International Journal of Computational Geometry & Applications
Vol. 9, Nos. 4 & 5 (1999) 495-512
© World Scientific Publishing Company

PATH PLANNING IN EXPANSIVE CONFIGURATION SPACES

DAVID HSU JEAN-CLAUDE LATOMBE RAJEEV MOTWANI

Computer Science Department, Stanford University
Stanford, CA 94305, U.S.A.
{dyhsu, latombe, rajeev}@cs.stanford.edu

Received received date
Revised revised date
Communicated by Editor’s name

ABSTRACT

We introduce the notion of expansiveness to characterize a family of robot configu-
ration spaces whose connectivity can be effectively captured by a roadmap of randomly-
sampled milestones. The analysis of expansive configuration spaces has inspired us to
develop a new randomized planning algorithm. This new algorithm tries to sample only
the portion of the configuration space that is relevant to the current query, avoiding
the cost of precomputing a roadmap for the entire configuration space. Thus, it is well-
suited for problems where only a single query is submitted for a given environment. The
algorithm has been implemented and successfully applied to complex assembly main-
tainability problems from the automotive industry.

Keywords: Motion planning, path planning, configuration space, random sampling, prob-
abilistic roadmap.

1. Introduction

Path planning is an important problem in robotics.’* It also has applications
in many other fields, such as computer graphics, computer-aided design and man-
ufacturing, and medical surgery. Given the geometry of a robot and obstacles, a
planner is required to generate a collision-free path between an initial and a goal
configuration. This has been proven to be a hard problem.!” There is strong evi-
dence that a complete planner, i.e., a planner that finds a path whenever one exists
and indicates that none exists otherwise, will take time exponential in the number
of degrees of freedom (dof) of the robot.

Recently randomization has been successfully exploited to provide an efficient
and general path-planning scheme for robots with many dofs.? The potential field

3 searches for a path by following the negated gradient of an artificial poten-

planner
tial field constructed over the configuration space and uses random walks to escape
local minima of the potential function. It has been used in practice with good re-

sults, but there are several cases where the potential field planner behaves poorly.*

Usually this happens when the planner reaches a local minimum of the potential
function, and the only way to escape the basin of attraction of this minimum is
through a narrow passage between configuration space obstacles. The probability
that a random walk finds its way through such a narrow passage is extremely small.

Other randomized planners use random sampling to construct a probabilistic
roadmap in the configuration space and then try to find a path between any two
input configurations by connecting them to the roadmap. After paying a rela-
tively high cost for building the roadmap, they answer queries very efficiently, and
are particularly suitable if multiple path-planning queries have to be answered in
the same static environment. There are several different techniques for construct-
ing roadmaps, including uniform sampling followed by local resampling in difficult
regions,'! performing random reflections at the free space boundary,® and sam-
pling near the free space boundary.! Roadmap planners have successfully solved
difficult problems for articulated robots with up to 12 dofs in both 2-D and 3-D
environments.'?

These randomized planners have demonstrated good performance empirically,
but are not complete. Some of them achieve the weaker notion of probabilistic com-
pleteness, i.e., they find a path with high probability whenever one exists. Note
that if no path exists, the planner may never terminate. There have been several
attempts to provide theoretical justification for the observed success of these plan-
ners. Potential field planners are analyzed based on the study of Markov chains and
diffusion processes.!> An estimate is given for the probability that a variant of a
roadmap planner can find a path between two given configurations, assuming that
a path of certain clearance exists,? and the connectivity property of the roadmaps
produced is analyzed under the assumption that a free space is e-good, i.e., every
free configuration “sees” a significant fraction of the free space.!® Unfortunately,
this variant assumes that a complete planner is available to be invoked in order to
improve the connectivity of the roadmap. This assumption is clearly not realistic.

In this paper we introduce the notion of an ezxpansive space, which involves a
slightly stronger assumption than e-goodness. We show that under the assumption
that the free space is expansive, if we build a roadmap by sampling the configuration
space uniformly at random and connecting each pair of sampled configurations
that can be joined by a straight-line path in the free space, then the resulting
connected components of the roadmap conform to the connected regions of the free
configuration space with high probability. Unlike the previous result in Ref. [10]
there is no need for a complete planner here.

Although roadmap planners offer an efficient solution for multiple-query path
planning problems, they are not suitable when only a single query is submitted
for a given environment. A good example of a single-query path planning problem
is the assembly maintainability problem, where one must determine whether there
exists a path to remove a component from an assembly of mechanical parts for
maintenance.’® In this setting, although the free space may contain several connected
components, at most two of them are relevant to the query being processed, and
it is clearly undesirable to perform an expensive preprocessing step to construct a

Fig. 1. An assembly maintainability problem used to test our planner. It is a
car packaging model having 60,000 triangles.

roadmap of the entire configuration space. Instead, we would prefer to build only
the part of the roadmap that is relevant to the query, i.e., the part that contains
only the configurations that are connected to either the initial configuration q;n;¢
or the goal configuration ggoa:.

