IN Proc. IEEE Int. Conf. on Robotics & Automation, 2006

A Greedy Strategy for Tracking a Locally Predictable
Target among Obstacles

Tirthankar Bandyopadhyay Yuanping Li, Marcelo H. Ang Ji, and David Hsti

*Department of Mechanical Engineering fDepartment of Computer Science
National University of Singapore National University of Singapore
Singapore, 119260, Singapore Singapore, 117543, Singapore

Abstract— Target tracking among obstacles is an interesting

class of motion planning problems that combine the usual motion . . .
constraints with robot sensors’ visibility constraints. In this We show that by leveraging these two considerations, our new

paper, we introduce the notion of vantage timeand use it to strategy achieves significant improvement in performance over
formulate a risk function that evaluates the robot's advantage the earlier strategy presented in [5].
in maintaining the visibility constraint against the target. Local In the following, after a brief review of related work

minimization of the risk function leads to a greedy tracking : :
strategy. We also use simple velocity prediction on the target to (Section 1), we state the target tracking problem formally

further improve tracking performance. We compared our new .(SeCtion IIif) and present qu solution (Section IV). We'hav'e
strategy with earlier work in extensive simulation experiments implemented the new tracking strategy and compared it with

and obtained much improved results. an existing one in simulated environments. The simulation
results are shown in Section V. Finally, we conclude with
. INTRODUCTION some remarks on future research directions (Section VI).

The target tracking problem considers motion strategies for
an autonomous mobile robot to track a moving target among

obstacles,i.e., to keep the target within the robot sensor’s Tracking Strategies differ greaﬂy' depending on whether the
visibility region. Target tracking has many applications. I@nvironment is known in advance. If both the environment and
home care settings, a tracking robot can follow elderly peopige target trajectory are completely known, optimal tracking
around and alert Caregivers of emergenCieS. In Security %tegies can be Computed by dynamic programming [8] or by
surveillance systems, tracking strategies enable mobile SengfETing together certain canonical curves [3], though usually at
to monitor moving targets in cluttered environments. a high computational cost. If only the environment is known,
Target tracking is an especially interesting class of motiagshe can preprocess the environment by decomposing it into
planning problems. Just as in classic motion planning [7], wells separated by critical curves. The decomposition helps to
must considemotion constraintsesulting from both obstacles identify the best robot action as well as to decide the feasibility
in the environment and the robot's mechanical limitations. Isf tracking [11]. Often, neither the environment nor the target
particular, the robot must not collide with obstacles. Targefajectory is known in advance. One approach in this case is
tracking has the additionafsibility constraintsdue to sensor to move the robot so as to minimize an objective function
limitations, e.g, obstacles blocking the view of the robot'shat depends on the shortest distance for the target to escape
camera. The robot must move in such a way that the targe¥m the visibility region of the robot's sensor, abbreviated
remains visible at all times. Both motion constraints angs SDE [5], [9], [12]. Our work belongs to this category. An
visibility constraints play important roles in target tracking. important issue here is to balance the immediate risk against
Inspired by earlier work [5], we propose a greedy strategyie future risk of losing the target.
for target tracking. It uses the robot's sensor to acquire localThe earlier work heavily replies on SDE in formulating
information on the target and the environment, and use thife risk function. In contrast, the concept of vantage time
information to compute the robot’s motion at each step. Thuatroduced here provides a more systematic way to integrate
it does not needch priori knowledge of the environment orvarious factors contributing to the escape risk and derive a risk
localization with respect to (w.rt) a global map. The kejunction offering better tracking performance. The use of local
element of the greedy strategy is a local functipnthat velocity estimation to predict target motion further improves
gives a combined estimate of the immediate risk of losingle performance of our tracking strategy.
the target and the future risk. Our definition pfis based on  Target tracking has also been studied jointly with other ob-
two important considerations: jectives, such as stealth [1], which requires the tracking robot
« Vantage time, which is a combined estimate of the robotte remain “invisible” to the target, and robot localization [4].
ability to maneuver against the target in both the current A problem that is related, but complementary to that of
and future time. target tracking is covert path planning [2], [10], which tries
« The target's instantaneous velocity, which can be estb minimize the robot’s exposure to observers with known or
mated locally, indicates the target’s future movement. partially known locations.
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Fig. 1. A robot tracking a target in a planar environmem A robot
mounted with a laser range finder tracks another robot. Courtesy of H,
Gonzlez-Bdios. b) The visibility set (shaded) for the robot locatedaat

