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Abstract

Why is probabilistic roadmap (PRM) planning probabilistic? How does the probability measure used
for sampling a robot’s configuration space affect the performance of a PRM planner? These questions
have received little attention so far. This paper tries to fill this gap, with the intent to identify promising
directions to improve future planners. It introduces the probabilistic foundations of PRM planning and
examines previous work in this context. It shows that the success of PRM planning depends mainly
and critically on favorable “visibility” properties of a robot’s configuration space. A promising direction
for speeding up PRM planners is to infer partial knowledge on such properties from both workspace
geometry and information gathered during roadmap construction, and to use this knowledge to adapt
the probability measure for sampling. This paper also shows that the choice of the sampling source—
pseudo-random or deterministic—has small impact on a PRM planner’s performance, compared to that
of the sampling measure. These conclusions are supported by both theoretical and empirical results.

1 Introduction

Probabilistic roadmap (PRM) planners [10, 27] solve seemingly difficult motion planning problems, such as
the one shown in Figure 1, where the robot’s configuration space C is six-dimensional and the environment
is described by tens of thousands of triangles. While an algebraic planner would be overwhelmed by the
prohibitive cost of computing an exact representation of the free space F , defined as the collision-free
subset of C, a PRM planner builds only an extremely simplified representation of F , called a probabilistic
roadmap. A roadmap is a graph whose nodes are configurations sampled from F according to a suitable
probability measure and whose edges are simple collision-free paths, e.g., straight-line segments, between
sampled configurations. PRM planners work surprisingly well in practice. Why?

Previous work has partially addressed this question by identifying and formalizing free space properties
that guarantee good performance for a PRM planner using the uniform sampling measure (e.g., [21, 25, 26,
32, 48]) . Several systematic experimental studies have also compared various PRM planners, in terms of
their sampling and connection strategies (e.g., [12, 14, 39]). However, the underlying question “Why are
PRM planners probabilistic?” has received little attention so far, and consequently the importance of proba-
bilistic sampling measures for PRM planning remains poorly understood. Since no inherent randomness or
uncertainty exists in the classic formulation of motion planning problems like the one depicted in Figure 1,
one may wonder why probabilistic sampling helps to solve them.

1Part of this work was completed while the author was at the National University of Singapore, supported by the Kwan Im
Thong Hood Cho Temple Professorship.
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Figure 1. A practical motion planning problem.

In this paper, we attempt to fill this gap, with the intent to identify promising directions to improve
future PRM planners. We introduce the probabilistic foundations of PRM planning (Section 2). We examine
previous work in this context and argue that the empirical success of PRM planning tells us as much about
the nature of motion planning problems encountered in practice as about PRM planning itself (Section 3).
We emphasize the key distinction between the sampling measure, a notion firmly rooted in probability
theory, and the sampling source, and show that the source has small impact on a planner’s performance,
compared to the measure (Sections 4 and 5). Finally, we briefly discuss the role of connection strategies in
PRM planning (Section 6). Details of the software implementation used in our experiments are described in
Appendix A.

The main questions addressed in this paper are summarized below:

• Why is PRM planning probabilistic? A foundational choice in PRM planning is to avoid the pro-
hibitive cost of computing an exact representation of F . So, a PRM planner never knows the exact
shape of F , in particular, its connectivity. It works very much like a robot exploring an unknown
environment to build a map. At any moment during planning, many hypotheses on the shape of F
are consistent with the information gathered so far. The probability measure for sampling F derives
from this uncertainty. Hence, PRM planning trades the cost of computing F exactly against the cost
of dealing with uncertainty. This choice is beneficial only if probabilistic sampling leads to a roadmap
that is much smaller in size than that of an exact representation ofF and still representsF well enough
to answer motion planning queries correctly.

• What does the empirical success of PRM planning imply? One can think of the nodes of a roadmap
as a network of guards watching over F . To guarantee that a PRM planner finds a solution quickly
whenever one exists, F should satisfy favorable “visibility” properties. A key contribution of PRM
planning has been to reveal that many free spaces encountered in practice satisfy such properties,
despite their high algebraic complexity. In retrospective, this can be explained by the fact that poor
visibility properties in F are caused by narrow passages, which are unstable under small perturbations
of the geometry of robots or obstacles. Narrow passages are therefore unlikely to occur by accident.
Furthermore, visibility properties can be defined in terms of volume ratios over certain subsets of F
and do not directly depend on dim(C), the dimensionality of C. This explains why PRM planning
scales up reasonably well when dim(C) increases.

• How important is the sampling measure? In every PRM planner, a probability measure prescribes
how sampled configurations are distributed over F . Since visibility properties are generally not uni-
formly favorable over F , this measure plays a central role in determining the efficiency of PRM plan-
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ning by allocating a higher density of samples to regions expected to have poor visibility properties,
using the hypotheses on the shape of F . For computational efficiency, most existing PRM planners
use only heuristic estimates of visibility properties to locate such regions, by using workspace geom-
etry or by exploiting information gathered during roadmap construction, but experiments show that
the resulting non-uniform sampling measures dramatically improve the planners’ performance.

• How important is the sampling source? To sample a configuration in C, a PRM planner needs a
source S of uniformly distributed, random or deterministic numbers. For example, the planner may
use S to sample a point uniformly from the unit hypercube [0, 1]dim(C) and then maps the point into C
according to a given probabilistic sampling measure. The source S has limited effect on the efficiency
of PRM planning. When dim(C) is small, low-discrepancy or low-dispersion deterministic sources
achieve some speedup over random sources [33]. The speedup is, however, very modest compared to
that achieved by good sampling measures. It also fades away quickly, as dim(C) increases.

This paper does not introduce any new PRM planner or sampling strategy. Instead, its main contribution,
based on a synthesis of previous work, is to articulate a coherent framework centered on the probabilistic
foundations of PRM planning. It re-examines several ideas, considered separately before, in this framework
and also establishes a new theoretical result (Theorem 2 in Section 3.2) that lends further support to the
importance of visibility properties for PRM planning. Overall, the paper brings new understanding of what
makes PRM planning effective, which in turn may help us to design better planners in the future.

