location, and the cost of the path at
the best base location found. By comparing the costs in
columns 8 and 9, we see that Adaptive Shortcut was able
to reduce the cost of paths by about 25-60%. Find-
ing a good base location further reduced the cost by

additional 10-30%.

6 Conclusion and future work

This paper presents an algorithm that computes a
locally optimal base location and a corresponding
collision-free path for a robot manipulator to move be-
tween two end-effector frames in minimum amount of
time. We have tested this algorithm on both synthe-
sized examples and real-life CAD data from the auto-
motive industry. Experiments show that our algorithm
can significantly reduce the cycle time by choosing a
good base location and optimizing the path, and there-
fore improve the productivity of a workcell. In all our
experiments, the computation was completed in a few
minutes. The efficiency of our algorithm, we believe,
is largely due to the randomized motion planning tech-
niques used. These techniques have allowed us to give a
more realistic formulation of the robot placement prob-
lem that takes into account obstacles in the environ-
ment.

Scene 1 Scene 2

Scene 3 Scene 4

Figure 4. Four test scenes. (Larger images are available at http://robotics.stanford.edu/people/dyhsu/projects/placement)

Currently our algorithm considers a minimum-cost
path between two end-effector frames. An immediate
extension of the problem is to consider n end-effector
frames. Given a set of end-effector frames and a partial
order on them so that some frames have to be visited
before others, we would like to find a path that visits
each frame exactly once and obeys the partial order.
This is a variant of the traveling salesman problem,
which has been studied extensively, and many heuristic
and approximation algorithms are available.

Although our algorithm was originally developed for
the base placement problem, the approach can poten-
tially be applied to kinematic synthesis problems, where
one needs to find a small set of parameters to configure
a robot. Application of our algorithm to this more gen-
eral class of problems is currently under investigation.

Acknowledgments This research has been partially
supported by ARO MURI grant DAAH-04-96-1-007 and
by a grant from the Stanford Intergrated Manufacturing
Association (SIMA). David Hsu is a recipient of the Mi-
crosoft Graduate Fellowship. The authors thank Rajeev
Motwani for his help in several aspects of this work. They
also thank Charles Wampler at General Motors Corp. for
providing CAD models and Deneb Robotics Inc. for making
the IGRIP software available to us.

References

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and
D. Vallejo. OBPRM: An obstacle-based PRM for 3D
workspaces. In Proc. Workshop on Algorithmic Foun-
dation of Robotics, 1998.

[2] J. Barraquand and J.-C. Latombe. Robot motion plan-
ning: A distributed representation approach. Int. J. of
Robotics Research, 10(6):628-649, 1991.

[3] J. Canny and J. Reif. New lower bound techniques for
robot motion planning problems. In Proc. IEEE Symp.
on Foundations of Computer Science, pp. 49-60, 1987.

[4] J. Canny, J. Reif, B. Donald, and P. Xavier. On the
complexity of kinodynamic planning. In Proc. IFEFE
Conf. on Foundations of Computer Science, pp. 306—
316, 1988.

[5] P. C. Chen and Y. K. Hwang. SANDROS: A motion
planner with performance proportional to task diffi-
culty. In Proc. IEFEE Int. Conf. on Robotics and Au-
tomation, pp. 2346-2353, 1992.

[6] B. Donald, P. Xavier, J. Canny, and J. Reif. Kino-
dynamic motion planning. J. ACM, 40(5):1048-1066,
1993.

[7] J. T. Feddema. Kinematically optimal robot placement
for minimum time coordinated motion. In Proc. IFEFE
Int. Conf. on Robotics and Automation, pp. 3395-3400,
1996.

[8] J. E. Goodman and J. O’Rourke, editors. Handbook
of Discrete and Computational Geometry. CRC Press,
New York, 1997.

[9] K. Gupta and X. Zhu. Practical motion planning for
many degrees of freedom: a novel approach within
sequential framework. In Proc. IEFEE Int. Conf. on
Robotics and Automation, pp. 2038-2043, 1994.

[10] T. Horsch, F. Schwarz, and H. Tolle. Motion planning
for many degrees of freedom - random reflections at C-
Space obstacles. In Proc. IEEFE Int. Conf. on Robotics
and Automation, pp. 3318-3323, 1994.

[11] D. Hsu, J.-C. Latombe, and R. Motwani. Path plan-
ning in expansive configuration spaces. In Proc. IFEFE
Int. Conf. on Robotics and Automation, pp. 2719-2726,
1997.

[12] Y. K. Hwang and P. A. Watterberg. Optimizing robot
placement for visit-point tasks. In Proc. AAAT Work-
shop on Artificial Intelligence for Manufacturing, pp.
81-86, 1996.

[13] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration space. IFEF Trans.
on Robotics and Autornation, 12(4):566-580, 1996.

[14] K. Kolarov. Algorithms for optimal design of robots in
complex environments. In K. Goldberg et al., editors,
Algorithmic Foundations of Robotics, pp. 347-369. A.
K. Peters, 1995.

[15] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

[16] F. B. Ouezdou. General method for kinematic synthe-
sis of manipulators with task specifications. Robotica,
15(6):653-661, 1997.

[17] H. Seraji. Reachability analysis for base placement in
mobile manipulators. J. of Robotic Systems, 12(1):29-
43, 1995.

[18] Z. Shiller and S. Dubowsky. On computing the global
time-optimal motions of robotic manipulators in the
presence of obstacles. IFEE Trans. on Robotics and
Automation, 7(6):785-797, 1991.

[19] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin.
Wavelets for Computer Graphics. Morgan Kaufmann,
San Francisco, CA, 1996.

