POMDP to the Rescue: Boosting Performance for Robocup Rescue

Kegui Wu

Abstract— Disaster response is one of the most critical social
issues and introduces quite a few research themes for the
Al planning area. Robocup Rescue provides a platform to
simulate the rescue process in a city when an earthquake
happens. Existing methods consist of multi-agent methods that
use greedy heuristics. These methods scale to large maps but
suffer from volatile performance under different scenarios. In
this work, we propose a planning framework to boost the
performance on Robocup Rescue given several policies from
the competition to be used as components. More specifically,
we use an online POMDP algorithm with macro-actions and
restrict it to plan within the space of tasks performed by
the agents in the component policies at each time instance.
Since the action space contains macro-actions of the component
policies, the method is guaranteed to perform at least as well
as the best component policy, and possibly better, if sufficient
computation is provided. On the other hand, the restriction of
the tasks to those suggested by component policies reduces the
computational complexity of planning and allows the planning
method to be practically applied. Experiment results show
that our planner generates better performance than the best
component policy for some scenarios and gives performance
comparable to the best component policy for the rest.

I. INTRODUCTION

To promote research and development in techniques of
robotic agents in the socially significant domain of disaster
management, the Robocup Rescue Simulation project was
initiated in 2001. The system simulates the rescue process
by heterogeneous agents, such as fire brigades and ambulance
teams, in a city when an earthquake happens.

Maps from competitions of recent years contain up to
thousands of buildings and hundreds of civilians. In order
to scale to such a large space and still respond in real time,
participant teams usually use heuristic algorithms. These
algorithms build model based on the observation history, to
predict the development of the environment or to estimate the
importance of targets. In addition, instead of planning, they
usually select actions based on greedy heuristics. Hence, the
outcome depends heavily on the quality and coverage of the
model. Usually, the models of the participating teams are not
comprehensive, and performance is volatile under different
scenarios.

An alternative method for developing policies for disaster
management is to do planning under uncertainty. Partially
observable Markov decision process (POMDP) provides a
principled planning framework under uncertain and partially
observable environment and is powerful enough to model
the disaster management problems. However, POMDP is
notorious for its computational complexity. For Robocup

The authors are with School of Computing, National University of Sin-
gapore, Singapore. {wu-kegui, leews,dyhsu}@comp.nus.edu.sg

Wee Sun Lee

David Hsu

Rescue, the size of state space is exponential in the number
of buildings and the size of action space is exponential in
the number of agents. Both are extremely large, even for
state-of-the-art POMDP solvers.

In this work, we seek a middle ground of using planning
under uncertainty techniques to boost the performance of a
collection of heuristic policies — to exploit the information
contained in the policies to constrain the computational
complexity, and to go beyond the component policies by
using the planning technique to search over their action
combinations of the component policies. More specifically,
we combine online POMDP algorithm with macro-action
techniques and plan in a macro-action space suggested by
the component policies.

We first note that it is straightforward to approach the
performance of the best policy for each city — simply
simulate each policy on each city many times, and use the
policy with the best average performance in simulation for
each city. In this work, we would like to outperform the best
policy whenever the combination of the actions suggested
by the component policies are able to do so. Specifically,
we constrain the possible actions of each agent to those
suggested by the component policies and search over those
actions. Since the action space contains the joint actions of
each of the component policies, this method will perform at
least as well as the best component policy and potentially
better, given enough computation time. At the same time,
the information in the component policies constrains the
action space to be much smaller than the complete action
space, allowing the search method to return good results in
reasonable time.

Various challenges need to be overcome in order to apply
the idea in practice.

o The planning horizon of the problem is long, making
planning difficult. To overcome that, we extend a state
of the art online POMDP planner, POMCP [1], to plan
over macro-actions instead of actions. A macro-action
is an extended sub-policy that runs over multiple steps,
as opposed to a single step in the case of an action.
To construct macro-actions, we divide the map up into
regions and treat the allocation of agents to regions as
macro-actions.

o Each policy used in the previous Robocup competition
is designed as a stand-alone policy. As a consequence, it
may not be possible for a component policy to operate
when the previous actions come from different policies
rather than being generated by the policy itself. To over-
come this problem, we approximate each component
policy as a function of the history to action. We use a

Fig. 1.