2 Why is PRM planning probabilistic?

For many robots, computing an exact representation of the free space F takes prohibitive time, but fast,
exact algorithms exist to test whether a given configuration or path is collision-free, and some of them can
handle large, complex geometric models efficiently (see [36] for a survey). PRM planners use two probes
based on such algorithms to access geometric information on the configuration space C:

• For any q ∈ C,FreeConf(q) is true if and only if q ∈ F .

• For any pair q, q′ ∈ C,FreePath(q, q′) is true if and only if q and q′ can be connected with a
straight-line path lying entirely in F .

The choice of using only these two probes is foundational. Since a PRM planner does not compute the
exact shape of F , it never gains this information. At any moment during planning, many hypotheses on
the shape of F are consistent with the information gathered so far by the probes, and each hypothesis has
some probability of being correct. The probabilistic nature of PRM planners comes from the fact that this
uncertainty is modeled implicitly by a probability measure over the set of hypotheses.

In the rest of this paper, we use the following reference PRM planner, BasicPRM , which takes as
inputs two query configurations q1 and q2 in F as well as an integer N . To connect q1 and q2, BasicPRM
builds a roadmap R by sampling up to N configurations from F . The nodes of R consist of the sampled
configurations as well as the two query configurations. The edges of R represent collision-free straight-line
paths between the nodes.
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Procedure 1 BasicPRM(q1, q2, N)
1: if FreePath(q1, q2) is true then return the path between q1 and q2.
2: Initialize the roadmap R with two nodes, q1 and q2.
3: repeat
4: Sample a configuration q from C uniformly at random.
5: if FreeConf(q) is true then add q as a new node of R.
6: for every node v of R such that v 6= q do
7: if FreePath(q, v) is true then add (q, v) as a new edge of R.
8: until q1 and q2 are in the same connected component of R or R contains N + 2 nodes.
9: if q1 and q2 are in the same connected component of R then

10: return a path between q1 and q2.
11: else
12: return NoPath.

Most PRM planners use more sophisticated sampling strategies than the uniform random one in Line 4
of BasicPRM . A sampling strategy can be formally specified as a pair (π, S), where

• π is a probability measure that prescribes how sampled configurations are distributed over C, and

• S is a source of uniformly distributed, random or deterministic numbers.

The simplest measure π is the uniform one, which makes all the configurations to be sampled with equal
probability. More sophisticated measures are non-uniform over C and sometimes change during the roadmap
construction. We will show in Sections 4 and 5 that designing good sampling measures is one of the most
promising ways to speed up PRM planning, while sampling sources have only limited impact on the overall
performance.

In Lines 6 and 7, the planner checks for connection between every pair of nodes in R, resulting in O(N2)
invocations of FreePath. To improve computational efficiency, most PRM planners use connection strate-
gies that only attempt to connect selected pairs of nodes, reducing the number of invocations of FreePath
to roughly O(N). The implementation of BasicPRM used in our experiments also incorporates such
strategies, as described in Appendix A.2.

BasicPRM has two possible outcomes. If it returns a path, the answer is always correct. However, the
NoPath answer may or may not be correct, because, after N nodes have been sampled, R still may not
capture the connectivity of F well enough to connect the query configurations.

Let us now return to the question “Why is PRM planning probabilistic?”. Suppose that while construct-
ing a roadmap, the planner could maintain a representation (H, η), where H is the set of all hypotheses
over the shape of F and η is a probability measure that assigns to each hypothesis in H the probability of
it being correct. Then, in each iteration of the planner, the optimal sampling measure π̂ would be the one
that minimizes the expected number of remaining iterations until the roadmap connects q1 and q2, whenever
these two configurations lie in the same connected component of F . In principle, π̂ could be inferred from
(H, η). In practice, maintaining (H, η) explicitly would be too expensive. So, existing PRM planners use
heuristics to approximate the optimal sampling measure (see Section 4). Many of them make hypotheses
on the shape of F , e.g., assuming that certain regions of F are likely to contain narrow passages and thus
increasing the sampling density there.

3 What does the empirical success of PRM planning imply?

BasicPRM has some probability γ of returning an incorrect NoPath answer, but the effectiveness of PRM
planning demonstrated on many practical problems indicates that γ is usually small. Experiments show
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Figure 2. The experimental convergence rate of BasicPRM . The graph plots the percentage of unsuccessful outcomes
out of 100 independent runs for the same query in the environment shown on the right, as the number of roadmap nodes
increases.
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Figure 3. A difficult example for PRM planning. F consists of two rectangular chambers connected by a narrow
corridor and is bounded by a square box of size 1 by 1. The plot shows the average running time for BasicPRM to
connect the two query configurations q1 and q2, as the corridor width decreases.

that even in complex geometric environments, γ often converges to 0 quickly, as the number of roadmap
nodes increases. See Figure 2 for an example. However, one can also easily construct apparently simple
environments, like the one in Figure 3, where PRM planners perform poorly. Together, these two examples
suggest that many environments encountered in practice satisfy favorable properties that PRM planners
exploit well. What are these properties?

In this section, we argue that F must satisfy a visibility property called expansiveness. We first review
a result from [21, 26] showing that if F is expansive, then BasicPRM answers planning queries correctly
with high probability (Section 3.1). We then establish a new result, which can be seen as a weak converse of
this earlier result: if F is poorly expansive, then there exist queries for which we cannot expect BasicPRM
to work well (Section 3.2). In light of these two theoretical results, PRM’s empirical success suggests that
most free spaces encountered in practice have favorable expansiveness properties. In Section 3.3, we discuss
why this is the case.
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Figure 4. The β-LOOKOUT. F ′ consists of two large open regions connected by a narrow passage. G is the subset of
F ′ to the left of the vertical line segment drawn roughly half way in the passage. For β = 0.3, q ∈ 0.3-LOOKOUT(G),
because µ(A) ≥ 0.3× µ(F ′\G), while q′ 6∈ 0.3-LOOKOUT(G).

