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Abstract

The partially observable Markov decision process
(POMDP) provides a principled mathematical model
for integrating perception and planning, a major chal-
lenge in robotics. While there are efficient algorithms
for moderately large discrete POMDPs, continuous
models are often more natural for robotic tasks, and
currently there are no practical algorithms that handle
continuous POMDPs at an interesting scale. This paper
presents an algorithm for continuous-state, continuous-
observation POMDPs. We provide experimental re-
sults demonstrating its potential in robot planning and
learning under uncertainty and a theoretical analysis of
its performance. A direct benefit of the algorithm is to
simplify model construction.

1 Introduction

Integrated perception and planning is essential for re-
liable robot operation and poses a major challenge
in robotics. The partially observable Markov deci-
sion process (POMDP) provides a mathematical model
that connects perception and planning in a principled
manner. It has been applied to a range of robotic
tasks, including navigation (Roy & Thrun 1999), grasp-
ing (Hsiao et al. 2007), and aircraft collision avoid-
ance (Bai et al. 2011). However, efficient POMDP al-
gorithms existing today typically assume discrete mod-
els (e.g., (Kurniawati et al. 2008, Pineau et al. 2003,
Smith & Simmons 2005)), in which an agent’s states,
actions, and observations are all discrete, while for
robotic tasks, continuous models are often more natu-
ral. To our knowledge, there are currently no practical
algorithms that handle continuous POMDPs at an inter-

esting scale for robotic tasks. Here we aim to develop
an efficient algorithm for continuous-state, continuous-
observation, but discrete-action POMDPs and apply it
to robot planning and learning under uncertainty.

Because of uncertainty inherent in robot control and
sensing, a robot does not know its state perfectly.
To choose an action, it must consider all possible
states consistent with actions taken and observations
received. In a POMDP, we capture the state uncer-
tainty in a belief, which can be represented as a proba-
bility distribution over the robot’s state space. The set
of all valid beliefs forms the belief space B. An offline
POMDP algorithm systematically reasons over B and
tries to construct an optimal policy w: B — A, which
prescribes to every belief in B a best action from an
action set A.

To apply discrete POMDP algorithms to tasks with
continuous states and observations, a common ap-
proach is to discretize state and observation spaces
with a regular grid. This approach is difficult to scale
up, as the computational cost increases exponentially
for high-dimensional spaces. We avoid such fixed
discretization. Conceptually we perform probabilistic
sampling to “discretize” state and observation spaces
implicitly, while computing the policy at the same time.
The sampling adapts to the accuracy of policy compu-
tation.

One main challenge with continuous POMDPs lies
in representing the belief and the policy: the belief
is a continuous probability distribution, and the policy
maps such a continuous probability function to an ac-
tion. Developing finite representations for them is diffi-
cult. We introduce the generalized policy graph (GPG)
as an alternative policy representation. Each node of
a GPG is labeled with an action. Since the observa-
tion space is continuous, each node has an associated
edge classifier, which is a function that maps an input
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Figure 1: Intersection navigation. (@) An autonomous
vehicle, in blue, navigates through an uncontrolled road
intersection. It is equipped with a sensor to measure
proximity to obstacles along a set of beams. (b) An
example GPG. cLEAR, cLEAR', niT, and nit’ represent
subsets of continuous observations.

observation to another GPG node. Intuitively we can
think of a GPG as a finite-state controller with continu-
ous input and discrete output. Consider the example in
Fig. 1. Under this policy, the stopped autonomous vehi-
cle moves forward only after receiving two successive
observations from CLEAR and CLEAR’, respectively.

We construct a GPG by iteratively applying the Bell-
man backup equation to an initial policy. This is the
same basic idea of the value iteration algorithm, but we
perform backup on a GPG rather than a value function.
To deal with continuous state and observation spaces,
we evaluate the Bellman equation by Monte Carlo sam-
pling. We also provide a performance bound on the
number of samples required to compute an approxi-
mately optimal policy.

Our algorithm applies without modification to
POMDPs with large discrete state or observation space
as well.

One immediate benefit of the new algorithm is sim-
plified model construction, as it removes the need to
discretize states and observations manually. Consider
the example in Fig. 1 again. In a discrete POMDP
model, we must choose discrete locations as the states
for the vehicles. We must also construct observations.
One way is to quantize the proximity sensor readings
for each beam. Even with a coarse two-level quantiza-
tion, this still results in 2% observations for K beams.
A more sophisticated observation model calculates the
maximum-likelihood vehicle location by preprocessing
the sensor readings and uses the estimated location as
the observation. This reduces the number of observa-
tions, but may lose information during the preprocess-
ing and degrade the quality of the computed policy (see
Section 6.2). The new algorithm alleviates the diffi-

culty of these modeling choices by sampling directly
from the continuous state and observation spaces dur-
ing the policy computation.

In addition to control and sensing uncertainty, we
may also have model uncertainty. One way of deal-
ing with this in a POMDP is to incorporate unknown
model parameters into the state (Duff 2002), thus per-
forming planning and learning simultaneously. In this
setting, one added benefit of the new algorithm is that it
handles continuous model parameters directly, without
the need to discretize them a priori (Wang et al. 2012).

2 Related Work

With continuous states, a main difficulty in POMDP
planning is belief representation. One approach is
to restrict to a parametric class of beliefs, e.g., the
Gaussian (Brooks et al. 2006, Prentice & Roy 2007)
or the Gaussian mixture (Porta et al. 2006). How-
ever, robotic tasks often involve beliefs with multiple
modes and sharp edges, e.g., when a robot navigates
through long, narrow corridors with few features. In
this case, the Gaussian mixture has difficulty in scal-
ing up. Other approaches use sampled representations
such as the particle filter (Bai et al. 2010, Porta et al.
2006, Thrun 2000), or aggregate sampled beliefs ap-
proximately (Davidson & Hutchinson 2008). Our al-
gorithm uses a sampled belief representation during
the offline policy computation. For online policy ex-
ecution, it exploits the policy graph representation and
does not track the belief explicitly, thus avoiding the
belief representation issue there.

Another difficulty with continuous states is pol-
icy representation. Instead of representing the pol-
icy directly, one may develop a hierarchical represen-
tation for the value function associated with the pol-
icy (Brechtel et al. 2013). The hierarchical represen-
tation would be effective if the value function is suf-
ficiently smooth, but may have difficulty in scaling up
to high-dimensional state spaces. We thus choose to
use the policy graph, which is more direct and simpler.
However, the two approaches are complementary and
may be combined.

Continuous observations cause difficulty in a differ-
ent way. A POMDP policy must condition on all fu-
ture observations. Clearly it is impossible to enumer-
ate an infinite number of continuous observations. Ear-
lier work addresses this issue by aggregating observa-
tions, but it requires discrete states for policy represen-
tation (Hoey & Poupart 2005). In contrast, our algo-
rithm handles both continuous states and continuous



observations, but discrete actions.