Our analysis of roadmaps suggests a scheme to achieve this goal efficiently in
the case of expansive spaces. The idea is to sample only the connected components
that contain either gn;; or qgoai. We start by sampling in the neighborhoods of
@init OF ¢goar and then repeatedly choose new samples in the neighborhoods of the
configurations known to be connected to gni: OF qgoq1, until a path is discovered.
The intuitive explanation for the success of this scheme is via an analogy to the rapid
mixing property of random walks on expander graphs. We have implemented an
algorithm based on this scheme and tested it on assembly maintainability problems
from the automotive industry. These problems contain complex CAD models that
describe cluttered environments having up to 200,000 triangles. An example is
shown in Figure 1.

The rest of the paper is organized as follows. In Section 2, we define the no-
tion of expansive spaces and analyze the connectivity of probabilistic roadmaps in
expansive spaces. The main result of this analysis is an estimate of the size of the
roadmap needed to reliably capture the connectivity of a free space as a function of
parameters measuring the expansiveness of the free space. In Section 3, we describe
our new planner and the implementation details for a rigid-body “robot” with six
dofs, as well as experiments with the implemented planner. We also present a useful
extension of the planner based on the notion of expansive components in the free
space. In Section 4, we summarize the major results and point out possibilities for
future work.

2. Expansive Spaces

2.1. Definition

The configuration of a robot is a specification of the position and the orientation

of each rigid body composing the robot with respect to a fixed coordinate system.
For example, a configuration can be specified by d parameters ¢ = (g0, 91, - - -, 9d—1),
where d is the number of degrees of freedom of a robot. The set of all configurations
forms the robot’s configuration space C. A configuration q is free if the robot placed
at g does not collide with obstacles. The set of all free configurations forms the free
space F, which is a subset of C. We say that two configurations see each other if
the straight-line path joining them lies entirely in F.

To construct a probabilistic roadmap graph R = (V, E), we sample configura-
tions uniformly at random from C and retain the free configurations in V. We refer
to the configurations in V' as the milestones. There is an edge between two mile-
stones if they see each other. The presence of narrow passages in F poses significant

Sy Sa

Fig. 2. A free space with a narrow passage.

difficulty for planners that build a roadmap by sampling € at random. For example,
consider the free space of Figure 2, which consists of two subsets S; and Ss sepa-
rated by a narrow passage. Few points in S; see a large fraction of Sy, and therefore
the probability that the planner picks a milestone in S that sees a milestone in Sy
is very small. More generally, let the lookout set of a set S C F be the subset of
points in S that can see a large portion of F\S, the complement of S with respect
to F. The example of Figure 2 suggests that we can characterize narrow passages
by the size of lookout sets. If F contains a subset that has a small lookout set,
the probabilistic roadmap planner may have difficulty computing a roadmap that
correctly captures the connectivity of the free space.

We now formally define the notion of an expansive space, which is intended to
capture the difficulty of obtaining a good roadmap for a given space. For any subset
S C F, let u(S) denote its volume. Let V(p) denote the set of all configurations
seen by a free configuration p. We call V(p) the wvisibility set of p.

Definition 1 Let § be a constant in (0,1], and S be a subset of a connected com-
ponent F' of F. The lookout set of S is

LoOKOUTH(S) = {g € S| u(V(@\S) = Bu(F'\S)).

Definition 2 Let ¢, o, and § be constants in (0,1]. The free space F is (e, a, 3)-
expansive if each of its connected components F' satisfies the following two condi-
tions:

1. For every point p € F', u(V(p)) > eu(F).

2. For any connected subset S C F', u(LookouTg(S)) > ap(S).

For brevity we will abbreviate the term “(e, o, §)-expansive” by “expansive”.

The first condition in Definition 2 guarantees every point in F sees at least an
¢ fraction of the free space, a property of F that we called e-goodness in Ref. [10].
In the example of Figure 2, € & 0.5. The second condition guarantees that every
subset S C F’ has a relatively large lookout set. Think of S as the union of the
visibility sets of a set M of points. If a and 3 are both large, then it is easy to pick
at random additional points in S so that adding them to M results in expanding S
significantly. In fact, we will see that with high probability, S will eventually expand
to cover the entire F'. In the example of Figure 2, if we choose S = S;, only a
small fraction of points in S, located near the passage between S7 and Ss, can see
a large subset of points in S;. Hence if 3 is large, a will be small. We can increase
the value of a by choosing a smaller value for 3, but a and cannot both be made
large simultaneously. The parameters ¢, a, and § measure the extent to which a
free space is expansive. The smaller these parameters are, the less expansive F is.
In the next subsection we will show that the cost of constructing a good roadmap
using a probabilistic roadmap planner increases as €, «, and [get smaller.

2.2. Analyzing Roadmaps in Erpansive Spaces

A good probabilistic roadmap should satisfy two requirements. First, it provides
adequate coverage of the free space: the milestones should collectively see all but a
small fraction of F, so that query configurations can easily be connected to them.
Second, the roadmap must correctly represent the connectivity of the free space, i.e.,
there should be a one-to-one correspondence between the connected components of
the roadmap and those of F.