3.1 Performance of BasicPRM in expansive free spaces

Let us start with a few definitions that will lead to the concept of an expansive free space. We say that two
configurations q and q′ in F see each other if FreePath(q, q′) is true. The visibility set of a configuration
q ∈ F is the set V(q) = {q′ ∈ F | FreePath(q, q′) is true}. The visibility set of a set M of configurations
in F is then V(M) =

⋃
q∈M V(q).

Let us now define the notion of an ε-good free space [26]. Intuitively, it is a space in which every
configuration q has a relatively large visibility set, so that it is easy to sample a set of configurations that,
collectively, see most of F .

Definition 1 Let ε be a constant in ∈ (0, 1]. A point q ∈ F is ε-good if it sees at least an ε-fraction of F ,
i.e., if µ(V(q)) ≥ ε µ(F), where µ(S) denotes the volume of a subset S ⊆ C. The free space F is ε-good if
every point q ∈ F is ε-good.

However, ε-goodness is too weak to imply anything on the connectivity of the constructed roadmap. A
stronger property is needed to “connect” a visibility set to its complement in F . This leads to the notion of
the lookout of a subset G of F [21].

Definition 2 Let F ′ be a connected component of F and G be any subset of F ′. Let β be a constant in
(0, 1]. The β-LOOKOUT of G is the set of all points in G such that each point sees at least a β-fraction of the
complement of G: β-LOOKOUT(G) = {q ∈ G | µ(V(q)\G) ≥ β µ(F ′\G)}.

See Figure 4 for an illustration of this definition.
Suppose that the volume of β-LOOKOUT(G) is α µ(G). If either α or β is small, then it would be difficult

to sample a point in G and another in F ′\G so that the two points see each other and thus build a roadmap
connecting G and F ′\G. An example is the free space of Figure 3 when the corridor is very narrow. Hence,
the concept of expansiveness defined below [21].

Definition 3 Let ε, α, and β be constants in (0, 1]. A connected component F ′ of F is (ε, α, β)-expansive
if (i) every point q ∈ F ′ is ε-good and (ii) for any set M of points in F ′, µ(β-LOOKOUT(V(M))) ≥
α µ(V(M)). The free spaceF is (ε, α, β)-expansive, if its connected components are all (ε, α, β)-expansive.

The following theorem, which is based directly on the results established in [21, 26], characterizes the
performance of BasicPRM in an expansive free space.
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Theorem 1 Let F be (ε, α, β)-expansive, and p1 and p2 be two configurations in the same connected com-
ponent of F . BasicPRM(p1, p2, N) returns a path connecting p1 and p2 with probability converging to 1
at an exponential rate, as N increases.

The precise bound given in [21] shows that the failure probability of BasicPRM is upper-bounded by
( c1

εα) exp(c2εα(−N + c3
β )), for some fixed positive constants c1, c2, and c3. This theoretical bound is

consistent with the convergence plot in Figure 2 and similar plots in earlier work (e.g., [45]). The exponential
convergence rate of this probability bound is crucial. Mere asymptotic convergence, often regarded as the
definition of probabilistic completeness, is insufficient to ensure the practical effectiveness of PRM planners.

When ε, α, and β are reasonably large, the expansiveness of F guarantees that the visibility set V(M)
of any set M of configurations in a connected component F ′ of F has a large lookout. So, it is easy to
construct a small roadmap that captures the connectivity of F well. The values of ε, α, and β measure the
extent to which F is expansive. The larger these values are, the smaller N needs to be for BasicPRM to
answer queries correctly, resulting in faster computation time.

3.2 Performance of BasicPRM in poorly expansive free spaces

Let us now consider free spaces that are poorly expansive. The following theorem states that when α and β
are too small, we cannot expect BasicPRM to give a correct answer for all query configurations, even if it
constructs a very large roadmap.

Theorem 2 For any ε > 0, any arbitrarily large N > 0, and any γ ∈ (0, 1], there exist α0 and β0 such
that if F is not (ε, α, β)-expansive for α ≥ α0 and β ≥ β0, then there exists a pair of query configurations
p1 and p2 in the same connected component of F such that BasicPRM(p1, p2, N) fails to return a path
between q1 and q2 with probability greater than γ.

Proof. If F is not (ε, α, β)-expansive for α ≥ α0 and β ≥ β0, then, by definition, there exists a connected
component F ′ of F and a subset G ⊆ F ′ with a small lookout such that

µ(β0-LOOKOUT(G)) < α0 µ(G). (1)

Let us pick configurations q1 and q2 uniformly at random from G and from its complement F ′\G, respec-
tively. We want to derive a lower bound on the probability that BasicPRM(q1, q2, N) generates a roadmap
that does not contain a path between q1 and q2.

Let A denote the event that there is a path in R between q1 and q2. Since q1 ∈ G and q2 ∈ F ′\G, this
path must contain two consecutive nodes q and q′ of R such that q ∈ G, q′ ∈ F ′\G, and q′ ∈ V(q). We
bound the probability P(q′ ∈ V(q)) by conditioning on the location of q within G. Let L denote the lookout
of G and L′ denote its complement: L = β0-LOOKOUT(G) and L′ = G\L. We have

P(q′ ∈ V(q)) = P(q′ ∈ V(q) | q ∈ L)P(q ∈ L) + P(q′ ∈ V(q) | q ∈ L′)P(q ∈ L′)
< 1 · P(q ∈ L) + P(q′ ∈ V(q) | q ∈ L′) · 1 (2)

First, we show
P(q ∈ L) < α0. (3)

There are two cases. If q = q1, then P(q ∈ L) = µ(L)/µ(G), as q1 is chosen uniformly at random from
G. It then follows from (1) that P(q ∈ L) < α0. Instead, if q 6= q1, then q must be a node corresponding
to a configuration sampled uniformly at random from F . We then have P(q ∈ L) = µ(L)/µ(F) <
α0µ(G)/µ(F) and, again, P(q ∈ L) < α0, because G ⊆ F and µ(G)/µ(F) ≤ 1.