Instead of restricting the belief space, a different
approach is to search a restricted policy class, e.g.,
finite-state controllers (Meuleau et al. 1999, Poupart &
Boutilier 2003), memoryless reactive policies (Bagnell
et al. 2003), or various locally optimal policies (Hauser
2010, Erez & Smart 2010, van den Berg et al. 2012).
These methods, however, cannot guarantee the global
optimality of the computed policy. We show in Sec-
tion 5 that under reasonable conditions, our algorithm
is guaranteed to find an approximately optimal policy
with high probability.

Our algorithm computes offline a policy conditioned
on future observations. An orthogonal direction is to
perform forward search online (e.g., (Hauser 2010, He
etal. 2011, Platt Jr et al. 2010, Ross et al. 2008, van den
Berg et al. 2010)), which chooses a single best action
for the current belief. It does not compute a policy
and completely avoids the issue of policy representa-
tion for continuous state space. Online search and of-
fline policy computation can be combined to solve dif-
ficult POMDPs, e.g., by using approximate or partial
policies computed offline as default policies for online
search.

Our algorithm evaluates the Bellman equation by
Monte Carlo sampling. This is one basic idea of ap-
proximate dynamic programming (Powell 2007) and
used in various MDP/POMDP planning and reinforce-
ment learning algorithms (e.g., (Bagnell et al. 2003,
Lagoudakis & Parr 2003)).

Our algorithmic approach builds on the policy search
algorithm in (Hansen 1998) and the MCVI algo-
rithm (Bai et al. 2010). The former is designed for dis-
crete POMDPs. The latter deals with continuous states,
but only discrete observations.

3 POMDPs with Continuous States
and Observations

3.1 The Model

Formally, a POMDP is a tuple (S, A,0,T,Z,R,~),
where S, A, and O denote a robot’s state space, ac-
tion space and observation space, respectively. At each
time step, the robot takes an action ¢ € A to move
from a state s € S to s’ € S; it then receives an ob-
servation o € O. The model for the system dynam-
ics is specified by a conditional probability function
T(s,a,s") = p(s'|s, a), which accounts for uncertainty
in robot control, unexpected environment changes, efc..
Similarly, the observation model is specified by a con-

ditional probability function Z(s',a,0) = p(o|s’,a),
which accounts for sensing uncertainty. The function
R(s, a) specifies a real-valued reward for the robot if it
takes action a in state s. The robot’s goal is to choose a
sequence of actions that maximizes the expected total
reward E(Z;ﬁo vtR(st,at)), where s; and a; denote
the system’s state and action at time ¢. The discount
factor v € [0, 1) ensures that the total reward is finite,
even when a planning task has an infinite horizon.

As a modeling language, the POMDP is agnostic
about whether S, A, and O are continuous or discrete.
The difference is, however, significant for belief and
policy representations. In our model, both .S and O are
continuous, but A is discrete.

3.2 Beliefs

In a POMDP, we capture the robot’s state uncertainty
in a belief, which is a probability distribution over S.
Suppose that b is the current belief on the robot state. If
the robot executes action a and receives observation o,
the new belief b,, is calculated according to the Bayes’
rule:

ba(s') = /esp(3/|s,a)b(s) ds,

bao(s) = 77p(0|57 a)ba(s)a
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where 7 is a normalizing constant. The update uses the
system dynamics model and the observation model to
integrate information from a and o into the new belief.
Since S is continuous, we use a set of particles (Thrun
et al. 2005) as a finite belief representation in the offline
policy computation.

3.3 Policies

One common POMDP policy representation is a policy
graph, which is a directed graph. Each node of a pol-
icy graph is labeled with an action from A, and each
edge is labeled with an observation from O. The pol-
icy graph representation is compact, as its size depends
only on the complexity of a policy and not on the size
of the state space S. It has been used successfully in
various algorithms for POMDPs with large discrete or
continuous state space (e.g., (Bai et al. 2011, Poupart
& Boutilier 2003)).

However, each edge of a policy graph corresponds
to a single observation, and this is unsuitable for
POMDPs with large discrete or continuous observa-
tion space. The GPG generalizes the policy graph to
POMDPs with continuous observation space by repre-
senting outgoing observation edges as a classifier that



maps observations to subsequent policy graph nodes.
Formally, a GPG G is a set of nodes. Each node
v = (a, k) consists of an action a € A and a mapping
k: O — G.

To execute a policy 7, represented as a GPG G,
we start at a node v = (a, ) in G and take the action
a. Upon receiving an observation o, we move to the
next node v' = k(o). The process then repeats at the
new node v' = (a’,x’). We do not track beliefs ex-
plicitly using (1) and (2), but instead represent beliefs
implicitly as histories of actions and observations.

Each node v € G induces an a-function a,,: S —
R, which defines the expected total reward of executing
Ta,v Starting at an initial robot state s € S. If the initial
robot state is uncertain and described as a belief b, the
expected total reward is then [ _¢b(s)a,(s)ds. We
define the value of a belief b with respect to a GPG
G as the highest expected total reward, starting at any

node in G-
Va(b) = max/ b(s)ay(s)ds.
seS

veG

3)

4 Algorithm

4.1 Overview

Our algorithm computes a GPG as an approximation
to an optimal policy. Following the highly success-
ful point-based approach for discrete POMDPs (Kur-
niawati et al. 2008, Pineau et al. 2003, Smith & Sim-
mons 2005), we sample a set B of points from the be-
lief space and perform value iteration asynchronously
over B.

We start with an initial GPG (. For each action a €
A, we create a node v = (a, k) in Gy, with k(o) = v
for all o € O. Basically, Gy corresponds to a set of
single-action policies.

We then repeat two main steps:

1. Sample a new belief and add it to B (Section 4.3).

2. Choose a subset of beliefs from B. Apply the
Bellman backup at each chosen belief b to im-
prove the current GPG G and obtain a new GPG
G’ (Section 4.2).

In step 2, the Bellman backup equation is

HVg(b) = Icllleaj({R(b, a)+vy /eo

o

p(o]b, a) Ve (bao) do}

“4)
where H denotes the backup operator and R(b,a) =
Jseg R(s,a)b(s)ds.  The backup operation looks

Algorithm 1 Perform backup of a GPG G at a belief b.
GPG-BACKUP(G,b, M, N, K)
for each a € A do
Kaq < BUILD-CLASSIFIER(G, b, a, N, K).
Vg (@, Kq)-
Vo, + 0.
fori=1,2,...,M do
Sample a state s from the distribution b(s).
Va < Vo + SIMULATE(G U {vg }, vg, ).
8: a* < argmax 4 Va.
9: G’ + GU{vg+}.
10: return G’

1:
2
3
4:
5
6
7

Algorithm 2
BUILD-CLASSIFIER(G, b,a, N, K)

1: Sample a set S’ of N states from the distribution b, (s).
2: T« 0.
3: for eachv € G' do
for each s € S’ do

a,(s) + 0

fori=1,2,...,K do

oy () <= ay(s) + SIMULATE(G, v, s)

ay(8) + ay(s)/K

I« TU{a,}

4
5
6
7:
8
9

10: return (S’,G,T).

ahead one step and chooses the action that maximizes
the sum of the expected immediate reward R(b, a) and
the expected value of the next belief with respect to
G. The result is a new GPG G’ with one new node
v = (a*, kq+) added to G, where a* is the maximizer
in (4) and k4~ is the associated edge classifier that maps
an observation o to a node in G. To execute the corre-
sponding policy 7 ,,, we start at v and take action a*.
After receiving an observation o, we move to the node
Kq+(0) in G and follow 7, from then on. It is im-
portant to note that our algorithm does not explicitly
represent the value function V. It performs lazy eval-
uation of V through sampling, whenever needed.