Adequate coverage of the free space is formally defined as follows '0:

Definition 3 A set of milestones provides an adequate coverage for an e-good free
space F if the volume of the subset of F not visible from any of these milestones is
at most (e/2)p(F).
For an e-good free space F, each connected component of F has volume at least
ep(F). If a set of milestones provides adequate coverage of F, then each connected
component of F contains at least one milestone. It has been shown that uniform
random sampling generates a set of milestones that provides adequate coverage of
F with high probability.'® The number of milestones needed grows proportional to
(1/€) In(1/ey), where v is the probability that sampling uniformly at random fails
to generate a set of milestones providing adequate coverage of F.

Here our goal is to show that the connectivity of a probabilistic roadmap R ob-
tained from a set of uniformly-sampled milestones conforms to the connectivity of
the free space with high probability. Theorem 1 established below states that with
high probability no two connected components of R lie in the same connected com-
ponent of F. Combined with the earlier result in Ref. [10], Theorem 1 implies that
with high probability, there is a one-to-one correspondence between the connected
components of R and those of F.

Ut

Fig. 3. The linking sequence for p.

We begin our proof by defining the linking sequence of a point p € F (see
Figure 3).

Definition 4 The linking sequence of a point p € F is a sequence of points py =
P, P1, P2, - .. and a sequence of sets Vo = V(po), V1, Va, ... C F such that for all i > 1,
pi € LOOKOUT(Vj_1) and V; = Vi_1 UV(p;).

Note that the sets Vy, Vi, Vs, ... are completely determined by the sequence of
points pg, p1, pa, . .., and so for brevity, we will refer to just the sequence of points
Po, P1, P2, - - - as a linking sequence for p.

The following two lemmas underscore the significance of this definition. Lemma 1
states that a set M of randomly-sampled milestones is highly likely to contain a
linking sequence of a given length for any milestone in M. Lemma 2 shows that the
sets associated with a linking sequence of this length span a large volume. The final
sets determined by long-enough linking sequences for any two milestones p and ¢
must intersect, since their volumes are large enough. In that case p and ¢ will be
connected by a path. This is a crucial observation which we will use in the proof
of Theorem 1 to estimate the probability that two milestones in the roadmap are
path-connected.

In both lemmas, we assume that C is (¢, a, 3)-expansive.

Lemma 1 Let M be a set of n milestones chosen independently and uniformly
at random from the free space F. Let s = 1/ac. Given any milestone p € M,
there exists a linking sequence in M of length t for p with probability at least 1 —
86—(n—t—1)/s‘

Proof. For convenience, let us assume that pu(F) = 1. Let L; be the event that
there exists a linking sequence in M of length i and L; be the event that there does
not exist such a sequence.

PI‘(EZ) = PI’(ZZ | fi—l) Pr(fi_l) =+ PI‘(ZZ | Li—l) PI‘(LZ'_l)
< Pr(fi_l) + PI’(ZZ | Li—1)~

We would like to estimate Pr(fi | Li—1). That is, given that there exist pg =
P, P1,P2,---,Pi—1 € M forming a linking sequence of length 7 — 1, what is the prob-
ability that M contains no linking sequence of length ¢ for p? All we need is that M
contains no point lying in LooKoUT(V;_1). Note that p,p1,pa,...,pi—1 are condi-
tioned and we cannot expect them to lie in LookoUT(V;_1). However, the remaining

n — ¢ points in M are unconditioned and chosen uniformly and independently from

F. Since V(p) = Vy C Vi_1, we have that

p(Vier) 2 n(V(p)) = €

by the first condition in the definition of an (e, o, §)-expansive space F. Further,
by the second condition in the definition, we obtain that

p(LookouTg(Vie1)) > au(Vicq) > ae=1/s.

It follows that the probability that M does not contain a point in LooKOUTg(Vi_1)
is at most

(1 _ 1/8)n—i S e—(n—i)/s.

Hence we have

Pr(L;) < Pr(Ti_y) + e~ (n=0/s

and
t t—1 6t/s 1
n—1)/s ifs _ ,—(n—1)/s
L)<y et R SR
i=1 i=0

Noting that e¢'/* — 1 > 1/s, we obtain the desired bound
Pr(L;) < se—(n—t=1/s

That is, with probability at least 1 — se=(*=t=1)/5 '} contains a linking sequence
of length ¢ for p. a

Lemma 2 Let v = u(V;) denote the volume of the tth set Vi determined by a
linking sequence pg = p,p1,p2,... for a point p € F', where F' is a connected
component of F. Then, fort> 37'1In4 =~ 1.39/3, v; > 3u(F')/4.

Proof. Let us scale up all the volumes so that u(F’) = 1. Observe that since
Vi = Vi1 UV(p;), we obtain

p(Vi) = p(Vier) +u(V(pi) \ Vic1)
> pu(Vicr) + Bu(F \ Vioa).

The last inequality follows by the definition of an expansive space. Observing that
H(F'\Vie1) = p(F') — u(Vi—1) = 1 — v;_1, we have the recurrence

v; > vim1 + B(1—vio1).