An example of a map (from [3])

structured support vector machine [2] in order to learn
each component policy from the training data generated
by running the policies in simulations.

In the rest of the paper, we will first introduce the Robocup
Rescue problem in Section II. In Section III, we describe
our method of combining online POMDP algorithm with
macro-actions and constraining the size of planning space.
Finally, we will show and discuss the experiment results in
Section IV.

II. RoBOCUP RESCUE

A. Problem Description

The Robocup Rescue project simulates heterogeneous
agents collaborating to execute the rescue process when an
earthquake happens in a city. Map entities include buildings,
roads and road blockades (see Figure 1). Civilians are
scattered in buildings and roads. Controllable entities, or
the so-called platoons consist of three kinds of agents: fire
engine, ambulance team and police force. Fire engines are
able to extinguish fire, ambulance teams are able to rescue
people, while the police force is able to clear road blockades.
Another common action for civilians and agents is to move.
A move action is a legal path consisting of a sequence
of buildings and roads which are connected. An agent’s
observation is generated by a line-of-sight model. The aim
is to save as many civilians as possible while minimizing the
damage to buildings.

The Robocup Rescue simulation system is built upon
modules communicating with each other. Changes of envi-
ronment are all simulated by component simulators, such
as building collapsing, blockade generation and clearance,
damage generation and development, fire development and
traffic condition. Each simulator is independent and designed
to operate separately.

Among the test cases in the competition, there are some
cases that only test the performance of fire engines — no
civilians to be rescued and no road blockades to be cleared.
In this work, we will also just focus on planning for actions
of fire engines. Nevertheless, the framework can easily
be extended to situations with heterogeneous agents. For
scenarios where only fire engines are present, the score is
just the percentage of undamaged buildings.

B. Competition Policies

Competition policies typically build simplified models to
approximate the environment. For example, the RI-ONE
policy [4], which won the 2012 competition, builds the fire
model by assuming that heat is transmitted in the concentric
sphere centered on the burning building, capturing only
a part of the actual fire simulator. Furthermore, actions
are chosen based mostly on greedy heuristics, instead of
thorough planning. For example, the RI-ONE policy gives
a nearby fire a higher priority and uses the heat flowing in
and out to choose the fire to extinguish.

Simplified models and useful heuristics allow competition
methods to delivery satisfactory scores. However, even the
champion rarely produces best score and performance is hard
to predict. Without using principled planning methods, these
methods usually deliver volatile performance.

III. POMRESCUE:BOOSTING PERFORMANCE FOR
RoBoOCUP RESCUE WITH POMDP

A. POMDP Model

Partially Observable Markov Decision Process is a princi-
pled framework for planning under uncertainty. It is general
enough to model a variety of real-world sequential decision
problems. It is defined as a tuple < S, A,T,R,O,Z,v >,
where S, A, O denote state space, action space and observa-
tion space. 1" defines the transition model or the uncertainty
of taking action. Z is the observation function, modelling
the noise of sensors. And R is the reward function, which
defines the benefit or penalty that is obtained for performing
an action at a particular state.

In particular, we can model the Robocup Rescue problem
as POMDP as follows. A state is composed of state variables
{f:} which represents the fire level of building ¢ as well
as state variables representing the position p, and water
power w, of each agent a. An action u’ that an agent
can take includes moving to a legal area or extinguishing a
building fire. Since we are considering a centralized POMDP,
a primitive action in the POMDP tuple would be a joint
action @ = {u!,u?,...}. And the reward function computes
how much percentage the city will be burnt during a time
step given the state and action. The observation consists
of the same variables as the state. And the transition and
observation functions are defined by the Robocup Rescue
simulators.