The algorithm maintains upper and lower bounds on
the value of the current policy (Section 4.3). It termi-
nates when the approximation error, measured by the
gap between the upper and lower bounds, is sufficiently
small or maximum planning time is reached.

4.2 GPG Backup and Classifier Construction

’To perform backup of G at b using (4), it involves in-
tegrating over continuous state and observation spaces.
Our algorithm performs the evaluation approximately
through sampling (Algorithm 1 and 2).



First, we construct an edge classifier k, for each a €
A (Algorithm 1, line 2). By substituting (3) into (4), it
is clear that s, must map an observation o to the best
node v* € (G, implying that v* maximizes

/ bao(S)aw(s)ds = 77/ ba(s)p(o]s, a)ay,(s) ds.
ses seS )

To evaluate the above integral, we sample a set S’ of
states according to the distribution b,. For each v € GG
and each sample s € S’, we estimate the value of v, (s)
with a set of Monte Carlo simulations. The procedure
SIMULATE(G, v, s) starts at the initial state s and the
node v = (a,k) in G. To simulate taking action a
in state s, it samples a state s’ from the distribution
T(s,a,s") = p(s'|s,a) and an observation o from the
distribution Z (s, a,0) = p(o|s’, a). The process then
repeats from the state s’ and the node k(o) € G. The
simulation length is chosen so that the estimation error
is sufficiently small, as a result of the discount factor ~.
We collect all the estimates together in

Feg={aw]|a,: > Randv € G}

which basically contains sampled values of a set of a-
functions. The tuple (S, G,T'y ;) provides all the in-
formation necessary for constructing the classifier r4:

Kq(0) = arg max Z p(o|s)ay(s), (6)

veG ses’
in which the sum approximates the integral in (5). The
values in I' serve as the classifier coefficients.

Geometrically, the classifier x, maps an ob-
servation o to a n-dimensional feature vector
[p(o]s1),p(0ls2),...,p(o|sn)] for s; € S and
then performs the classification in this feature space.
Keep in mind, however, that the feature space is
attached to a specific belief b,, though we do not make
the dependency explicit to simplify the notation.

Although a finite number of samples are used to con-
struct K, our analysis provides a uniform error bound
on the classifier’s performance for any o from a contin-
uous observation space (Theorem 1).

After constructing x, for each a € A, we per-
form another set of Monte Carlo simulations to find
the best action a* and the associated classifier .« (Al-
gorithm 1, line 3-8), resulting in a new GPG node
(a*, Kgx)-

Algorithm 1 summarizes the backup procedure,
which takes O(|A||G|NK + |A|M) simulations. Of
the three parameters M, N, and K that control the
number of simulations and samples, N dominates the

Figure 2: A belief tree.

running time. It also controls the quality of the com-
puted policy, as it determines the representational com-
plexity and the accuracy of classifiers.

As we perform more backup operations, the increase
in the number of GPG nodes and a-functions slows
down the computation. Since an a-function in I'y
is projected to a n-dimensional space, it is just a n-
dimensional vector. Standard pruning techniques de-
veloped for solving discrete POMDPs can be directly
applied to prune these a-functions (Kurniawati et al.
2008, Pineau et al. 2003, Smith & Simmons 2005).
Pruning simplifies the GPG and reduces the number of
relevant a-functions when evaluating (6).

4.3 Belief Space Sampling

There are several approaches to sample the belief space
(Kurniawati et al. 2008, Pineau et al. 2003, Smith &
Simmons 2005). We give a very brief description here,
as it is not the main focus of this work.

One approach is to spread samples evenly over the
belief space B to cover it and perform synchronous
backup at each sampled belief (Pineau et al. 2003).
This is practical only if B is sufficiently small.

Instead, we build a belief tree with an initial belief by
as the root (Fig. 2). Each node of the tree is labeled
with a belief b, together with upper and lower bounds
on the optimal value of b. The lower bound is the value
of b under the current policy. To compute the upper
bound, we relax the model, for example, by assuming
the states are fully observable and solving the resulting
MDP. Each edge of the tree is labeled with an action-
observation pair. If a node b is connected a child b’ by
an edge (a, 0), then b’ = by, (see (1) and (2)).

To sample new beliefs, we repeatedly traverse a sin-
gle path down the tree until reaching a leaf of the tree.
At each internal node b along the path, we choose the



action branch with the highest upper bound and choose
the observation branch making the largest contribution
to the gap between the upper and lower bounds at the
root of the tree. These heuristics are designed to bias
sampling towards regions that likely lead to improve-
ment in the policy at by. Upon reaching a leaf node
b, we apply the same criterion to choose a belief b’
among all beliefs reachable from b with some action-
observation pair and then create a new node for b’ as
a child of b. To perform backup, we retrace this path
back to the root and invoke GPG-BACKUP at each node
along the way. See (Kurniawati et al. 2008) for more
details.

S Analysis

We now analyze the approximation errors of our algo-
rithm and provide a bound on its performance. The
analysis consists of four main steps showing that

1. given G, band a, Algorithm 2 produces a classifier
with uniformly bounded error for every observa-
tion o € O with high probability, if sample sizes
N and K are sufficiently large;

2. for a given node v € G, the same error inte-
grated over all observations remains bounded, due
to the uniform bound from the previous step (The-
orem 1);

3. given GG and b, the approximation error for a sin-
gle backup (Algorithm 1) is bounded with high
probability if M, N, and K are sufficiently large
(Theorem 2);

4. finally, the accumulated approximation error after
many backup steps is bounded with high probabil-
ity, provided the sampled beliefs B approximate B
well (Theorem 3).

We then conclude that the computed GPG converges to
an optimal policy when M, N, and K are sufficiently
large.

In the following analysis, we assume R(s,a
Riax and Z(s,a,0) = p(o|s,a) < Ppax for all s
a€ A,ando € O.

Define V' (b, a, 0, v) to be the expression in (5):

) <
€S,

V(b,a,o,v):/ ba(s)p(o|s, a)ay(s)ds.  (7)

seS

Given belief b and a € A, the optimal classifier (o)
produces a node v that maximizes V' (b, a, 0, v). By (6),

Algorithm 2 computes a classifier sy, (0) that produces
a node maximizing a sampled approximation of (7)

~

1
V(b,a,0,v) = 5 > plols,a)an(s).  (8)

ses’

We define the error in step 1 as |V (b, a, 0, kpa(0)) —
V(b,a, o, r;,(0))|, for a fixed observation o. In step 2,
we integrate over all o € O. Define

V (b, a,o,k(0))do.