The solution to this recurrence turns out to be

w2 (= B0+ B3 (1= B = 1= (1= §)(1 = o).

Observing that vg > 0 and that (1 — 3) < e~?, we obtain

v; >1—e Pl

Fig. 4. Linking sequences for p and g.

Clearly, for t > 3~!1In4, we have v; > 3/4. a

We are now ready to state our main result. It relates the notion of a linking se-
quence to a set of randomly sampled milestones. Suppose that a set M of milestones
are sampled from F. Let R be the probabilistic roadmap obtained by taking all the
milestones in M as vertices and introducing an edge between any two milestones in
M that can see each other. For each connected component F; in F, let M; C M
be the set of milestones belonging to F;, and R; be the subgraph of R containing
the set M; of vertices.

Theorem 1 Let v be a constant in (0,1]. Suppose a set M of 2n + 2 milestones,
forn = [8In(8/cay)/ea + 3/3], is chosen independently and uniformly at random
from the free space F. Then, with probability at least 1 — ~, each of the roadmap
graphs R; s a connected graph.®

Proof. Again assume, without loss of generality, that p(F) = 1. Suppose that we
sample a total of 2n + 2 milestones from F. Consider any two milestones p, ¢ in
M; for some j. Divide the rest 2n milestones into two subsets, M’ and M”, of n
milestones each. Tt follows from Lemma 1 that any milestone in {p}(JM' has a
linking sequence of length ¢ in M’ with probability at least 1 — se=(*=t)/5_ The
same holds for any milestone in {¢}JM’. Let Vi(p) and V;(q) be the visibility
sets determined by the linking sequences of length ¢ for the two milestones. By
Lemma 2, both sets have volume at least 3u(F;)/4 if we choose t = 1.5/3, and
hence they must have a non-empty intersection with volume at least pu(F;)/2. We
know that p(F;) > €, because by the first condition in the definition of expansive
spaces, the visibility region of any point in F; must have volume at least €. Since
the n milestones in M’ are sampled independently at random, it follows that with
probability at least 1 — (1 — ¢/2)" > 1 — ="/ there is a milestone z € M" that
lies in the intersection (see Figure 4). Note that both p and ¢ have a path to z
consisting of straight-line segments bending only at the linking sequence points,
which of course belong to the set of milestones M;. This means that there is a path
from p and ¢ to x using only the edges of the roadmap graph R;.

Let B denote the event that p and ¢ fail to be connected. B occurs if the sets
in the linking sequences of p and ¢ do not intersect or no points of M” lie in the

“For clarity of exposition, we have chosen a slightly larger value of n than necessary. Using a
more refined estimate of n will complicate the technical details in the following proof.

intersection, and therefore Pr(B) < 2se~(n=t)/s 4 ¢=n€/2 Choosing n > 2t and
recalling s = 1/ae, we have

PI'(B) < 286—"/23 + e—”f/2 < 286—71/28 + e—n/Zocs < 3S€_n/25.

A graph R; will fail to be a connected graph if any pair of nodes p, ¢ € M; fail to
be connected. The probability is at most

(Z) Pr(B)

(n) 3se /%

on’se "%

286—(71—45 Inn)/2s

¢ —n/4ds
2se”"/ ,

IN A IA

where the last inequality follows from the observation that n/2 > 4slnn for n >
8s1n 8s. Now requiring also that n > 8sIn(8s/7), we have

286—n/4s < 286—21n(85/'7)
~y 2
< 25 ()
= “7\8s
< v

Clearly it is sufficient to choose n > 8sIn(8s/7) + 2¢. Substituting s = 1/ae and
t = 1.5/ into the expression for n, we obtain the desired result. a

2.8. Discussion

Theorem 1 provides an upper bound on the number of milestones needed to
build a good roadmap with high probability. Interestingly, the bound does not
explicitly mention the dimension of the configuration space, because the definition
of expansiveness is based solely on the visibility properties of C, which is stated
in terms of volumes of subsets of F. However, the dependence on the dimension

w w w

Fig. 5. An (e, o, 8)-expansive free space where €, o, 8 ~ w/W.

of C is implicit in the size of the parameters €, a, and 3. To illustrate this point,
consider the example of Figure 5. The free space consists of two squares, S; and
Sy, connected by a narrow corridor. Each square has sides of length W, and the
rectangular corridor has length W and width w, with w < W. Up to a constant

factor, each of the parameters ¢, o, and /3 is on the order of w/W. Indeed, the points
with the smallest visibility set are located in the narrow passage. Each such point
has a visibility set of volume approximately 3wW. Since the volume of the free
space is (2W + w)W, € = 3wW/((2W + w)W) ~ w/W. Furthermore, only a small
subset of S; with volume approximately wW, contains points, each of which sees
a set of volume approximately 2wW in S\ F, and therefore o &~ wW/W? ~ w/W
and § = 20W/(W4+w)W) ~ w/W. In the n-D version of this example, two hyper-
cubes, each having volume W, are connected by a hyper-parallelepipedic corridor
that has size w in k dimensions (0 < k < n) and size W in the rest n —k dimensions.
Each of the parameters ¢, a, and 3 is on the order of (w/W)*. Therefore the number
of milestones needed to build a good roadmap is exponential in & for this example.