IF'Ig. 2. The robot's vantage zone (shaded) w.r.t. a gap gdgethe robot’'s
visibility set, region | lies above the dashed line, and region Il lies below.

Ill. PROBLEM FORMULATION escape by running straight ahead with maximum velocity, and

The goal of target tracking is to keep the target within thiée tracking problem is uninteresting. We further assume that
visibility region of the robot's sensor at all times. The roboat any time, the robot has an estimate of the target velocity.
and the target are assumed to operate in a planar environmei/e now state the problem formally:
populated with obstacles (Fig. 1) For simplicity, both are Problem 1: A tracking strategy computes a sequence of
modeled as points in the plane. The extension to the us@aglions, namely, the velocitiegt),t = 0,1, ..., for the robot
cylindrical robots is straightforward. We assume that the rob®® that at any time, the target position lies insidg.
has no prior knowledge of the environment, but is equipped
visual sensorsg(g, cameras and laser range-finders) to acquire
information on the local environment and identify the target. Our main idea is to define a functign that estimates the

We use the standard straight-line visibility model for th&Sk for the target to escape fromi. The visibility setV
robot's sensor. Letr denote the subset of the plane nof@n be approximated by a generalized polygon with linear
occupied by obstacles. The targetvisible to the robot if and circular boundary edges. The boundary of the polygon
the line of sight between them is free of obstacles, and tReNSists ofgap edgesand obstacle edgegig. 1b). Obstacle
distance between them is smaller thBxy,.., the maximum edges come from parts of the obstacle boundaries that block
sensor range. Theisibility setV(z) of the robot at pointz the robot's line of sight. Gap edges lie inside They are

consists of all the points at which the target is visible (Fig): 1 further divided into two typesocclusion edgethat result from
occlusion by the obstacles amdnge edgeshat result from

V(z) = {2’ € F|za’ C F andd(x,2") < Dpax}, maximum or minimum sensor range limits. Both obstacle and
occlusion edges are linear. Range edges are circular. To escape
from V, the target must exit one of the gap edges. Below, we

%tst define the escape risk w.r.t. a single gap edge and then

: " : ) ‘
we can impose the additional constraifitr, 2') > Diin. In ombine them to form the overall risk functian The robot

the foIIOW|.n.g, the visibility set is always taken w.r.t. the current%nen chooses its actione., the velocityv, to minimize .
robot position, and so we omit the argument

The robot's motion is modeled with a simple discrete-tima. Escape Risk with respect to a Single Gap Edge

transition equation. Let(t) denote the position of the robot at | ot s first consider the more interesting type of gap edges,
timet. If it choos_es a yelogityj(t) at ti_me.t, its new position ,ccjusion edges. Suppose thais an occlusion edge. Let
a(t + 1) after a fixed time intervalit is given by denote the visibility line containing, and letO denote the
a(t+1) = z(t) + v(t)At. obgtacle ve_rtex abutting (Eig. 2). We callO the occlusion
point The risky, of escaping througly depends on several
Here, we implicitly assume that sensing occurs evitytime. quantities. Clearlyy, depends om, the shortest distance from
This discrete model is effective as long As$ remains small. the target tog. The smaller the: is, the easier it is to escape
As we will see, our tracking strategy is very efficient. Basethroughg. In a subtle wayy,, also depends on the robot’s and
on the experience of previous work [5], we expect it to ruthe target's relative positions w.r@: specifically,r, which is
at the rate of 10 Hz, sufficient for keepinlyt small in many the distance from the robot 19, ands’, the projected distance
common tasks. The robot has velocity bourid but has no from the target taO along/. If r is much smaller than’, the
other kinematic or dynamic constraints. So, in one time stepr@bot can move the gap edgeaway from the target much
can reach anywhere inside a circle with centér) and radius faster by rotating aroundO.
V At, unless it is obstructed by obstacles. To combinee, r, andr’ into a single risk estimate, we
The target's motion is modeled similarly, but has velocitintroduce the notion ofantage zoneThe robot’s vantage zone
boundV’. Typically, V > V’. Otherwise, the target can easilyD(g) w.r.t. a gap edge is the set of points that are closer to