®
The error for step 2 is then [V (b, a, kpo) =V (b, a, K, ) |-

To analyze this error, we need to characterize the
complexity of observation functions using a notion
called the covering number. Let X denote a set of
points in R™. Given € > 0, a finite subset Y C R"
covers X, if for every x € X, there exists y € Y with
o — yll < e where [l — yl| = £ 57 | — yil. The
covering number C(e, X) is the minimum number of
points required to cover X.

Now consider a set of observation functions, F, =
{fao | 0 € Oand f,,(s) = p(o]s,a) forall s € S}.
Let 5 = (s1,82,...,5y) be a sequence of N states
sampled uniformly at random from S, and F,5 =
{(f(51), (s2),.-, f(sx)) | £ € Fy}. In our analy-
sis, we bound the complexity of observation functions
by the maximum covering number

V(b.a,r) = R(b,a) + 4 /
o€0

Cz(e, N) = max sup C(e,Fg5). (10)
a€A EESN
Let
2 e(1—
pale,7) = 208l (1 (416105 (G2, N) ) ~In7)

The following theorem bounds the error between the
optimal classifier and the approximate classifier com-
puted. The proofs of all theorems are available in the
appendix.

Theorem 1. Given a policy graph G, b € B,a € A,
a set S’ of N states sampled independently from S ac-
cording to p(s|b, a), and a permissible class' of obser-
vation functions,
p(|V(b> a, ’{ba) -

Vi(b,a,kp,)| >¢€) <1 (1D

forany e, T >0, if N > py(e, 7).

"Measurability conditions that usually hold in practice (see
(Haussler 1992)).



The theorem assumes that the observation space O =
[0,1]™, i.e., an n-dimensional unit hypercube with the
Euclidean metric. To simplify the presentation, we ig-
nore the error of estimating «/(s) with X Monte Carlo
simulations (Algorithm 2). This error can be made ar-
bitrarily small with sufficiently large K.

For the approximation error to converge to 0, Theo-
rem | requires that for any € > 0, C, (e, N)e_C€2N —
0,as N — oo, for a constant C. This condition is satis-
fied by many common classes of functions (see (Haus-
sler 1992)), e.g., the set of Gaussian observation func-
tions with standard deviation o:

_(s=0)2
G, = {go(s) | go(s) =€ () s e [0,1], o € [0, 1]}
Consider two functions g, and g,+., from this set. By
the Mean Value Theorem, for any € > 0,

o

sS—o
o

. )2 . e_(S*(l;+60))2

|go(5) - go+ea(s)|

2 - s—cC
(3 C) e_(T)2
o

’60"

for some ¢ € (0,0 + €0). Noting |[2z¢~*"| < 1 for
all x, we have |g,(S) — goteo(s)| < €o forall s € [0, 1]
and thus C(e, N) < 1/ec. Finally, it is easy to see that
Cle, N)e 9N < (1/ec)e N — 0 as N — oo.

Interestingly, the bound C(¢, N) < 1/ec seems to
suggest that the space of noisy observation functions
has a smaller covering number, which reduces the dif-
ficulty of planning. This may be counter-intuitive, but
true. However, with noisy observations, it may take
more steps to gather useful information and act effec-
tively, resulting in increased planning horizon. So the
planning problem does not necessarily become easier.

Theorem 1 bounds the error of a classifier computed
for a given action. Algorithm 1 then performs backup
and constructs the best policy graph node by selecting
from the |A| candidate action-classifier combinations
by Monte Carlo simulation. Simulation introduces ad-
ditional error in the backup.

In step 3, we bound the error of approximate backup:
|HV (b) — HV (b)|, where HV (b) denotes the exact
backup using (4) and HV (b) denotes the approximate
backup produced by Algorithm 1. Let

(P max Rmax ) 2

262(1 — V)Q (ln2 — lnT).

pu(€,T) =
The following theorem bounds the error of a single step
of point-based backup, as computed in Algorithm 1.
The error has two parts, one part from errors in step 1
and 2 and the other part from Monte Carlo evaluation
of the classifiers (Algorithm 1, line 5-7).

Theorem 2. Given a policy graph G, a belief b €
B, and a permissible class of observation functions,
GPG-BAckuP(G,b, M, N, K) produces an improved
policy graph such that for any €, 7 > (,

p([HV (b)) — HV(b)| > ¢) < T

if N > pn(e/5,7/2|A|) and M > py(€e/5,7/2|Al).

Finally, in step 4, we combine all sources of
error.  We analyze the case where the algorithm
runs GPG-BACKUP on a sampled belief set B C
B synchronously for ¢ iterations. Let dp
suppep minyep [, [b(s) — V'(s)|ds denote the largest
distance for any belief in B to its nearest point in the
set B where backup is performed. We bound the ap-
proximation error between the value function V; in the
t-th iteration and the optimal value function V*. The
result is similar to that for the MCVI algorithm (Bai
etal. 2011).

By bounding the error propagation across the backup
iterations, we obtain the following theorem:

Theorem 3. Given a POMDP with a permissi-
ble class of observation functions, choose N >
pn(e/5,7/2A|[BIt), M > puy(e/5,7/2|Al| BIt), and
perform t iterations of backup over a sampled belief set
B C B synchronously. Then for every b € BB and every
e, 7 >0,

2Rmax5B
(1—=7)2

2’)/tRmax
L=y

V() = Vi(b)| < 1=

)

~
with probability at least 1 — T,

Theorem 3 shows that the approximation error comes
from three main sources: GPG-BACKUP, the approxi-
mation of the belief space by a finite set of belief, and
the finite number of back-up iterations. The error from
GPG-BACKUP can be reduced by increasing the number
of samples in the Monte Carlo sampling. The approx-
imation of the belief space can be improved by using
more belief points, and error decreases exponentially
with the number of back-up iterations.

In general, asynchronous backup, which is used in
our experiments, is more efficient than synchronous
backup. The analysis is similar, but involves more tech-
nical details.

6 Experiments

We evaluated our algorithm on three tasks. In linear-
quadratic-Gaussian (LQG) control, we can solve for
the optimal policy analytically and use it to calibrate



the performance of the new algorithm (Section 6.1).
In intersection navigation, we examine various aspects
of our algorithm and also compare it with a well-
established alternative algorithm, MC-POMDP (Thrun
2000) (Section 6.2). Finally, in acrobot, we use the al-
gorithm for Bayesian reinforcement learning in order
to handle model uncertainty (Section 6.3).

6.1 LQG Control

An LQG system is basically a POMDP with linear sys-
tem dynamics, Gaussian noise, and a quadratic reward
function. Our simple LQG problem is given by

Ty = —Ty—1 + Up—1 + Wy

Y = Ty + Uy

where x;,u;,and y; are the state, the action, and
the observation at time ¢, and w; ~ N(0,10)
and v; ~ N(0,10) represent zero-mean Gaussian
system noise and observation noise. The goal is
to minimize the infinite-horizon average cost C =
BN 00 & Dot (27 4+ u?). A linear feedback policy
has the form u; = A%, where Z; is the estimated mean
state at time ¢ and A is the control gain. The optimal
policy has \* = 0.618.