An alternative bound? for the number of milestones needed can be obtained from
the path-clearance assumption. Consider a free path between any two configurations
q and ¢’ in the same connected component of F. Let | be the length of the path
and o be its clearance, which is defined as its minimum distance to the boundary

of F.

Theorem 2 Let v be a constant in (0, 1], and b be the constant 27" u(B1)/pu(F),
where By denotes the unit ball in R™. With probability at least 1 — v, a roadmap
of (1/bc™) In(2l/~v0) milestones contains a connected component in which two mile-
stones m and m' are such that q sees m and q' sees m'.

In the n-D version of the example in Figure 5, the maximum clearance of a path
going through the narrow passage is always w/2, for any integer k € [1,n — 1]. The
bound in Theorem 2 is always exponential in n, even if the passage is wide in most
dimensions. Our new bound based on expansiveness yields a number of milestones
that is only exponential in £.

The bound in Theorem 1 provides a reasonable measure of the amount of work
that the planner should do in order to build a good roadmap with high probability
in an (e, «, #)-expansive free space. Unfortunately we cannot effectively compute it
in advance, since we do not know the values of ¢, a, and 3, except for very simple
spaces. One may be tempted to use a Monte Carlo technique to estimate these
values, but it seems that a reliable estimation would take at least as much time as
building a satisfactory roadmap. Nevertheless, Theorem 1 is important. First, it
tells us that the probability that a roadmap does not conform to the connectivity
of F decreases exponentially with the number of milestones. Second, the number
of milestones needed increases moderately when ¢, a, and § decrease.

Note also that a straight path between two configurations of F for one param-
eterization of C may not be a straight path for another parameterization of C. So,
for a given geometry of a robot and obstacles, visibility properties in F, hence the
values of €, a, and 3, depend on how C is parameterized, though the connectivity
of F does not depend on this parameterization. Choosing a parameterization of C
yielding the largest values of €, a, and # remains an open problem.

10

3. The New Planner

3.1. Algorithm

The key notion used in the analysis of Section 2.2 is the linking sequence of a
point. If the visibility region associated with the linking sequence of g;,;; intersects
with that of ggoq;, then a path is found. This suggests a very simple algorithm
for single-query path planning problems in expansive spaces. The basic idea 1s as
follows: given two configurations ¢;n;: and ¢g.q;, we sample at random from C, but
retain only those configurations that are path-connected to either q;n;t o ¢goar. We
thus build two trees rooted at ¢in;: and qgoar, respectively. Each node in the tree
represents a free configuration that is path-connected to the root. These two trees
keep growing until the visibility region of one tree intersects with that of the other.
The visibility region of a tree is defined as the union of the visibility regions of its
nodes.

Formally our algorithm iteratively executes two basic steps, ezpansion and con-

nection, until either a path is found or the maximum number of iterations is
reached. We assume that the configuration space is given implicitly by a func-
tion, clearance:C — R, that maps a configuration ¢ to the distance between the
robot placed at ¢ and the obstacles.?
Expansion. We simultaneously build two trees Tinit = (Vinit, Einit) and Tyoa =
(Vgoat, Egoar). Since these two operations are identical, we give a generic description
of the algorithm, which grows a tree T' = (V, E) starting from a given configuration.
We pick a node z in the tree with probability 1/w(z) where w(z) is the weight of
z. We then sample the neighborhood of z uniformly at random and retain those
configurations that are most likely to contribute to the visibility region. The details
are given below.

Algorithm ezpansion
1. Pick a node z from V with probability 1/w(z).
2. Sample K points from Ng(z) = {q € C | dist.(q,z) < d}, where dist. is some
distance metric of C. (K and d are parameters.)
for each configuration y that has been picked do
calculate w(y) and retain y with probability 1/w(y).
if y is retained, clearance(y) > 0 and link(z,y) returns YES

S Ot = W

then put y in V and place an edge between z and y.

In Step 5, link determines whether there is a straight-line path between two config-
urations. Its implementation will be discussed in Section 3.2.

We want to make sure that as the running time increases, the set of nodes stored
in Tipse and Tyoqr get distributed rather uniformly over the connected components
that contain g¢ni¢ and ggoar respectively. To achieve this, the definition of w(z) is
essential. We define w(z) to be the number of sampled nodes in the tree that lie
in Ng(z). Intuitively this implies that regions that contain few nodes will more
likely be sampled. If the space is expansive, then it may be argued that the set of

11

randomly sampled configurations indeed converges to the uniform distribution by
drawing an analogy to rapidly mixing random walks on expander graphs.'®
Connection. We now have two trees, Tinir and Tgoq. In the connection step, the
planner tries to establish a path between ¢;,;; and ggoa. The algorithm is given
below.

Algorithm connection

1. for every x € Viniy and y € Vyoq do

2. if disty (z,y) <l (I is a parameter.)
3. then link(z,y).