Next, we show
P(q′ ∈ V(q) | q ∈ L′) < β0. (4)
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For every q ∈ L′, we have
µ(V(q)\G) < β0 µ(F ′\G), (5)

by the definition of a lookout set. Again, there are two cases. If q′ = q2, then since q2 is chosen uniformly
at random from F ′\G, P(q′ ∈ V(q) | q ∈ L′) = µ(V(q)\G)/µ(F ′\G). Together with (5), this implies
P(q′ ∈ V(q) | q ∈ L′) < β0. Instead, if q 6= q2, then P(q′ ∈ V(q) | q ∈ L′) = µ(V(q)\G)/µ(F) <
β0 µ(F ′\G)/µ(F) < β0.

Substituting (3) and (4) into (2), we get P(q′ ∈ V(q)) < α0 + β0 ≤ 2c, where c = max{α0, β0}. Since
the roadmap R has N + 2 nodes, we have

P(A) ≤
(

N + 2
2

)
P(q′ ∈ V(q)) ≤ 3N2 · 2c.

If we choose c ≤ (1−γ)/6N2, then P(A) ≤ 1−γ. In other words, if we choose α0 and β0 to be both smaller
than c ≤ (1− γ)/6N2, then for a randomly chosen pair of configurations q1 and q2, BasicPRM(q1, q2, N)
fails to produce a path between q1 and q2 with probability greater than γ. Since q1 and q2, are chosen
uniformly at random from G and F ′\G, respectively, this implies that there exists at least one particular pair
of configurations p1 ∈ G and p2 ∈ F ′\G such that BasicPRM(p1, p2, N) fails to produce a path between
p1 and p2 with probability greater than γ. 2

Theorem 2 tells us that in an expansive space with small α and β values, there exist some path-connected
query configurations for which BasicPRM will often fail. This result does not contradict Theorem 1. Even
in a poorly expansive space, the probability of BasicPRM giving correct answers eventually converges to
1 at an exponential rate for sufficiently large N .

Theorem 2 also does not imply that BasicPRM performs badly all the time when α and β are small.
A poorly expansive space may still contain a subset that is expansive with large α and β values; if query
configurations are chosen within this subset, then BasicPRM will give correct answers with high probabil-
ity. Here it is important to remark that the values of ε, α, and β are determined by the worst configurations
and lookouts in F . Thus, they do not reflect the fact that visibility properties are usually not uniformly
favorable or unfavorable across F . This is precisely what non-uniform sampling measures try to exploit
(see Section 4).

In practice, a surprisingly small number of roadmap nodes is often sufficient to answer queries correctly.
So, a key contribution of PRM planning is to reveal this a priori unsuspected property of motion planning
problems: despite their high algebraic complexity, many free spaces encountered in practice or their subsets
relevant to the queries verify favorable visibility properties, such as expansiveness. By chance, more than by
design, PRM planners exploit this property well. The reason why PRM planners often scale up well when
dim(C) increases is that visibility properties can be defined in terms of volume ratios over subsets of F and
thus do not directly depend on dim(C).

3.3 Why are many free spaces expansive in practice?

In retrospective, it is not really surprising that many free spaces encountered in practice are expansive with
large ε, α, and β. Experimental results indicate that only very narrow passages slow down PRM planners
significantly [44]. To form such narrow passages, distinct portions of the free space boundary must almost
coincide. For example, in a two-dimensional free space, two curve segments on the free space boundary
must be almost parallel and very close to each other. Hence, a narrow passage is not a stable geometric
feature: small random perturbations of workspace geometry are likely to either eliminate the passage or
make it wider. In high-dimensional configuration spaces, passages that are narrow in several dimensions are
even more unstable, as more near coincidences must occur simultaneously.

8



Figure 5. The alpha-puzzle consists of two identical rigid tubes: one is treated as a moving robot, the other as a fixed
obstacle. The two tubes have been intentionally shaped and dimensioned to create a non-obvious narrow passage
between the configurations where the two tubes are intertwined and those where they are separated.

A more thorough analysis based on the above intuition is developed in [8], using a technique known as
smoothed analysis [47]. Smoothed analysis measures the worst-case performance of an algorithm over all
possible inputs under random perturbations. This is a realistic model for many real-world scenarios, as their
inputs are inherently noisy and are not intentionally chosen to create worst-case scenarios. It is shown in [8]
that PRM planning with uniform sampling has polynomial smoothed running time in configuration spaces
of constant dimensions. Specifically, given a configuration space of fixed dimensions and with polyhedral
obstacles bounded by n simplices whose vertices are perturbed according to a normal distribution of variance
σ2, a set of randomly sampled points with size polynomial in n and 1/σ results in a roadmap that covers the
free space well and captures its connectivity with high probability.

This smoothed analysis does not suggest perturbing the geometry of F at random before planning.
Instead, it indicates that poorly expansive free spaces are unlikely to occur by accident. It is not easy to
intentionally design the geometry of a robot and its workspace so that the resulting free space contains non-
obvious narrow passages. A rare example of an intentionally designed and reasonably complicated narrow
passage in a six-dimensional configuration space is the alpha puzzle (Figure 5). In the motion planning
literature, most examples of narrow passages in F derive directly from intentional narrow passages in the
workspace, e.g., when two mechanical parts must be assembled together by inserting one into the other,
or a robot must pass between two closely spaced obstacles. Thus, several sampling strategies try to infer
effective non-uniform sampling measures from workspace geometry.

4 How important is the sampling measure?

In the previous section, we have analyzed the performance of BasicPRM when the uniform sampling
measure is used. However, most PRM planners employ non-uniform measures that dramatically improve
performance. To illustrate, Figure 6 compares the average running times of three versions of BasicPRM
with distinct sampling strategies: the uniform strategy (whose sampling measure π is uniform over C), the
Gaussian strategy of [4], and the two-phase connectivity expansion strategy of [27]. The last two strategies,
which employ non-uniform sampling measures, perform much better than the uniform one. How can such
improvements be explained? What information can a PRM planner use to bias the sampling measure to its
advantage?