To recast the problem as a POMDP, we choose 17
equally spaced actions in the range [—24,24] and set
the discount factor to 0.99 to approximate the infinite-
horizon cost function. The state space and the observa-
tion remain unchanged. The computed policy contains
1,024 GPG nodes.

We evaluated the POMDP policy and several lin-
ear feedback policies with different A by performing
10,000 simulations for each. Fig. 3 shows their costs
and behaviors. The POMDP policy computation nei-
ther exploits the linearity of system dynamic nor pos-
sesses prior knowledge of the linear form of the opti-
mal policy. Nevertheless, it discovers a policy that has
a roughly linear form, up to action discretization and
has a cost close to the minimum.

Table 1 shows the size of policies computed for this
and the other two tasks, as well as their online execu-
tion speed and offline planning time. When multiple
policies were computed, Table 1 shows the results for
the worst case. The running times were obtained on a
PC with a 2.83 GHz CPU and 4 GB memory. For of-
fline planning, the main performance measures are pol-
icy quality and online execution speed. Offline plan-
ning time is a secondary issue, provided it is practi-
cal. The results confirm one main benefit of the policy

Table 1: The size, execution speed and planning time
of computed policies.

Task N |G|  Speed (KHz) Time (hours)
LQG 50 1024 25.5 22.8
Navigation 500 20 1.7 2.7
Acrobot 100 825 14.8 23.6
N : number of samples for each a-function in the classifier
|G| : number of GPG nodes
Speed : policy execution speed in the number of GPG nodes

processed per second

Time : time required for computing the policy offline

graph representation, very fast policy execution, which
is important for applications such as aircraft collision
avoidance (Bai et al. 2011).

The aim of this evaluation on LQG control is to cal-
ibrate the algorithm’s performance on a task with a
known optimal solution. Our algorithm is not ideal
for LQG control, in comparison with the analytical
method. To reduce the approximation error, we may
increase the number of discretized actions, but the of-
fline planning time also increases as a result. However,
some tasks have a small discrete action set, e.g., bang-
bang control or mobile robot navigation, which often
uses eight discretized actions. These tasks are better
suited for our algorithm.

6.2 Intersection Navigation

Recall the example in Fig. 1. The autonomous vehi-
cle R, in blue, stops at the intersection and waits for
the other vehicle R’ to clear before proceeding. R’ can-
not be localized accurately, as the measurements from
R’s proximity sensor are noisy. R wants to go through
the intersection as fast as possible, while maintaining
safety. So it must carefully balance exploration and ex-
ploitation by hedging against the noisy observations.

6.2.1 Observation Modeling

Our main objective here is to investigate the effect of
observation modeling on the policy and not necessarily
a high-fidelity model for vehicle navigation. We make
a few simplifications to stay on the main issue. Assume
that the vehicles move within a lane. The state space
S = [-10,10] encodes the position of R’, which is
sufficient to decide the action of R. The initial belief on
the position of R’ is uniform over [—10, 0]. R has two
actions. WAIT keeps R stopped. GO moves R forward
through the intersection. There is no emergency stop
in our simple model. If R goes through the intersection
successfully, it gets a reward 1. If a collision occurs, it
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Figure 3: Comparing the LQG POMDP policy and the linear feedback policies. (a) Policy costs estimated from
10, 000 simulations. The dashed line indicates the cost of the POMDP policy. The solid curve plots the cost of
linear feedback policies with different control gain A. The standard errors of the estimated costs are all less than
1 and not visible on the plots. (b) Behaviors of the POMDP policy and several linear feedback policies. For the
POMDP policy, we plot the mean of the belief and the action associated with each policy graph node.

gets a large penalty R,,. Hence the reward function

0 if a = WAIT
R(s,a) =< 1 ifa=Goands ¢ [—1,1]
—R, ifa=cGoands € [-1,1]

We tested two observation models. The first one
follows the standard beam model for proximity sens-
ing (Thrun et al. 2005). An observation o =
(h1,ha, ..., hso) consists of readings along 30 beams
equally spaced over 160° field of view. We quan-
tize each reading h; into a binary value: h; = 1 in-
dicates that the ith beam hits R’, and h; = 0 indi-
cates that the beam does not. There are false posi-
tives, due to unexpected obstacles, and false negatives,
due to, e.g., total reflection or glass. Let h; denote
true value for the ith beam. Our test uses a high-
noise environment with p(h; = 1|h} = 1) = 0.7
and p(h; = 0|k} = 0) = 0.9. The beam model as-
sumes that readings along the beams are independent:
p(ols,a) = [122, p(hi|s, a) (Thrun et al. 2005).

The main difficulty with the beam model above
is the high-dimensional observation space. With
230 observations, no POMDP algorithm can cope.
To avoid reasoning directly with the high dimen-
sional observation space, our second model calcu-
lates the maximum-likelihood (ML) location x of
R from o = (hy,hs,...,hs), with z discretized
into bins X = {-10,-9,...,9,10}. Specifically,
we have z = ((0) = argmax,cxp(zrlo) =
arg max, x p(o|z)p(z)/p(0), where the prior p(x) is
uniform over X. We then use x as the observation for
the POMDP model, resulting in only 21 observations
in total. This drastic reduction in the number of obser-

Table 2: Performance comparison of POMDP policies
with two different observation models for intersection
navigation.

R, Observation |G| Time Accident Rate
Model
10 Beam 14 2.61£0.0095  0.0029+0.00053
ML 127 4.27£0.0012  0.009340.00010
100 Beam 20 3.12+0.014 0.0009£0.00030
ML 83 9.22+0.0039  0.0028+0.00005
1000  Beam 18 5.03+0.030 0.0002+0.00014
ML 80  12.84+0.00036 0.0002+0.00001

|G| : number of GPG nodes
Time : time to cross the intersection

vations, however, comes at a cost, as we see next.

For the beam model, our new algorithm was the
only option available to solve the resulting POMDP.
For the ML model, we used the MCVI algorithm (Bai
et al. 2010), which is specialized for continuous-state,
discrete-observation POMDPs.

We solved several POMDP models with different
values for the collision penalty ;. Each policy was
computed with a maximum of 3 hours of offline plan-
ning time and evaluated with 1,000,000 simulations.
The results are reported in Table 2. Clearly the new
algorithm with the beam model achieved consistently
better results with lower accident rate and faster cross-
ing time.