In Step 2, we try to limit the number of calls to link by calculating the distance
between z and y according to another metric disty (z,y) in C, because in most
spaces two distant configurations are unlikely to see each other.

If link returns YES for some z and y, then a path is found between g¢;,;; and
¢goal g0ing through z and y. The planner terminates successfully.

3.2. Implementation Details

We now discuss some implementation details of the planner for a rigid-body
robot translating and rotating in a 3-D environment.
Parameterizing the configuration space. We represent a configuration of a
rigid-body robot by a seven-tuple (qo,¢1, ..., qs) where (qo, q1, ¢2) specifies the po-
sition of the robot and (g, ¢4, ¢5, ¢s) 1s a unit quaternion specifying the orientation
of the robot with respect to a fixed reference frame. Compared to other represen-
tations such as Euler angles or transformation matrix, unit quaternion best reveals
the topology of the 3-D rotation space. Its advantages include low memory usage
and robustness against floating point errors. Interpolating between two quaternions
is also very easy.'®
Distance between two configurations. We have used two distance metrics in
our algorithm, dist. and dist,,. For dist., we can simply treat C as the Cartesian
space R” and use either the Ly or Lo metric so that we can sample new config-
urations very efficiently. We have to be more careful in defining dist,,, because it
must reflect the fact that two configurations that see each other are likely to be
close under this metric. We define disty, (p, ¢) to be the maximum distance traveled
by any point on the robot when it moves along a straight-line path between p and
q. Computing an upper bound of this metric is relatively fast.
Uni-directional versus bi-directional expansion. The algorithm described in
Section 3.1 grows two trees, Tjni; and Tyoq, simultaneously. However, if the robot
is highly constrained around g¢;n;; and totally free to move around ggoq:, as in the
case of assembly maintainability problems, it will be much faster to build T;,;; only
and try to connect each node in Vi to qgoai-
Choosing d. The choice of d is important. If d is set so large as to encompass the
entire space, then this new algorithm will suffer the same problem as the roadmap
planner. A lot of samples will fall into connected components of C that are irrelevant
to the current query. On the other hand, if d is too small, most samples will be in

12

regions close t0 ¢inst O ¢goar, making it difficult to find a path between ¢;n;: and
qgoal- Generally speaking, the more constrained the space is, the smaller d should
be.

Choosing K. The algorithm is not very sensitive to the choice of K. Usually a
small number such as 10 is sufficient.

Computing clearance. In our algorithm, the function clearance gives an implicit
representation of the configuration space, and is called many times during planning.
It can be implemented in various ways. At one extreme, clearance can compute
the exact Euclidean distance. Computing the exact distance between a robot and
obstacles in 3-D can be expensive. At the other extreme, it can simply return YES
or NO, in which case it becomes a collision checker. There are many approximations
possible in between the two extremes.

Collision checking is usually faster than distance computation. Implementing
clearance by a collision checker reduces the time spent for each call. On the other
hand, although distance computation takes longer to execute, it provides more
information, which can be used to reduce the number of calls to clearance. Our
experience seems to indicate that the second approach works better. We will discuss
this further in the next paragraph. There is considerable literature on collision
checking and distance computation, for example, Refs. [6,7,16].

Checking straight-line connection. The function link checks whether there is
a straight-line path between two configurations p and ¢q. Suppose that clearance
computes the distance between a robot and obstacles. Let p and ¢ have clearance
¢ and 5, respectively. We say that p and ¢ are adjacent if dist,, (p,q) < maz({,n).
If p and ¢ are adjacent, then the robot can move between them along a straight-
line path without colliding with obstacles. Given p and ¢, link recursively breaks
the straight-line segment between p and ¢ into shorter segments. It stops when
the endpoints of each segment are adjacent, or one of the endpoints is not in the
free space. In the first case, p and ¢ can see each other. In the second case, they
cannot. If we used collision checking instead of distance computation, we would
have to continue breaking the segment until a pre-specified resolution is reached.
In general, this results in more calls to clearance and only guarantees that p and ¢
can be connected by a straight-line path up the resolution specified.
Termination condition. Since the planner will not stop if no path exists, we
must explicitly set the maximum number of expansion and connection steps to be
executed. Alternatively we can choose to terminate the algorithm if the minimum
weight over all the nodes in the two trees exceeds a certain value W, because this
indicates that we have sufficiently sampled the configuration space, but are still
unable to find a path.

Path smoothing. Usually the path generated by this planner has too many zig-
zags, but it can be smoothed by a simple algorithm.'*

3.3. Ezxperimental Results

The planner is implemented in C++. Measurements reported in this section
are the average of five independent runs for each problem. Unless noted otherwise,

13

(d) (f) (g)

Fig. 6. “Robot” going through a hole. The size of the square obstacle is
128 x 128. The size of the holes is 30 x 30. (a) and (g) show the initial and
goal configuration of the irregularly-shaped robot respectively. (b)-(f) show
intermediate configurations along the path.

running times were measured on a Silicon Graphics Crimson workstation with one
100MHz MIPS R4000 processor and 256 MB of memory.