Unfortunately, POMDP is notorious for its computa-
tional difficulty. Point-based algorithms have made dramatic
progress in computing approximation solutions in recent
years [5], [6], [7]. State-of-the-art solvers can scale to
hundreds of thousands of states. In addition, algorithms that
tackle continuous space such as MCVI [8] also extend the
applicability of POMDP model. However, due to the curse
of dimensionality and the curse of history, these solvers are
still unable to solve many complex real-world problems.

POMCEP (Partially Observable Monte-Carlo Planning) [1]
is one of the state-of-the-art online POMDP solvers. It
achieves high scalability and performance, by combining

Monte-Carlo tree search and the UCT (Upper Confidence
bounds for tree) algorithm.

B. Macro-action

Due to the curse of history, a POMDP solver’s perfor-
mance tends to degrade when the planning horizon becomes
longer. Macro-actions can be used to tackle this issue. Macro-
action is a temporal abstraction of primitive actions, and can
be adopted to mitigate the effect of long horizon. Generally,
a macro-action could be an arbitrary mapping from belief
to an action. However, macro-actions need to be carefully
constructed to retain some favourable properties and achieve
good result.

Macro-action has been used to speed up MDP and
POMDP algorithms [9], [10]. For POMDP algorithm, earlier
works rely on specific representation form of belief and value
function, making it difficult to scale to very large space [11].
Recently, macro-action has been adopted to state-of-the-art
offline POMDP solver that uses Monte Carlo simulation [12].

Similar to action, for Robocup Rescue, we define the joint
macro-action m as a set of individual macro-actions {m‘}.
Each m’ is a pair of < agent,task > that specifies the task
that agent ¢ would executes. That is, the macro-action is a
task allocation.

We partition the map into regions 71,72, . .
the task as one of the following three types.

., T and define

o extinguish(z): each agent can go to a target region 7;
and execute the low level task there.

o search: an agent can perform a search routine which
searches for fire locations.

o head2refuge: an agent can go to a refuge to refill its
water supply.

Besides the high-level macro-action, there will be an
engine to generate the low-level primitive actions. The low-
level action would be the sequence of specific actions to
execute the task. We focus on the high-level actions, that
is, to plan in the macro-action space and identify the best
task allocation for agents. For the low-level planning, we
use heuristic algorithms from the competition methods.

Since we focus on the macro-actions, the complexity
of the planning will be reduced significantly. However, at
every time step, combination of tasks to be allocated is
still exponential to the number of the agents. The idea of
constructing a small policy space based on the policies of
given competition planners helps to reduce the complexity
to a manageable one.

C. POMCP with macro-action

Before introducing the idea of restricting planning space,
we first discuss the framework of the algorithm. By com-
bining the power of online POMDP and macro-actions,
we can solve large POMDP problems with large action
space and long horizon. Routines that extend POMCP with
macro-actions are shown in Algorithm 1, Algorithm 2 and
Algorithm 3.

Algorithm 1 shows the main framework of planning. Each
time step, the planner receives an observation from the

Algorithm 1 POMCP with macro-action: Plan
function PLAN
for i = 1, i« < HORIZON, i + + do
obs < ReceiveObs()
if NewObs(obs) then
UpdateRoot(last M acro, obs)
m < Search(root, 1)
lastMacro < m
end if
a <+ ExtractAction(m)
SendAction(a)
end for
end function

Algorithm 2 POMCP with macro-action: Search
function SEARCH(node, depth)
for i =0, i < SIMNUM, i+ + do
if node = empty then
s~1T
else
s ~ B(node)
end if
Simulate(s,node,depth)
end for
return arg max,,, V (hm)
end function

Robocup Rescue simulator. The NewObs routine decides
whether the observation contains any new information, that
is, the stopping criteria of macro-action. For example, a
new fire is found, or a fire has been put out. If NewObs
returns true, then the planner will update the root node of the
search tree based on the last macro-action and observation
(belief update) and search for a new macro-action. Finally,
the ExtractAction routine calls the low-level planning engine
and returns a primitive action given the macro-action.