IV. THE GREEDY TRACKING STRATEGY

whered(z, z’) denotes the distance betweerandz’. If the



g than the robot is (Fig. 2). Again, we omit the argument by approximatingt,, using only information available at the
from D(g) when it is clear from the context which gap edge isurrent time step:
involved. GeometricallyD is a band adjacent tg with width ro — €
r. It is so named, because if the target is outsitlethen the Y9 = L ¥ vy (1l ro) — v ®)
robot can always reach be_fore the target and prevent i.t fr.omwhererg is the value of’ at the current time step. Now, for
escaping througl by running towards), the closest point in single gap edge, target tracking reduces to minimizing the
g from the robot. Thus, the robot should keep the target ou"%Isk function i, (v,. v,). We do this by differentiatings, and
of D, and a good estimate of the target's escape risk is tha i .tcpg o tta dient: y @y
amount of timef,, that the targets needs to reach the bounda(r:)c/)mpu g 1Is hegated gradient.
of D. We callt,, the vantage timelf the target is insideD, Ve, = Pg (7"65 + f) ' (6)
tp is positive by convention and indicates the amount of time Vet \T0
that the robot needs to push the target outoff the target | (6), ¢ and & are unit vectors in the tangential and radial
is outsideD, ¢, is negative and indicates the amount of timgjrections, respectively, andyg = v, + v (/7o) — v’ is the
that the robot can keep the target away frém effective velocity in the direction along the shortest path from
The robot’s velocityv can be decomposed into a radiaje target tog. In this casep. is perpendicular tg.
componenty, towards O and a tangential component The robot’s action w.r.t. g is simply —V,. Eq. (6) shows
perpendicular tov, (Fig.. 2). The tangentia{ COomponent  that the direction of is (1/ 12 4 12)(rhE+rof). It depends
causes the robot to swing out and immediately increasesqny onr, andr}, which, intuitively, measure the robot's and
thus reducing the current escape risk. The radial compongii target's abilities to swing the visibility liné against each
vr causes the robot to approach. It does not affecte qiher When, is smaller than”,, swinging is effective. Thus,
immediately. Instead, it decreasesso that future tangential i tangential component gets higher weight. Wheis larger
motion will increasee much faster. In this sense, reduces inan vl the opposite holds. The magnitude ofacts as a
future escape risk. Since the robot’s velocity is upper bou”d‘Weight when there are multiple gap edges. It depends on all
we must choose, andv; carefully to balance the current andpee quantitiesy, +/, ande. In particular, where is small
the future .risk. For this, let us _examine the effectsvpfand 1t t0 a gap edge, ¢, becomes large. Thus, V¢, becomes
vy on'D. Fig. 2 shows that, shrinks the width- of D at the 516 according to (6), and the corresponding action gets higher
rate weight (see next subsection).
dr/dt = v, @ b) Case II: The closest point into the target is an endpoint
and thatv, rotatesD aboutO with angular velocity of g. This case corresponds to region Il marked in Fig. 2, and
) the closest point iy to the target is the occlusion poidl.
Here, the tangential componemnt has no effect ori,. Thus,
Both components can be used to keep the target ouP of o — €o
by reducingt,, but their effectiveness depends on the target Pg = o (7)
position w.r.t. tog. There are two cases. _ . .
a) Case I: The closest point i to the target is interior WNich can be obtained from (5) by setting = 0. The

to g. This case corresponds to region | marked in Fig. 2. THRoresponding gradient af, is then

w=uwg/r.