Figure 6 shows snapshots of a computed example. The workspace for the robot
is bounded by a box (not shown) and contains only one obstacle, which is a square
with two holes. The robot, which is an irregularly-shaped rigid-body bent at several
places, has to travel from under the obstacle to above it. Since the square extends
the full size of the bounding box of the workspace, the robot can achieve its goal
only by going through one of the holes. This problem is difficult, because of the
the irregular shape of the robot and the small size of holes. We can infer that
topologically, the free space F consists of two globes connected by two narrow
passages. We summarize, in Table 1, the results for the problem with three different
hole sizes. Column 1 shows the size of holes. In all three cases, the size of the
square obstacle is 128 x 128. Column 2 and 3 show the number of tree nodes and
distance computations used, respectively. Column 4 gives total running time®. As
the hole size gets smaller, the space becomes less expansive and the running time
increases accordingly. In this example, as the area of the hole decreases linearly,
the number of distance computations used increases at about the same rate. The
number of tree nodes needed and the execution time increase at a slightly slower
rate. In general, these performance measurements depend on the expansiveness of
the configuration space, which in turn depends on the hole size in the workspace.

bThese running times were obtained on a SGI Indigo 2 workstation with a 200MHz MIPS R4400
processor and 128MB of memory.

14

Table 1. Results for the problem shown in Figure 6 with different hole sizes.

hole size | no. nodes | no. dist. comp. | exe. time (sec)
25 x 30 1213 23677 84.8
30 x 30 990 14490 55.6
40 x 30 688 10453 23.9

However, the relationship between the latter two can be quite complicated, though
it is monotonic.

We have also tested this planner on assembly maintainability problems. The
input to the planner is CAD data describing an assembly of parts such as the
one shown in Figure 1. The environment usually consists of tens of thousands
of polygons and is very cluttered due to designers’ desire to pack everything into
limited space. The planner must determine whether there exists a path to remove
a specified part.

A typical problem that we have attempted has around 20,000 triangles and the
planner can solve the problem in about 4 to 10 minutes. Two examples® are par-
ticularly interesting. In one case, we must take out the oil pan under the engine
without colliding with the long protrusion underneath the engine and other parts
around the engine. In the other case, the electric harness behind the dashboard
must be removed. The harness is a thin and long pipe-like object having three
branches. A slight change from its installed configuration may result in one or more
of its branches colliding with parts nearby. Due to the special geometric arrange-
ment of these two assemblies, the parts to be removed must execute complicated
maneuvers in order to clear all the obstacles. The planner solved the first problem
in 386 seconds and the second problem in 405 seconds. The number of distance
computations used are 4257 and 7822, respectively.

The largest example we have run contains 200,000 triangles. The objective is to
remove the casing of the transmission mechanism, clearing the dashboard and shift
stick. The planner found a path in about 35 minutes.

Among the problems that we have worked on, there is one where the planner
failed to find a path after running for more than eight hours. We were unable to
determine whether a path actually exists or not.

3.4. The Notion of Expansive Components

If there are very narrow passages in the configuration space, the values of «, 3
and e will be extremely small. Our analysis suggests that the running time of the
planner may then be very long. However, for some problems, the user can easily
derive the location of narrow passages from the geometry of the robot and obsta-
cles. We can take advantage of this intuition and ask the user to input intermediate
points in addition to ¢;ni; and qgoq. That is, the user specifies ¢inst, 41, - - -, In ¢goal-
If the planner is successful in finding a path between each pair of consecutive con-
figurations, then of course a path is established between ¢;n;: and qgoa. During our

¢Due to the proprietary nature of these data, we cannot show images here.

experiments, this simple extension allowed our planner to solve some problems on
which the original algorithm failed and resulted in significant reduction of execution
time on other problems. Again, the notion of expansive spaces helps to explain the

Fig. 7. Expansive decomposition. By inserting two intermediating points g1

and g2, we implicitly decompose the free space into three components, each of
which is expansive with large ¢, o, and S.

usefulness of this extension. Take a subset K C F. The three parameters that
measure the expansiveness of K is defined relative to K. For example, ¢ is defined
such that for every point p € K, the volume of the visibility set of pin K is at least ¢
times the volume of K. A free space F that is expansive with very small values of ¢,
a, and [can possibly be decomposed into a small collection of overlapping subsets
Ky, Ky, ..., K, such that the values of €, a, and § are large for all K;,i=0,...,m.
We then refer to K;,2 = 0,1,...,m as expansive components of F. By specifying
appropriate intermediate points, the user implicitly decomposes F into expansive
components. This decomposition is illustrated in Figure 7. Our analysis in Sec-
tion 2.2 indicates that the running time for planning a series of sub-paths, each
connecting two successive configurations in Kj;, should be shorter because none of
Ky, Ky, ..., K, contains a narrow passage.

This extension of the basic algorithm is different from cell decomposition al-
gorithms in the literature. No explicit decomposition is computed here. It also
potentially takes far fewer components to decompose the configuration space into
expansive cells than into convex cells required by most cell decomposition algo-
rithms. However, we do not know how to compute the intermediate configurations
automatically. At this stage, we must rely on the intuition of the user to input
them.