In this section, we address these questions. We first discuss the rationale for non-uniform sampling
measures (Section 4.1). We then review previous work and describe how non-uniform sampling measures
are usually constructed (Section 4.2).
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Figure 6. Comparison of three strategies with different sampling measures. The plot shows the average running time
over 30 runs on the problem in Figure 3, as the corridor width decreases.

(a) (b)

Figure 7. Sampled configurations generated by (a) the Gaussian strategy and (b) the two-phase connectivity expansion
strategy. Both strategies sample the region containing the narrow passage more densely than most of the rest of F .

4.1 Rationale for non-uniform sampling

Consider again the distribution (H, η) of hypotheses on the shape of F (Section 2). If nothing is assumed
about F , then the uniform measure is the best that a PRM planner can use. The fact that a sampled con-
figuration q lies in F or not provides no information whatsoever on whether another configuration q′ lie in
F , even if q′ lies very close to q. All remaining hypotheses in H that are consistent with the information
obtained on q are still equally likely, and there is no reason to sample one region of C more densely than
another. Without prior assumptions, there is also little that we can say about the expected performance of
PRM planning. If we persist in using a PRM planner, it must be that F is assumed to satisfy certain favor-
able properties that allow a small roadmap to represent F well enough to answer motion planning queries
correctly. Note here the analogy with inductive learning, more specifically, PAC learning [28], where one
can expect to learn a concept from examples only if the concept is assumed to have a simple representation.
Similarly, we can expect a PRM planner to work well—i.e., to “learn” the connectivity of F by sampling—
only if F is assumed to satisfy favorable visibility properties, such as expansiveness, which allows F to be
adequately represented by a small roadmap.

Now, if F is indeed expansive, can non-uniform sampling measures work better than the uniform one?
As mentioned earlier, visibility properties are usually not uniformly favorable across F . The values of ε, α,

10



and β that characterize the expansiveness ofF are determined by the worst-case configurations and lookouts
inF . To illustrate, consider the example in Figure 3. Points in the two large rectangular chambers are ε-good
for ε ≈ 0.5, but points inside the narrow corridor are ε-good for a much smaller value of ε. Furthermore,
each chamber has a small lookout located near the entrance of the corridor. These considerations, along
with the results of Section 3, suggest sampling more densely the region of C containing the narrow passage.
However, a PRM planner is not given a priori information on the location of the passage, or even on the fact
that one exists. Nevertheless, as Figure 7 shows, both the Gaussian strategy and the two-phase connectivity
expansion strategy succeed in sampling the region containing the corridor more densely than most of the
rest of F . This ability allows them to achieve huge speedup over uniform sampling. As Figure 6 indicates,
when the corridor width increases, visibility properties become more uniformly favorable, and the benefit
of non-uniform sampling then decreases.

4.2 Constructing non-uniform sampling measures

Ideally, one would like to maintain a representation (H, η) of the possible shapes of F and, in each sampling
operation, infer from (H, η) the optimal sampling measure that minimizes the expected number of remaining
steps before connecting the two query configurations. However, this would have prohibitive computational
cost. So, most planners only make local hypotheses that identify regions of F expected to have poor visibil-
ity and use them to construct non-uniform sampling measures. Some planners derive such local hypotheses
from workspace geometry prior to roadmap construction. Others use information gained during roadmap
construction. Some planners do not make any hypotheses explicitly, but instead continuously adapt the sam-
pling measure using unsupervised learning techniques. In general, non-uniform sampling strategies spend
more time generating a node of a roadmap than the uniform strategy, but the expectation is that the nodes
are better distributed, so that a much smaller roadmap is sufficient to answer queries correctly, resulting in
faster computation time.

In the following, we review existing sampling strategies and classify them according to what information
is used for constructing sampling measures and how such information is used.

Workspace-based strategies. We have argued in Section 3.3 that narrow passages in F are often caused
by narrow passages in the workspace. So, a number of sampling strategies infer hypotheses on the locations
of poor-visibility regions in F from workspace geometry. For example, the watershed labeling algorithm
identifies small corridors connecting large open regions in a cell decomposition of the workspace [49].
Workspace importance sampling tetrahedralizes the workspace to locate narrow passages and other regions
with small local feature size [31]. Several strategies extract the medial axis of the workspace layout [11, 15,
18, 50]; the clearance along the medial axis measures the amount of open space around it.

Once narrow passages in the workspace have been identified, they must be mapped to corresponding
regions in the configuration space for sampling. There are various ways to do this. For example, if the
robot is a rigid object, one may sample the positional parameters of the configuration more densely around
selected workspace passages, and sample the rotational parameters uniformly at random. For an articulated
arm, one may sample a configuration of the arm’s end-effector in the same way and then use the arm’s
inverse kinematics to get one or several configurations of the entire arm [31].

Instead of exploiting the geometry of obstacles in the workspace, the strategy proposed in [35] uses the
kinematic singularities of a robot arm to infer regions of F with poor visibility. At a singular configuration
qs, the arm’s end-effector loses some degrees of freedom and has reduced maneuverability. Thus, the region
of F around qs tends to have a flattened shape, resulting in poor visibility. Experiments show that sampling
more densely around singular configurations improves the performance of PRM planning.
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Filtering strategies. Filtering strategies over-sample C, but quickly reject many unpromising samples by
using local geometric patterns suggesting good or poor visibility. They rely on the fact that the probe
FreePath, which checks the connection between two configurations, has much higher computational cost
than FreeConf. Although filtering increases the number of calls to FreeConf, it eventually yields a
smaller set of better placed roadmap nodes and thus reduces the number of calls to FreePath. It often
leads to significant savings in computational time.

The Gaussian strategy [4] is one such strategy. In each sampling operation, it picks independently a pair
of configurations. The first one, q, is sampled uniformly at random from C, and the next one q′ is sampled
according to a Gaussian measure centered at q. If exactly one of the two sampled configurations lies in
F , this configuration is retained as a roadmap node. Otherwise, both configurations are discarded. This
strategy tries to locate the boundary of F and sample more densely there (see Figure 7a). The rationale is
that configurations with poor visibility often lie close to the boundary of F .