Algorithm 2 describes the search step. The search will run
SIMNUM simulations. Each simulation starts from sampling
a state s from the belief B(node) corresponding to the tree
node or from the initial belief Z when time step is 0 and
tree root is empty. Then the routine Simulate will run the
simulation from s and update the corresponding nodes.

Algorithm 3 describes the Simulate routine. node,, repre-
sents the AND-node in the m branch of node, and node,,,
represents the OR-node with m action branch and o obser-
vation branch from node. The process is similar to that of
the original POMCP. It will keep choosing the macro-action
branch with best upper confidence bound, sampling the next
state s’, observation o and reward r and updating the statistics
of the tree node, until reach the end of the tree. Then a new
tree node will be created, with macro-actions produced with
routine GenerateMacros. Finally, the routine will execute the
rollout policy.

Algorithm 3 POMCP with macro-action: Simulate
function SIMULATE(s,node,depth)

if depth > HORIZON then
return 0

end if

if node ¢ T then
macros <+ GenerateMacros(node)
for all m € macros do

T(node,,) < (0,0, 0)

end for
return Rollout(s,node,depth)
end if
m < argmax, V(nodep) + ¢ loj\g,(]vn(#f)e)

(',0,1, step) ~ G(s,m)
R + r + X Simulate(s’,node,,,,depth + step)
N (node) < N(node) + 1
N(node,,) + N(node,,) + 1
V(nodey,) + V(node,,) + W
return R

end function

D. Selecting Macro-Actions to Plan

Our combination of online POMDP and macro-action sig-
nificantly reduces the size of planning space. Normally, we
have to plan in the whole macro-action space for each step
Search routine is called in the framework of Section III-C.
However, the number of macro-actions to plan is exponential
to the number of agents, which is still too large for the
POMCP solver.

On the other hand, the competition policies can suggest a
small policy space to search. We call a competition policy
as component policy 7 : b — m, which maps from a belief
to a macro action. In addition, 7 (b, a) defines the task the
agent a is assigned to in macro-action 7(b). Given a belief
b, two component policies m; and 7o are consistent on the
task of agent a if 71 (b, a) and ma(b, a) are the same. Every
search step, the GenerateMacros routine will return the set
of macro-actions to search. We select the macro-actions to
search based on the following criteria.

First, if all the component policies are consistent on the
task of an agent, the suggested task is adopted for that agent.
In another word, the agent is assigned with the same task in
all the macro-actions the POMDP planner is going to search.

Second, for the n, remaining agents for which the com-
ponent policies suggest different tasks, all the suggested
tasks are allowable tasks of the agents. That forms the task
allocation problem with ny tasks and n, agents. Hence, the
number of the potential macro-actions is n ™.

Third, to reduce the number further, we can calculate the
number of votes from the component policies for each task.
In particular, for a component policy 7 and any agent a, we
add the votes by one for the task 7 (b, a). So the votes for a
task ¢t would be >, _ [7(b, a) = t]. The votes can be used to
indicate the importance of the tasks. We then prioritize the
agents to the tasks according to the importance of the task

and the distance the agent need to travel. More specifically,
among the agents to be planned, we prioritize more agents
to tasks with higher importance, and the agents assigned are
those nearest to the target region of the task. Finally, we
restrict the total number of macro-actions at any step to a
maximum number according to the priority in order to keep
the planning manageable (in our experiments, we limit the
number to a maximum of ten).

As can be seen, via the above method, the selected action
space will contain the actions of each of the component
policy. Hence the planning will perform at least as well
as the best component policy and potentially better, given
enough running time. Meanwhile, the information in the
component policies constrain the selected action space to be
much smaller than the complete action space which enables
the planning to return good results in reasonable time.