4. Conclusion

We have introduced the notion of expansive configuration spaces. In such a
space, building a roadmap via random sampling can effectively extract the connec-
tivity information of the configuration space. We have given an estimate on the
number of milestones needed, as a function of the parameters ¢, o, and 3 that
measure the expansiveness of the configuration space.

We have also presented a new randomized planner for robots with many dofs.
This planner grows two trees rooted at the initial and goal configuration, respec-
tively, until the visibility region associated with one tree intersects with that of the
other. It is well-suited for single-query path planning problems. We have imple-
mented this planner for a six-dof rigid-body robot and successfully experimented

16

with it on complex problems, including real-life examples from the automotive in-
dustry with environments having up to 200, 000 triangles. The expansive property
of the space has helped to explain the success of this planner.

One direction of future research is to accelerate the planner by automatically
generating intermediate configurations to decompose the free space into expansive
components, as suggested in Section 3.4. Tt would not only relieve the user of
the burden of specifying intermediate points, but also help in situations where
narrow passages are not obvious to the user. Another approach would be to use
geometric transformations to increase the expansiveness of a free space, for example,
by widening narrow passages. Once a path has been efficiently computed in the
transformed space, an inverse transformation could be used to map the path into
the original free space.

We also plan to integrate the new planner with the roadmap planner in Ref. [11]
for multiple-query path planning problems. Currently the roadmap planner samples
the configuration uniformly at random from the configuration space in order to
generate milestones. Typically most of the configurations picked (more than 99.5%)
are in collision with obstacles and discarded.® It would be highly desirable to sample
collision-free configurations more efficiently. One idea would be to sample uniformly
a very small number of configurations from C and use the new planner to expand
from these configurations in order to generate additional milestones.

Acknowledgment

This work has been supported by ARO MURI grant DAAHO04-96-1-007. Rajeev
Motwani is also supported by an Alfred P. Sloan Research Fellowship, an IBM Fac-
ulty Partnership Award, and NSF Young Investigator Award CCR-9357849, with
matching funds from IBM |, Mitsubishi, Schlumberger Foundation, Shell Founda-
tion, and Xerox Corporation. Part of the experimental work reported in Section 3.3
was done in collaboration with GM R&D Center in Warren, MI. We also thank GM
R&D Center for providing us the data shown in Figure 1. We thank Lydia Kavraki
for many discussions on this work, Li Zhang for pointing out an error in the original
proof of Lemma 1, and Steve LaValle for reading early drafts of this paper.

References

1. N. Amato and Y. Wu. A randomized roadmap method for path and manipulation
planning. In Proc. IFEFE Int. Conf. on Robotics and Automation, pages 113-120,
1996.

2. J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and P. Raghavan.
A random sampling scheme for path planning. In G. Giralt and G. Hirzinger, editors,
Proc. Int. Symp. on Robotics Research, pages 249-264, 1996.

3. J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed represen-
tation approach. International Journal of Robotics Research, 10(6):628-649, 1991.

4. D. Challou and M. Gini. Parallel robot motion planning. In Proc. IEEE Int. Conf.
on Robotics and Automation, pages 46-51, 1993.

5. H. Chang and T.-Y. Li. Assembly maintainability study with motion planning. In

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

Proc. IEEE Int. Conf. on Robotics and Automation, pages 1012-1019, 1995.

. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing

distance between objects in three-dimensional space. IEFE Trans. on Robotics and
Automation, 4(2), 1988.

S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchical structure for
rapid interference detection. In Computer Grajphics (SIGGRAPH 96 Proceedings),
pages 171-180, 1996.

T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of freedom
- random reflections at c-space obstacles. In Proc. ITEEFE Int. Conf. on Robotics
and Automation, pages 3318-3323, 1994.

L. Kavraki and J.-C. Latombe. Randomized preprocessing of configurations space
for fast path planning. In Proc. [EFE Int. Conf. on Robotics and Automation,
pages 2138-2139, 1994.

L. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Randomized query
processing in robot path planning. In ACM Symp. on Theory of Computing, pages
353-362, 1995.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration space. IFEE Trans. on Robotics
and Automation, 12(4):566-580, 1996.

L. E. Kavraki. Random Networks in Configuration space for fast path planning.
PhD thesis, Stanford Univerity, 1995.

F. Lamiraux and J. P. Laumond. On the expected complexity of random path
planning. In Proc. IEFE Int. Conf. on Robotics and Automation, pages 3014-3019,
1996.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

S. Quinlan. Efficient distance computation between non-convex objects. In Proc.
IEFEE Int. Conf. on Robotics and Automation, pages 3324-3329, 1994.

J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. IEEE
Symp. on Foundations of Computer Science, pages 421-427, 1979.

K. Shoemake. Animating rotation with quaternion curves. In Computer Graphics
(SIGGRAPH ’85 Proceedings), volume 19, pages 245-254, 1985.

18