vantage timel,, depends o — e, the distance between the —Vp, = Pg 7, (8)

target and the boundary @. The rate of change of — ¢ is Veft

given by wherewv.g is still the effective velocity in the direction along
d(r —e)/dt = dr/dt — de/dt. (3) the shortest path from the targetgabut this time, it is directed

towardsO and is equal ta, — v..
Together, Egs. (6) and (8) reveal that the robot's action is
dir—e)/dt = v, — (v, —1'w) continuous over the entire domain, provided that so is the
= o+ (' )r)v — L, (4) target's action. This is an important advantage in practice.
Let us now turn to range edges. For lack of space, the
whereu;, is the effective escape velocitye., the target velocity detailed derivation is omitted. We redefii as the closest
v’ projected in the direction perpendiculargoTo computét,,  point in a range edge to the target position. Sin@nds’ are
exactly, we must integrate (4) and solve the integral equatiafiefined w.r.t. toO, their definitions change accordingly, but
the definition ofe remains the same as before. With these, the

tp
prg / _ / B . . .
"o =€ = /O (o + (r'/r)oy — ve) dt, risk function and the resulting robot action are the same as

where rq and ¢, denote the values of and e at current those in (7) and (8).

time step. This is not possible, as we do not know the futuge Escape Risk with respect to All Gap Edges
target actions. Instead, we estimate the target escapepgisk

Substituting (1) and (2) into (3), we have

A visibility set may contain many gap edges. Based on the

IRecall the assumption that the robot's velocity bound is greater than tﬁgtrg?t's motion pa_ltterns, we can identify th_e importar!t_ ones
of the target. and improve tracking performance. Let theading probability
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Fig. 3. A scenario in which swinging provides little advantage. In this and
all following examples, the shaded region indicates the visibility set w.r.t. the
current robot position. A small blue circle marks the robot position. A filled
black triangle mark the target position. The associated arrows indicate the
robot’s and target’s velocity directions. When shown, the robot trajectory is

-
marked by blue circles. A circle filled with cyan indicates that the target it gé"-' %
not visible at that time step. The target trajectory is marked by black crosses. § H
s
7

pg be the probability of the target headed to a gap egdgehe ™ /ff
overall risk ¢ is then computed as the expected risk over all .

the gap edges:
0= Dpypy- ©)
g

Recall thaty, is an estimate of the vantage tinig, and thus
© is the expected vantage time over all the gap edges. To f
the robot action, we solve a simple optimization problem:

ig. 4. A scenario in which too much swinging increases future risk.

some time for maneuvering. More importantly, the robot is
slightly closer to the occlusion point than the target. A small
%v(siing is sufficient to keep the target visible. Too much swing

L N Co .

in the tangential direction reduces the motion in the radial
direction and increases the future escape risk. This eventually

min (v, v;)  subject to v, + v,2 = V2. (10) causes the old risk function to lose the target. The new risk
Uyt 7 handles this situation much better. It always keeps the target
We solve (10) by computing the negated gradientof visible until it “eliminates” the gap edge in the end (Fig. 4).
These two scenarios show conclusively that along wind
_ = — = — 11 . .
Ve v(zg:pg%) zg:pgv%’ (11) e, the ratio(r’ /r), which measures the robot’s and the target’s

relative positions w.r.t. to the occlusion, plays an important

which is then scaled to magnitude to give th? actionv for role in risk estimation. This is one major reason why the new
the robot. Eq. 11 shows that the overall action for the robﬂgk function performs better