The bridge test strategy [19] tries to capture a different kind of geometric pattern. If both q and q′ are in
collision, then it checks whether the midpoint qm between q and q′ is collision-free. If so, it retains qm as a
new roadmap nodes. The local geometric pattern captured by the three configurations q, q′, and qm suggests
strongly that qm lies in a narrow passage [19].

Visibility-based PRM [46] uses a slightly different filtering strategy. It estimates local visibility by
testing the connections among sampled configurations and decimate the roadmap in regions where visibility
is expected to be good, in order to avoid wasting effort there.

Adaptive strategies Adaptive strategies use information gained during roadmap construction to generate
and adapt sampling measures. The two-phase connectivity expansion strategy [27] is one example. It builds
an initial roadmap by sampling C uniformly at random. While doing so, for each node q in the roadmap, it
counts the numbers of successful and unsuccessful connections to the nodes nearby and evaluates a criterion
that amounts to a local estimate of the size of the visibility set of q. Next, it samples more configurations
using a measure restricted to the neighborhoods of the nodes estimated to have small visibility sets, so
that the final distribution of sampled configurations is denser around such nodes. In Figure 7b, this strategy
produces a denser distribution of samples in the circled region around the corridor. The multi-phase sampling
strategy described in [40] recursively subdivides C into regions, classifies them, and assigns a sampling
measure to each region based on the classification. The classifier is trained in a pre-processing phase on a
variety of configuration spaces.

Tree expansion strategies [1, 21, 34, 45] are other examples of adaptive sampling strategies. They
hypothesize the location of the boundary of the portion of F represented by the current roadmap. In each
sampling step, they try to expand this boundary by sampling new configurations around a node of the
roadmap believed to be close to the boundary. So, the probability measure for sampling a new configuration
is conditioned on the existing roadmap nodes, and thus automatically adapts over time. Tree-expansion
strategies do not intentionally try to sample more densely in regions with poor visibility, but their success
relies critically on the expansiveness of F and on their ability to effectively “link” together sequences of
visibility sets [21].

Sampling strategies using unsupervised on-line learning are closest in their form to the strategy for
constructing optimal sampling measures. The strategy proposed in [6] creates and updates an approximate
model of F in the form of a collection of Gaussian functions and uses this model to sample configurations
so that the expected value of a utility function is maximized. Some other adaptive strategies do not make
explicit hypotheses on F . For example, in [22], the sampling measure is constructed as a linearly weighted
combination of component measures with complementary strengths. To adapt the sampling measure, the
weights are adjusted after each sampling operation to favor the component measures that give the most
promising results.
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Deformation strategies They try to deform F into a more expansive space Fd, in which PRM planning
becomes easier. For example, the deformation strategies proposed in [9, 20, 44] dilate F , so that the dilated
free space Fd fully contains F . As dilatation usually widens narrow passages more than the rest of F in
relative terms, Fd is expected to be more expansive than F .

Deformation strategies require using modified probes FreeConf and FreePath. In [9, 44] a shrunken
version of the geometry of robots and/or obstacles is pre-computed. The probes then use the shrunken ge-
ometric models to test whether a configuration or a path lies in Fd. The roadmap is built in Fd. Once a
path joining the query configurations has been found in Fd, the planner samples additional configurations
around it to generate a path that lies entirely in F . Dilation may create false passages in Fd, i.e., passages
that are not present in F . However, false passages occur rarely in practice for the reasons discussed in Sec-
tion 3.3. Furthermore, a small dilatation is usually sufficient to achieve large speedup in computation time;
this further reduces the risk of creating false passages.

5 How important is the sampling source?

To sample a configuration, a PRM planner needs both a probability measure π and a source S of random
or deterministic numbers. The “sampling measure” and the “sampling source” are distinct concepts. The
distinction is, however, blurred in the literature. With the use of deterministic sources to PRM planning [33],
this distinction becomes important. Typically, the planner uses S to sample a point from a unit hypercube
of suitable dimensionality and then maps the point into C according to π. As true randomness is difficult
to obtain on a computer, the source most commonly used in existing PRM planners is the pseudo-random
source Sran, which generates a sequence of numbers that closely approximate the statistical properties of true
random numbers.2 In particular, a pseudo-random sequence is slightly irregular to simulate the effect that
each number is chosen independently. In the proof of Theorem 1, this independence guarantees that samples
spread evenly over F . However, deterministic sources can achieve the same goal, sometimes even better, by
minimizing discrepancy or dispersion [33]. The grid is a familiar deterministic source. In this section, we
compare pseudo-random and deterministic sources. We also compare the impact of the sampling source to
that of the sampling measure on the overall efficiency of PRM planning.

Our experiments use a pseudo-random source Sran and two deterministic sources—the Halton sequence
Shal [38] and the incremental discrepancy-optimal sequence Sopt [37], both of which have been reported
in [33] to often outperform Sran. We pair each source with two probability measures, the uniform measure
πU and the measure πG used in the Gaussian strategy. So, we have in total six sampling strategies {πU, πG}×
{Sran, Shal, Sopt}, each of which is embedded in a distinct version of BasicPRM . See Appendix A.1 for
implementation details, in particular the delicate combination of πG and a deterministic source.

The sampling measure versus the sampling source. Figure 8 compares the six strategies on the example
shown in Figure 3. Each entry of the table in Figure 8a was generated by dividing the running time of the
uniform random strategy (πU, Sran) by the running time of the strategy corresponding to the table entry. So,
the table reports the speedups over (πU, Sran). To generate the table, we averaged the running times for
(πU, Sran) and (πG, Sran) over 30 independent runs. The second column (πU) of the table shows that Shal

and Sopt achieve some speedup over Sran, but a comparison of the second and the third columns shows that
far greater speedup is achieved by switching to the better sampling measure πG. Furthermore, the advantage
of Shal and Sopt over Sran observed with πU diminishes when we switch to πG.