E. Learning Policies

As mentioned in the last section, the GenerateMacros
routine needs component policies from the competition that
can map any belief to a macro-action, to suggest tasks for
agents. Ideally, we would like to run the competition planners
to suggest the appropriate macro-actions. However, this is not
always possible. We describe an extreme case to illustrate the
problem. A policy for a POMDP is a mapping from a history
(01,a1,09,a9,...,0,_1,0n_1,0,) (or equivalently a belief)
to an action. Consider a policy that accepts only histories that
contain a subset of allowable actions, A’ C A, and outputs
an action from the same subset A’. This policy may not
be defined for inputs that contain actions outside of A’ but
can be used without any problem in the competition, as the
histories it receives are generated by the policy itself and
contains only actions in A’. When this policy is used within
the planner, it may encounter histories that contain actions
generated by the planner that are outside of A’, and hence
may not be able to return an output.

To solve this problem, we need some way to extrapolate
the policy to all inputs. We propose to use machine learning
to do the extrapolation. Given a set of examples consisting of
history-action pairs generated from a competition policy, we
extrapolate the policy to all possible inputs by learning from
the examples. One simple way to learn a competition policy
would be to learn an independent mapping from history to
action for each agent. However, the actions of agents are
usually correlated in some way and we would like to exploit
the correlations. In this work we use structured support
vector machine (SVM) [2], in order to learn the competition
policies. Structured SVM is a machine learning method used
to predict labels on parts of a structure. We use a binary
tree(shown in Figure 2) as the structure, where each node is
associated with a fixed agent and labeled with the action
taken by the agent. The structured SVM is then used to
predict the actions of all the agents, corresponding to the
labels of the nodes of the tree. Using a tree as the structure
allows us to capture some of the hierarchical relationships in
teams of agents (e.g. a parent can be viewed as a leader of
the team consisting of itself and its children). Learning and

Fig. 2. An example of the tree model which is the output of Structured
SVM. Each node is associated with a fixed agent ¢ and labeled with its
action a®. We define a feature function W(x, %) mapping = and y to a
feature vector where z is the world state and y is the tree structure. The
Structured SVM will learn the weight vector w and predict the tree y that
maximizes w - ¥(z,y).

prediction can also be done efficiently with structured SVM
when the structure is a tree.

We used features of the history, like observed fires, un-
known areas, and agents’ positions as input to the structured
SVM. The features for every tree node include the following:

« fire intensity for each region

o unknown area of each region

¢ position of the agent corresponding to the tree node

« observation of fire intensity of the agent

o previous action of the agent

o water power of the agent

« the agent’s distances to other agents

In addition, features for tree edges are indicator functions
of the pair of macro-actions corresponding to the pair of
agents associated with the edge. This captures the correlation
in the tasks of the two agents. Finally, based on the learned
model, we can get a policy mapping agents to tasks given
the action-observation history.

FE. Miscellaneous

1) Simplifying Simulators: POMCP runs many simula-
tions to back up values for a belief and the performance
depends on the number of simulations being executed. The
simulation overhead hence becomes a major factor of ef-
ficiency of the algorithm. Since original Robocup Rescue
simulators are very complicated, they are simplified to reduce
the overhead.

2) Rollout Policy: One of the important factors in
POMCEP that affect its performance is the rollout policy. A
rollout policy should ideally be an optimal policy or near-
optimal one. We use policy of competition method RI-ONE
as rollout policy and assume it will provide good rewards in
most cases.

3) Macro-action Stopping Criteria: Macro-action is de-
signed to stop when some reasonable conditions are met.
For our planner, a task execution should be stopped when it
is finished or interrupted by other conditions that require a
reallocation of tasks. We try to loosen the criteria to reduce
the stopping frequency of macro-action, since replanning
for macro-actions is quite expensive. For example, generally
replanning for macro-action is needed when a new fire is
discovered. However, when the fire is a nearby fire caused
by a fire the agents are extinguishing, or a very severe fire
that has almost burnt out the building and does not need to
be extinguished, the macro-action will not be interrupted.