The performance gap results from information loss
during the maximum-likelihood calculation. To un-
derstand this, consider a particular state s = —4 and
choose two high-probability beam observations o; and
09 from p(o|s = —4) such that ((01) = ((02) = =.
That is, we have the same ML location estimate for
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Table 3: Performance with increasing sensor noise.

icy size |G| is also larger, indicating that the model is

P |G| Average Reward Time Accident Rate
0.1 20 669.1£20.5 3.12+0.014
02 38 440.9£12.2 4.73£0.010
04 16 272.244.5 11.48+0.006

0.0009+0.00030 more difficult and more complex decision making is re-
0.0027:£0.00002 quired. Somewhat surprisingly, at P; = 0.4, the acci-
0.0006+£0.00008 4ot rate and the policy size are both small. The reason

both 01 and 09 and cannot differentiate them in the ML
observation model. Now consider the posterior beliefs
b1, ba, and b (Fig. 4) for 01, 02, and x in their respec-
tive models, after R executes a single WAIT action and
receives the observation. The posterior beliefs all have
the same general shape. However, a careful compari-
son of by and by reveals a small secondary peak for by
in the region [—1, 1], indicating the likely presence of
R’ in the intersection. A good policy must handle this
low-probability, but critical event properly. Otherwise
the vehicle will either get into an accident or unneces-
sarily wait. However, the ML model provides the same
observation x whether it is actually o; or o2, and the
posterior belief b does not have a secondary peak. In
general, there are 220 beam observations, but only 21
ML observations. Many beam observations map into
the same ML observation and cannot be differentiated
in the ML model. The loss of information is a main
contributor of the performance gap and cannot be re-
solved even if the ML model uses a more finely dis-
cretized observation space.

6.2.2 The Effect of Sensor Noise

Next, we investigate the effect of sensor noise on the
policy behavior. We computed and evaluated policies
for beam observation models with different false posi-
tive probability Pt = p(h; = 1|h] = 0). The results
are shown in Table 3. As expected, higher noise de-
creases the average total reward and increases the time
for the vehicle to cross the intersection. At P; = 0.2,
both the crossing time and the accident rate are much
larger, compared with those at P 0.1. The pol-

is that the observations are too noisy to be exploited
for effective decision making. This results in a simple,
but very conservative policy, which merely waits for a
sufficiently long time in order to cross the intersection.

6.2.3 Scalability

We now look at the scalability of our algorithm with
large state space, observation space, or action space.

Theorem 3 shows that the overall approximate error
does not depend explicitly on the dimension of the state
space. Although the intersection navigation task has an
1-dimensional state space, the acrobot swing-up task
in the next subsection has a 5-dimensional state space,
and our algorithm easily scales up. Theorem 1 fur-
ther indicated that when the covering number C (e, N)
grows slowly with € and N, the approximation error
resulting from state-space sampling decreases roughly
at the rate of O(1/v/N). Fig. 5 shows the empir-
ical convergence rate for the intersection navigation
task, and it correlates well with the theoretical analysis.
Indeed, probabilistic sampling is a powerful tool for
handling high-dimensional state spaces, as its success
in robot motion planning amply demonstrates (Choset
et al. 2005).

We could use the above error bound to set the param-
eter IV in the algorithm, but this is often overly conser-
vative. In our experiments, we performed several trials,
starting with a small N and increasing it until the per-
formance improvement is insignificant. More gener-
ally, we can set N adaptively in each backup operation
by estimating the sample variance.

Our algorithm also scales up well with large obser-
vation space. The beam model contains 23° observa-
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Figure 6: A histogram of classifier errors.

tions, while our algorithm uses a relatively small num-
ber of sampled states and observations to construct a
GPG and the associated classifiers. How do these clas-
sifiers perform on observations not explicitly sampled
during the GPG construction? To shed some light on
this question, we took a computed GPG and examined
the classifier associated with its start node v = (a, k).
We evaluated the performance of x at the initial be-
lief b by sampling 1,000 observations from the distri-
bution p(o|b, a). For each sampled observation o, we
estimated the value of the policy 7 (o) at bao by sim-
ulation. We compared this value to V' (b,,), obtained
by performing a sufficiently large number of simula-
tions. The difference defines the error of the classifier
r for the observation o. Fig. 6 shows a histogram of
errors for the 1,000 sampled observations. The occur-
rence of large errors decays almost exponentially. Al-
though there is a somewhat long tail, most errors are
very small.

Our algorithm builds a search tree in the belief space.
Large action space poses the most significant chal-
lenge, as it increases the branching factor of the search
tree. For this reason, we maintain upper and lower
bound at each belief tree node and apply the branch-
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and-bound technique to prune suboptimal parts of the
tree (Kurniawati et al. 2008).

6.2.4 Comparison with MC-POMDP

We also compared our algorithm with MC-POMDP, a
well-established earlier algorithm (Thrun 2000). Both
methods use particle-based belief representation. How-
ever, MC-POMDP represents a policy by its value
function over a set B of sampled beliefs. To calcu-
late the value at a belief b ¢ B, MC-POMDP finds k-
nearest neighbors of b in B according to KL-divergence
as the distance function, and then estimates the value of
b using distance-weighted interpolation.

We applied both our algorithm and MC-POMDP on
intersection navigation POMDPs with the beam obser-
vation model. We solved the POMDPs with three dif-
ferent values for the collision penalty R, and then eval-
uated the resulting policies through simulation. The
results are reported in Table 4. For all three models,
our algorithm performed substantially better than MC-
POMDP. MC-POMDP policy computation was much
faster. The computed policies, however, have poor
quality with overly aggressive behavior resulting in ac-
cident rate 3—10 times higher.

The two algorithms differ significantly in how they
represent the policy and estimate the value V'(b). The
difference is one main contributor to the performance
gap. Our algorithm represents the policy as a GPG and
estimates V' (b) by simulating the policy. MC-POMDP
represents the value function V' explicitly over B and
estimates V'(b) by nearest-neighbor interpolation. In
general, the belief space B is a very high-dimensional
space. The distance between a belief b € B and its
nearest neighbors is likely far, causing potentially large
interpolation error. Furthermore, in a high-dimensional
space, we may need a large number of neighbors for
effective interpolation, with increased computational
cost.

Another advantage of our approach is fast online
policy execution. While GPG policies were executed
at the rate of about 1,700 actions per second, MC-
POMDP policies were much slower to execute, roughly
at the rate of 1 action per second, because interpolat-
ing the value function incurs high computational cost.
Computing the KL divergence takes O(n?) time, where
n is the number of particles representing the beliefs.
Sometimes large n is required for the particle filter to
converge.



Table 4: Performance comparison with MC-POMDP.

R, Algorithm Average Reward Time Accident Rate
10 GPG 738.9+4.6 2.614+0.0095  0.0029+0.00053
MC-POMDP  697.4+7.8 2.5240.0081  0.0086+0.00092
100 GPG 669.11+20.5 3.12£0.014  0.0009+0.00030
MC-POMDP  532.6+37.1 3.06£0.010  0.0028+0.00053
1000 GPG 489.84+90.3 5.03+0.030  0.0002+0.00014
MC-POMDP  -645.4+299.5 3.65+0.011 0.002040.00044

Figure 7: The acrobot is a two-link articulated robot
actuated only at the joint connecting the two links and
thus unactuated. It resembles a gymnast swing on a
high bar. In the standard acrobot, each link has mass
m = 1.0 and length ¢ = 1.0.

6.3 Acrobot with Model Uncertainty

Acrobot is a well-studied underactuated system
(Fig. 7). In the swing-up task, the acrobot must get
its tip above the height 1.95 and achieve the almost
fully stand-up configuration. Our acrobot variant as-
sumes that a key model parameter, the mass m of the
acrobot’s second link, is not known exactly, thus intro-
ducing model uncertainty.