These results are reinforced in Figure 8b, which plots the running times of the six strategies, as the
corridor width decreases. The three indistinguishable curves bundled together at the bottom of the plot all

2If we fix the seed of a pseudo-random source, the numbers generated by a pseudo-random seed are in fact deterministic. To
have multiple independent runs of a PRM planner, we must use a different seed for each run.
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πU πG

Sran 1.0 92.0
Shal 1.4 23.0
Sopt 4.0 92.0
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Figure 8. Running time comparison of six sampling strategies on the problem of Figure 3, when (a) the corridor width
is set to 0.03, (b) the width decreases.

πU πG

Sran 1.0 40.3
Shal 3.9 33.2
Sopt 0.9 42.2

Figure 9. Comparison of six sampling strategies on a more realistic problem.

correspond to strategies using πG, demonstrating that the sampling measure plays the critical role in deter-
mining the overall efficiency of the planner. Similar results have been obtained on more realistic problems,
e.g., the one in Figure 9, in which a six-degrees-of-freedom robot manipulator needs to access the bottom of
a car through the narrow slot between the lift supports.

Dependence on dimensionality. The main rationale for using deterministic sources is that they reduce the
discrepancy or dispersion of the samples. However, the computational cost of achieving a fixed discrepancy
or dispersion grows exponentially with dim(C) [38, 42]. The samples generated by a deterministic source
are distributed evenly and regularly over [0, 1]dim(C). So they roughly correspond to a grid with N1/dim(C)

discretized intervals per axis, where N is the number of samples. In typical PRM planning problems,
N is relatively small, while dim(C) could be large (greater than 6). This leads to large discrepancy and
dispersion, even when a deterministic source is used.

Hence, the advantage that deterministic sources can possibly achieve over pseudo-random sources nec-
essarily fades away as dim(C) increases. To illustrate, Figures 10 and 11 compare the performance of the six
sampling strategies in configuration spaces of varying dimensionality. In Figure 10, as dim(C) increases, the
volume of the narrow passage gets smaller, relative to the total volume ofF , and so it becomes more difficult
to sample in it. The plot shows that (πU, Sopt), which optimizes discrepancy, has the fastest increase in com-
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Figure 11. Running time comparison of six sampling strategies on a planar articulated arm with a moving base. (a)
The plot shows the running times for each sampling strategy as dim(C) increases. (b) A zoom of the lower portions of
the curves in (a). (c) The test environment.

putational cost, as dim(C) grows. The increase is slightly slower for (πU, Sran) and (πU, Shal). Figure 11
gives another example, where the robot is a planar articulated arm with a moving base. The dimensionality
of C is increased by adding up to six links to the robot. The results here are similar to those of the previous
example. It is interesting to observe that in this example, (πU, Shal) performs slightly better than (πU, Sran)
when dim(C) ≤ 6, but worsens afterwards (Figure 11b). In both examples, the three strategies using πG

have more moderate increases in computational cost. As dim(C) grows, visibility properties become less
uniform over C, and the advantage of πG over πU grows.

Robustness. For a given problem, the running times of a planner with a pseudo-random source vary from
one run to another, while the running times of a planner with a deterministic source stay constant. This has
led to the thinking that deterministic sampling has more consistent performance. This conclusion, however,
is somewhat misleading, because consistency is better assessed across small variations of the same problem,
a more realistic scenario in practice.

This led us to run the three strategies {πU}×{Sran, Shal, Sopt} on 100 perturbed versions of the problem
shown in Figure 11, when the robot contains four links (so, dim(C) = 6). Each perturbation is a small ran-
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Figure 12. Running time variations of three strategies that differ in sampling sources. (a) The horizontal axis indexes
the 100 perturbed environments. The vertical axis shows the relative variation, defined as |ti − t|/t, where ti is the
running time of a particular sampling strategy on the perturbed environment i, and t =

∑100
i=1 ti/100 is the average

running time. (b) Summary statistics.

dom translation of the origin of C. So, the shape of F remains unchanged. For each perturbed environment,
we ran each of the three sampling strategies exactly once. As usual, in each run of (πU, Sran), the seed of
the random sequence is set to a different, uncorrelated value. The results are shown in Figure 12. They
indicate that the running times of the two deterministic sampling strategies vary at least as much as those of
the pseudo-random sampling strategy.

6 Connection strategies

While the quality of a roadmap depends mostly on how its nodes are sampled, the dominant cost of roadmap
construction is incurred in connecting these nodes. There are two reasons for this: the probe FreePath
is much more expensive to evaluate than FreeConf, and there are potentially O(N2) pairs of nodes to be
checked for connection. For computational efficiency, most PRM planners employ another important strat-
egy, the connection strategy, that (i) selects a class of paths for connecting the nodes and (ii) chooses which
pairs of nodes should be tested for connection. Systematic experiments have been carried out to compare
various connection strategies [12]. Below, we focus on the relationship between connection strategies and
visibility properties in F . This relationship has also been studied in [13, 14].

Like many other PRM planners, BasicPRM connects roadmap nodes with straight-line paths, a choice
encoded in the probe FreePath. However, paths with other fixed shapes could be used as well, by simply
redefining FreePath appropriately. They lead to visibility sets with different shapes3 and thus affect the
expansiveness of F . Experiments show that no particular path shapes are inherently better than others [2].

3The theoretical results in Section 3 hold without any modification under this new definition of visibility sets.
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On the other hand, on problems with narrow passages, improvements have been obtained with a probe
FreePath that connects nodes by performing heuristic search in restricted regions of the configuration
space [14, 24]. Restricted local search is still more expensive than checking a path of a given shape for
collision, especially in spaces of high dimensionality, but it allows a much broader class of paths, which
are no longer restricted to pre-defined shapes, to be used for connecting the nodes. So, it may significantly
increase the expansiveness of F by making lookout sets much larger. The tradeoff between the cost of local
search and the resulting increase in expansiveness has not received enough attention so far.

To reduce the number of calls to FreePath and speed up planning, most PRM planners only try to
connect each node to other close-by nodes, which can be found efficiently through hashing [10, 23, 51]. In
principle, this heuristics may reduces the visibility sets of roadmap nodes, but empirical results show that
it works well in practice. The chance that two nodes see each other decreases sharply when the distance
between them increases. Even if two distant nodes see each other and the PRM planner makes no attempt
to connect them, it is very likely that they can be still connected in the roadmap through intermediate nodes.
So, we lose little by not trying to connect nodes far apart.