TABLE I
ACCURACY OF LEARNING POLICIES ON MAP BERLINS.

training set(2500 samples) test set(1000 samples)

ZJUBase 0.877 0.786
RI-ONE 0.913 0.749
SOS 0.892 0.773

IV. EXPERIMENTS

In this section, we present the results of running simula-
tions on the competition maps.

As mentioned in Section II, we only consider the per-
formance of fire engines. There are no other agents like
ambulance, police force, or civilians on the map. Building
collapsing and road blocking are also disabled. The agents’
task is to put out the fires and keep as many buildings
unburned as possible. So, the primitive actions the agent can
take are moving and fire extinguishing. The agent may also
need to go to a refuge to refill itself if its water is used
up. Initially, there is no fire on the map. The ignition rate,
which is the average number of buildings that will be ignited
randomly at each time step, will also be adjusted so that the
task is not too easy or too difficult for the agents. The total
number of agents is 10 for each map. The total time steps
for simulation on each map is up to 300. The maps used are
from Robocup Rescue 2012. And the results are compared
with the policies from the competition teams ZJUBase, RI-
ONE and SOS [13].

We first show the results of learning policies of RI-ONE,
ZJUBase, and SOS using Structured SVM in Table 1. The
training accuracy, which is the percentage of correct actions
predicted for agents, is fairly high, although the test set
accuracy is somewhat lower. When the classifiers are used
as policy in real simulation runs, the score of the resulting
policies generally lower than that of the original policy it was
trained on. Despite this, our results show that these classifiers
can be successfully used in conjunction with PomRescue.

One simpler method for combining the recommendation of
the classifiers is to use the three recommendations from the
three classifiers as macro-actions with the online POMDP
algorithm. We call this method SimpleMacro. The policy
space of SimpleMacro includes the best of the component
policies, hence it can perform as well as the best component
policy, if given enough search time. However, note that our
learned component policies do not perform as well as the
competition policies they are approximating.

The results of scores on the competition maps are seen on
Table II. The SOS policy crashed on our computer on some
of the runs and we compute the average performance based
on the successful runs.

We ran 100 simulations for each map. The score represents
the percentage of buildings that are not burnt out at the
final time step. As can be seen, performance of competition
planners are uneven. For example, RI-ONE’s average score
is much better than ZJUBase’s for Istanbul3 but much worse
for Paris. In addition, SimpleMacro, which can theoretically
be as good or better than the component policies, generally

TABLE I
SCORES ON COMPETITION MAPS

PomRescue ZJUBase RI-ONE SOS SimpleMacro

Berlin5 38.82 33.20 31.13 29.62 31.98
Mexico3 35.73 32.14 26.02 28.11 31.83
VC4 49.18 43.83 45.32 39.82 43.10
Eindhovend 54.23 51.78 46.78 48.34 50.31
Eindhoven5 55.18 53.17 54.20 48.56 51.34
Istanbul3 38.12 33.10 40.92 31.69 35.12
Kobe4 48.31 49.32 43.18 47.32 48.12
Paris4 57.37 59.83 47.39 51.33 53.38
TABLE III

AVERAGE RUNTIME FOR MAP BERLINS.

Method Runtime(s)
PomRescue 2926.7
ZJUBase 861.8
RI-ONE 789.2
SOS 842.2
SimpleMacro 1269.8

obtains scores that are better than the poorest competition
policy, but poorer that the best competition policy. It appears
that a simple combination of component policies fail to out-
perform the competition policies for these problems. On the
other hand, PomRescue performs comparably or better on the
8 maps. The performance is expected to be comparable since
the policy space of PomRescue contains policies approxi-
mated from the competition policies. The better performance
indicates that the policy space of PomRescue is rich enough
to contain better policies, and yet remains computationally
practical.