This task is particularly challenging, because the
acrobot dynamics is sensitive to m. An open-loop
control policy that successfully swings up an acrobot
with m = 1.0 fails completely on an acrobot with
m = 1.01 (Bai et al. 2013). To succeed, a con-
trol policy must simultaneously learn the acrobot’s un-
known parameter and plan the actions under an uncer-
tain model. We apply the model-based Bayesian rein-
forcement approach (Duff 2002) and formulate the task
as a POMDP.

The POMDRP state is s = (q1, g2, 41, G2, m), where
Q1,92 € -7, 7|, ¢1 € [—4m,4r], and §2 € [—97, 97]
represent the joint angels and the angular velocities of
the two links (Fig. 7). All the state variables, includ-
ing m, are continuous. The acrobot can apply a torque
7 € {—1,0,+1} at the elbow joint. We use the sys-
tem dynamics equations in (Sutton & Barto 1998) and
assume no action noise. An observation consists of
the two joint-angle values under Gaussian noise with
variance 0.1. The angular velocities ¢; and ¢ and the

Table 5: The performance of acrobot POMDP policies
with different values of sample parameter V.

Policy N |G| Average Height

oracle - - 1.97 £ 0.0000

POMDP 100 825 1.90 -+ 0.0021
50 871 1.8740.0027
25 591 1.86 + 0.0029
10 815 1.844+0.0031
5 123 1.78 4 0.0036
3 244 1.66 +0.0144

model parameter m cannot be observed directly. The
reward is 10 if the acrobot reaches the specified height,
and O for other states and actions. The discount fac-
tor is 0.95. The initial belief for m is uniform over
[0.95,1.05].

Our new algorithm can solve this POMDP without a
priori discretization of the state and observation spaces.
State space discretization is difficult in general, be-
cause it introduces modeling errors that are difficult
to quantify. It is exacerbated here by the acrobot’s
sensitive non-linear dynamics. Observation space dis-
cretization is also difficult, as it may lose information
and degrade the quality of the computed policy (Sec-
tion 6.2). We will see further evidence of the difficulty
here.

We solved the acrobot POMDP with different val-
ues for the sampling parameter N and evaluated each
resulting policy with 10, 000 simulations. For compar-
ison, we also evaluated an oracle policy, for which the
model parameter m and the system state are fully ob-
servable. Table 5 shows that a relatively small N is suf-
ficient to produce a good policy in this case. Increasing
N consistently improves the results, as /N controls the
accuracy of edge classifiers and, in turn, policies.

Fig. 8 visualizes a particular edge classifier x from
the policy with N = 100. Each point in the plot repre-
sents an observation o collected from a simulation trace
going through «. The point is colored according to the
output GPG node (o). The observations fall into 6
classes, with very different sizes. The smallest one has
width about 0.001. To obtain the same result with a reg-
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Figure 8: Visualization of an edge classifier . Each
point is a sampled observation o and colored according
to the output GPG node x(0).

ular discretization of the observation space, we have to
use very fine resolution, roughly 0.001, in order to cap-
ture the small classes sandwiched between large ones.
The resulting 1,000, 000 observations are beyond the
reach of any discrete POMDP algorithm.

This example confirms again the difficulty of obser-
vation discretization. In practice, some observation dis-
cretization or aggregation is probably necessary. How-
ever, a priori discretization without a good understand-
ing of its effect should be avoided. The new algorithm
helps to reduce the need for aggressive discretization.

7 Conclusion

This paper presents a new algorithm for solving
POMDPs with continuous states and observations.
These continuous models are natural for robotic tasks
that require integrated perception and planning. We
provide experimental results demonstrating the poten-
tial of this new algorithm for robot planning and learn-
ing under uncertainty. We also provide a theoretical
analysis on the convergence of the algorithm.

Our algorithm uses sampling instead of fixed dis-
cretization to handle continuous state and observation
spaces. Sampling opens up a range of new opportuni-
ties to scale up the algorithm for complex robot plan-
ning and learning tasks. Currently our algorithm per-
forms a huge number of Monte Carlo simulations. It
often takes hours to compute a policy for tasks at a
scale similar to those in our experiments. Some of
these simulations are redundant, and we are looking
for ways to reuse simulations. We will apply stan-
dard techniques to prune the dominated a-functions
and the GPG, thereby reducing the simulations needed.
We will also explore parallelization techniques, such as
general purpose GPU computing (Lee & Kim 2013), to
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increase the practical performance of the algorithm.
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Appendix Proof. For a fixed a-vector «, consider any two vec-
tors z, 2’ € F s and the two corresponding vectors
To prove the Theorems 1-3, we need the following y,y" € F, 5, where y; = x;a; and y; = xja; for

result (Haussler 1992), which bounds the error in the ; = 1,2,..., N. Recall the covering metric defined
sampled means of a set of functions. earlier: ||z — 2'|| = % SN | | — 2] We have
Theorem 4. Let ¥ be a permissible class of bounded 1 N
functions over a set S, with 0 < f(s) < B for all lly — y’H = N Z |zic; — 552041‘|
feFands e S. Let s = (s1,...,5Sn) be a sequence i=1
of n points drawn independently at random according < 1 & ,
to any distribution over S and - <Zina}§v |ai|> N Z; i — ]
i=
R
Fis={(f(s1),...,f(sn)) | f € F}. < oo la=2l

Th , . .
en for any € > 0 Therefore, if a point set covers F, 5 at the scale e,

. a corresponding point set covers Fa,v‘g at the scale
p(3f € F: [Es(f) —E(f)] > e) (Rmar/(1 = )e. Since Fops = Upers Fafsr We
< 4E(C(e/16,F5))e /12857 get
A CocleN) < [0l 1 ),
where Eg = 3" | f(si)/n. Rimax
where |G| is the number of nodes in G. O
We now apply Theorem 4 to show that the error
[V (b, a, 0, kpq(0)) =V (b, a,o0,k},(0))] is bounded uni- The next lemma bounds the error in the approximate
formly for all 0 € O with high probability (Theorem 1). maximum of a sequence of numbers.
We start by introducing the function classes under con-

sideration. For every a € A, let Lemma 2. Let x1, 29, ..., %y, be a set of real numbers,

and &1, o, . ..,Zy, be their approximations with |x; —
Fo = {fuol0€ Oand f,,(s) = p(o|s,a) forall s € S¥i| < efori=1,2,... sn. Let j = argmax;_;

and k = argmax,_, _, ;. Then |z; — xj| < 2e.
which contains all observation functions for a fixed a €

A. Define the covering number Proof.

]xj—xk] acj—ﬁzj—l-i’j—:ck

Ca(€7N) = Ssup C(EaFaB))v

s5eSN < xj—fcj—l—:i"k—:nk
. . < g — &)+ [k —
where F 5 consists of a set of vectors, each obtained 5
< €

by evaluating a function f € F, over a sequence § of
N points sampled from S according to the distribution

ba(s). Similarly, fora € Aand v € G, let =

Proof (Theorem 1). The expected value of a function
Foo={fa0v|0€Oand fa.00 With respect to belief b, is
fa.00(8) = p(o]s,a)a,(s) forall s € S}

E(fa,o,v) = fa,o,v(s)ba(S) ds
and Fy ¢ = J,c Fa,v. Define ses

= | buls)plols, a)au(s) ds,
Cac(e,N) = sup C(e,Fyqis))- /SGS ¢ !
sesnN
and its approximation with a set S’ of points sampled
Our first lemma establishes the the relationship be- according to by is
tween F, and F, ¢ in terms of covering numbers.