7 Conclusion

A foundational choice made in PRM planning is to avoid computing the exact shape of free space F in order
to gain computational efficiency. As a result, a PRM planner never knows the exact shape of F . At any time
during planning, many hypotheses on the shape of F are consistent with the information that the planner
has obtained so far. The probability measure used for sampling F derives from this uncertainty.

The success of PRM planning depends mainly and critically on favorable visibility properties in F , such
as expansiveness. These properties do not depend directly on the dimensionality ofF . By exploiting the fact
that visibility is not uniformly favorable across F , non-uniform sampling measures dramatically improve
the efficiency of PRM planning. The construction of effective non-uniform sampling measures underlies the
probabilistic foundations of PRM planning. In contrast, the choice of the sampling source has only small
impact on the overall efficiency of a PRM planner.

To speed up PRM planning, one promising direction is to design better sampling strategies (and perhaps
connection strategies as well) by exploiting the partial knowledge acquired during roadmap construction
and using this knowledge to adjust the sampling measure on-line to make it more effective. One idea is to
design probes that provide more information than FreeConf and FreePath, e.g., probes that return local
algebraic models of F . The improved probes may allow the planner to better identify regions with poor
visibility, such as the entrance of a narrow passage. This idea is related to the hybrid planner introduced
in [17]. Since F often satisfies favorable visibility properties, one could exploit this fact to generate sim-
plified algebraic models that avoid the details not needed for PRM planning. Another idea, in an seemingly
opposite direction, is to acquire information on F in low-cost increments by creating probes that break the
process of testing whether a configuration or a path lies in F into a series of small steps. Using such probes,
a PRM planner can construct roadmaps whose nodes and edges are not fully tested, but instead carry weights
estimating their probability of lying in F . At each step, the planner may choose to add new nodes or edges
to the roadmap, or refine the weights of its existing nodes and edges by performing additional probing steps
on them [3, 45]. This approach allows the planner to obtain additional information on F at low incremen-
tal cost, and use this information to adapt the sampling measure and focus on the most interesting parts
of F . Although no existing PRM planner is able to compute an optimal sampling measure, considerable
progress has been made in recent years by developing increasingly more sophisticated techniques to extract
information on the visibility properties of F and adapt the sampling measure accordingly. More progress in
this direction can be expected in the future, as some promising approaches, such as learning-based adaptive
strategies [6, 22] and deformation strategies [9, 20, 44], have barely been touched on so far.
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Although the “narrow passage” issue has often been seen as a main bottleneck in PRM planning, a
perhaps more important issue in the future is the relatively high variance of the running time of PRM
planners (see, e.g., Figure 12), especially in poorly expansive free spaces. The high variance, combined
with our inability to estimate the values of ε, α, and β in advance, often requires setting a large time limit
(or, equivalently, a large number N of roadmap nodes) for the planner to terminate without a path. This may
not be acceptable in some applications where many planning queries have to be processed sequentially [16].
Experiments indicate that some non-uniform sampling strategies also reduce the variance on the running
times as well, but more research is needed to address this important issue.

The main drive for improving PRM planning in the future will come from problems far more challenging
than those considered today, problems with configuration spaces of hundreds or thousands of dimensions
or with new types of motion constraints. One such problem is motion planning for self-reconfigurable
robots consisting of many identical or similar modules (e.g., [7, 30, 43]). Another problem, protein folding,
takes us beyond robotics to study the motion of bio-molecules [5]. A protein, which typically consists of
thousands of atoms, can be seen as a hyper-redundant articulated linkage moving in a coordinated fashion
to achieve a compact folded state while avoiding self-collision, i.e., collision among its constituent atoms.
The design of new motion planning algorithms should be aimed at problems of such scale.
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A Implementation details

This appendix describes implementation details of BasicPRM with various sampling strategies and the
connection strategy which are used in our experiments.
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A.1 The sampling strategies

We used several sampling measures in our experiments. The measure for the two-phase connectivity expan-
sion strategy was implemented according to its description in [27]. As the original algorithm is intended for
a multi-query PRM setting, we made a small change in our experiments. Our implementation runs the first
phase for 100 iterations, the second phase for 200 iterations, and then repeat. The ratio of iterations between
the two phases is the same as that recommended in [27].

To implement the sampling measure for the Gaussian strategy, we pick a pair of configurations in each
iteration. The first configuration q is sampled according to the uniform measure. The second configuration
is chosen according to a radially symmetric Gaussian with its center at q and a small standard deviation
σ. To choose the value of σ, we performed a few preliminary runs for each test environment and used the
values that generated the best results.

We also used three different sampling sources. The pseudo-random source Sran was implemented with
an algorithm due to Knuth [29]. The algorithms for the two deterministic sources are described in [38] and
[37], respectively.

The implementation of (πG, Shal) and (πG, Sopt) requires more careful explanation. This particular com-
bination of a non-uniform sampling measure and a deterministic sampling source has not appeared in the
literature before. Our implementation takes a straightforward approach by replacing the pseudo-random
source of the original Gaussian strategy with a deterministic source. To generate a sample according to
the Gaussian measure, but with a deterministic source, it uses Moro’s inversion [41], instead of the more
commonly used Box-Mueller method, in order to better preserve low discrepancy. Furthermore, our imple-
mentation uses two copies of the deterministic source, one for each configuration in the pair of configurations
sampled, in order to maintain independence between them.

A.2 The connection strategy

When adding a new node q to the roadmap, our implementation of BasicPRM checks the connection
between q and an existing roadmap node v, only if (i) q and v are in different connected components, (ii)
the distance between q and v is smaller than a threshold D, and (iii) v is a K-nearest neighbor of q for some
fixed constant K. Based on earlier experimental results (e.g., [12]) and our own experiences, we chose D to
be 0.25 and K to be 30.
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