The average time for simulation on map BerlinS for
different methods are presented in Table III. As it shows,
PomRescue takes about 3 times longer than other planners
since it performs search. The time, however, is still reason-
able for real-time performance in a disaster situation.

In Figure 3, we show the actual number of agents and
macro-actions used to plan in each search step for a sample
simulation. Since we use macro-actions, planning is required
only for some of the time steps; otherwise the macro-action
is just executed until it stops. As shown in the figure, in
the early stage (before time step 50), all component policies
suggest the search macro-action for all agents, so there
is no need to plan for any agent. With more and more
fires appearing, there is more and more inconsistency in

50 100 150 200 250 300
12 = 12
g4 | —#policies to plan 8

6 6

49 4

24 2

09 0
-2 T T T T T -2
0 50 100 150 200 250 300

time step

Fig. 3. Number of agents and number of policies to plan

the component policies with more and more target regions
containing fires. So the number of agents to plan and the
number of selected policies increase accordingly. However,
they are still within a manageable range.

V. CONCLUSIONS

We have proposed a method of using several heuristic
policies to help constrain the search space of an online
POMDP algorithm in multi-agent scenarios. As the search
space still contains the original policies, the POMDP plan-
ning algorithm is guaranteed to perform as well as the best
component heuristic policies if it is run for a long enough
time. Experiments on a Robocup Rescue task shows that the
method is able to outperform the best component policy on
many of the problem instances. It would be interesting to
see if the method can be used to improve the performance
of other multi-agent planning problems.

VI. ACKNOWLEDGEMENT

This research was supported by the National Research
Foundation Singapore through the Singapore MIT Alliance
for Research and Technology’s IRG research program (R-
252-000-571-592).

REFERENCES

[1] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in Neural Information Processing Systems, pp. 2164-2172,
2010.

[2] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support
vector machine learning for interdependent and structured output
spaces,” in Proceedings of the twenty-first international conference
on Machine learning, p. 104, 2004.

[3] A. B. da Silva, L. G. Nardin, and J. S. Sichman, “RoboCup Rescue
simulator tutorial,”

[4] S. Okazaki, T. Nakagawa, K. Miyake, S. Oguri, and M. Takashita,
“RoboCupRescue 2013-Rescue Simulation League team description
Ri-one (Japan),”

[5] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration: An
anytime algorithm for POMDPs,” in Proc. Int. Jnt. Conf. on Artificial
Intelligence, vol. 3, pp. 1025-1032, 2003.

[6] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in Proc. Uncertainty in Artificial Intelligence, pp. 520—
527, 2004.

[71 H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces,” in Proc. Robotics: Science and Systems, 2008.

[8] H. Bai, D. Hsu, W. S. Lee, and V. Ngo, “Monte Carlo value
iteration for continuous-state POMDPs,” in Proc. Int. Workshop on
the Algorithmic Foundations of Robotics (WAFR), pp. 175-191, 2011.

[91 M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier,
“Hierarchical solution of Markov decision processes using macro-
actions,” in Proc. Uncertainty in Artificial Intelligence, pp. 220-229,
1998.

[10] G. Theocharous and L. P. Kaelbling, “Approximate planning in
POMDPs with macro-actions,” in Advances in Neural Information
Processing Systems, 2003.

[11] J. Pineau, N. Roy, and S. Thrun, “A hierarchical approach to POMDP
planning and execution,” in Workshop on hierarchy and memory in
reinforcement learning (ICML), vol. 65, p. 51, 2001.

[12] Z. W. Lim, W. S. Lee, and D. Hsu, “Monte Carlo value iteration
with macro-actions,” in Advances in Neural Information Processing
Systems, pp. 1287-1295, 2011.

[13] F. Amigoni, A. Visser, and M. Tsushima, “Robocup 2012 Rescue
Simulation League winners,” in RoboCup 2012: Robot Soccer World
Cup XVI, pp. 20-35, Springer, 2013.