E(fa,o,v) = |Sl,’ Z fa,o,v(s)'

Lemma 1. Coc(e, N) < |G| Ca( <52, N). =

R
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To bound the approximation error using Theorem 4,
we need a class of bounded positive functions. Since
_Pmameax/(l _’Y) < fa,o,v(s) < Pmameax/(l _’7),
we shift f, ,, by a constant amount to f(;p’v so that
0 < fao0(8) < 2PnaxRmax/(1 — ). We apply The-
orem 4 to the shifted functions and then transfer the
result back to F, . Then, for any ¢’ > 0,

p( doe O,veQqG: |E(fa,o,v) - E(fa,o,v)| > 6/)

< 4Cq,c:(€'/16,N) e_gsz/ms(%y

< 4GIC, (M N> (1N /512 P i)

16 Rimax
(12)

where the inequality in the last line follows from
Lemma 1 and the definition of Cz in (10). Now, for
everya € A,o€ O,andv € G,

V(b,a,0,v) — V(b,a,o0,v)| <€
with high probability, by definition. For every a € A
and o € O,
|V (b, a, 0, kpa(0)) — V(b,a,0,r,(0))] <2 (13)

with high probability, by Lemma 2, as x;,(0) maxi-
mizes V' (b, a,o0,v) over all nodes v in G and kp4(0)
maximizes the sampled approximation of V (b, a, 0, v).

Next, we integrate the error in (13) over all observa-
tions and get

|V (b, a, kpa) —

< / |V (b,a,o0,kpg(0)) — V(b,a,o,k;,(0))|do
110

< 2€¢1(0),

V(b; a, ki)

where ;(O) denotes the measure of O. Since O is as-
sumed to be an n-dimensional unit hypercube, we have
[V (b, a, kpe) — V(b,a,k},)| < 2€.

Finally, we set € = 2¢€/, 7 to be error bound in (12),
and work out the number of samples required in term

of eand T:
N > 2048 (Prax Rimax)? (hl (4|G‘CZ<§(211';:2>> - lnT)‘
O

e(1-7)?

Proof (Theorem 2). First, we bound the error between
the optimal value V' (b, a, k) and its sampled approx-
imation V (b, a, Ky, ), which is obtained by running M
simulations (Algorithm 1, line 5-7):

|V (b,a,k;,) — V(b,a, ki)l
< |V(bya,k;,) — V(b,a, kpg)|

A

+ |V(ba a, /{ba) - V(ba a, /{ba)|

We bound the first term above using Theorem 1.
Choose N > py(€e/5,7/2|A|) and get

Vb, a, Kpe) = V(b a, kea)l > €/5 (14

with probability at most 7/2|A|. We bound the sec-
ond term using Hoeffding’s inequality. Choose M >
pu(€/5,7/2|Al) and get

A~

[V (b, a, kpa) — V(b a, kipa)| > €/5 (15)

with probability at most 7/2|A|. Then, by the union
bound,

p(Va € A: |V (b,a,k,) —V (b, a, kpa)| > 2¢/5) < 7.

(16)

Next, let a* = arg max, V (b, a, x;,,) denote the op-

timal action and & = arg max, V (b, a, ) denote the

approximately optimal action. Applying Lemma 2 to
(16), we get

p(|V(b,a*, ki) — V(b a, ki) | > 4€/5) < 7.
Finally,

[HV(b) = HV (b)| = [V (b, ", ki) = V (b, @ )|
< ’V(ba a*7 ’iZa*) - V(bv &7 ’%Z&)”
+ ‘V(b7 dv "i;&) - V(b, d7 Hbd)’
<4e/5+¢/5

The inequality in the last line holds with probability
at least 1 — 7, provided that (14) and (15) hold for all
actions a € A, with the same probability. Hence

p(|HV(b) — HV(b)| <€) > 1 1.
O

To prove Theorem 3, we need a Lipschitz condi-
tion (Bai et al. 2010).

Lemma 3. Suppose that a POMDP value function
V' can be represented as or approximated arbitrarily
closely by a set of a-functions. For any b,b' € B, if
1o =V [ly < 6, then [V (b) = V (V)] < fmaxg,

Proof (Theorem 3). This proof is similar to the one
for Theorem 2 in (Bai et al. 2010). Let A\, =
maxpe g |V*(b)—Vi(b)| be the maximum error of V;(b)
over the sampled beliefs in B. We first bound the max-
imum error of V;(b) at any arbitrary belief b € B in
terms of )\;. For any point b € B, let b’ be the closest
point in B to b. Then

[VE(b) = Vi(b)| < [VF*(b) = V*()| + [V*(V) — Vi (b))
+ Vi (b') — V(D)
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Applying Lemma 3 twice to V* and V;, respectively,
and observing that |[V*(b') — V()] < Ay, we get
2Rmax0
VIO Vi) < N ()
Next, we bound the error )\;. For any b’ € B,

V() = Vi(t)| <|[HV*(V) — Hy Vit (V)]
<|[HV*(t)) — HV;— (V)]

+ [HV,_1 (V) — Hy Vi_ 1 (V)]
(18)

where Hy denotes invoking GPG-BAckuUP at b'. The
inequality in the first line in (18) holds, because by
definition, V*(b') = HV*(V'), V*(b') > Vi(V'), and
Vi(b') > Hy Vi_1 (V). Tt is well known that the backup
operator I is a contraction. The contraction property
and (17) together imply

|HV* () = HV; 1 (V)]

* 2 Rimax6
<AV (b) - Vi) < (e

5 +)\t_1). (19)
—

Theorem 2 guarantees that a single invocation of
GPG-BACKUP at a belief b’ has small approximation er-
ror with high probability, if N and M are sufficiently
large. To obtain V4, we perform ¢ iterations of backup
over the set B synchronously. Thus there are | Bt invo-
cations of GPG-BACKUP in total. Applying the union
bound together with Theorem 2, every GPG-BACKUP
invocation achieves

|HV;_1 (V) — Hy Vi (V)| < € (20)

with probability 1 — 7, if we choose N >
pn(€/5,7/2|Al|BJt) and M > py(e/5,7/2]|A||B|t).
We then combine (18-20) together with the definition
of \; and get

2R max0
(5=

A < v 73 + AH) +e.

For any initial policy graph, the error is bounded by

)\0 S 2Rmax/(1 - 7)-

After solving the recurrence relation, we have

(]‘ - r)/t)e 27(1 - 'Yt)Rmax(SB 2’YtRmax

p—
o1y (1-79)? 11—y
€ 2 Ruads | 29" B
T 1o (1-9)? 1—v
Substituting it into (17) gives us the final result. O
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