is a linear combination of the actions w.r.t. the individual gap
edges, weighted by the heading probabilities. C. Heading Probability Estimation
The benefits of the new risk function is best illustrated in
comparison with a related risk function introduced in earliq/re
work [5]. For occlusion edges, the old risk function is y
monotonic function of the ratio/e and completely ignores M
r’. To simplify the presentation, we assume that the robot ap

the target have the same velocity bounds in all the fonow'na%sumed to follow a Gaussian distributigt). The variance

exgmpl_eds. th 0 in Fig. 3. The t tis ol ¢ tof the Gaussian indicates our confidence in estimating the
onsider the scenario in ™g. 5. The target s closer to ti‘grget behavior. Other distributions, even non-parametric ones,
gap edge than the robot, and is moving towards the gap ed

. ; ) &5 be used instead of the Gaussian, depending on the method
The robot will lose the target unless it runs straight towards tla? velocity estimation. Our method for computing heading
occlusion point. Since’ is small, swinging in the tangential I

directi ides litle advant to the robot. Si th Péobabilities is general and works with any distribution.
irection provides 1 /e_ advantage to the robot. since e oldy 4 hatra| to assume that the target will exit a gap
risk function ignores”, it fails to recognize this and generate.T,f

o . Tf it is headed tog. In other words, suppose thay is the
roughly equal amount of motion in the tangential and the radlpa{y originating from the current target position and having
directions. The new risk function puts almost all the motioHi

) N : i rection 0. The target will exitg if Ay intersectsg. Thus,
in the radial direction towards the occlusion point. 9 J 0 g

. . . _ can be estimated from the target’s estimated velocity
Now consider another scenario (Fig. 4). The target is Veﬁ?stribution and the angle subtended day
close the gap edge, and thads small. As a result, the old
risk function becomes very large and generates almost a full P(g) = / f(6)de,
swing for the robot in order to reduce the current escape risk. CH
However, the situation is in fact not that critical at all. Thevhered lies in the angular rang®, if and only if A intersects
target is still a small distance away from the gap edge, leavipg(Fig. 5). This seems reasonable, unless we consider a gap

To estimate heading probabilities, we need the current target
locity v’. At any time, we maintain an estimate of by
oring a short history of the target trajectory and extrapolating.
ny other methods for velocity estimation are possible. For
plicity, the uncertainty in estimating the directiémof v’ is
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Fig. 6. Using the estimated target velocity information, the robot can focus
on the important gap edges.

Fig. 5. Estimating heading probabilities.

edge subtending zero angle,g, the one marked ag, in
Fig. 5a. It is a distinct possibility that the target may exit old strategy new strategy
go- We must relax our initial assumption and incorporate thi o
situation. To do this, we expand every gap edge by a pr
defined distancé and call the resulting region thgap zone

G(9) ={z eV |d(z,g) <},

whered(z, g) denotes the shortest distance franto g. Now i
the heading probability off depends on the angle subtended

by its gap zone instead of itself. In general, adjacent gap zon

may overlap, and the probability in overlapping region mus

be split evenly among all gap zones involved. Taking all these
into account, we have the following formula for computing Fig. 7. An example in which the target makes abrupt turns.
the heading probability of:

Ry

x
409
""n\'.wngnr.mnt’-\%nﬁ‘)(5 Tl

prediction is reasonable for most of the time. Despite the
pg=P(G)= [ [f(0)/h(8)do, (12)  wrong moves, our tracking strategy follows the target to the
Oc end and performs better than the old strategy, which loses the
target midway. The advantage of velocity prediction is further
confirmed by the experiments presented in Section V.

whereO¢ is the angular range subtended by the gap aGne
of g and k() is the number of gap zones th&j§ intersects.
Note thath(6) > 1.

The threshold for determining the gap zone basically say®. Emergency Actions

that the target may exif whenever it comes within a distance  Qur tracking strategy invokes two emergency actions, when
¢ of g. It can be chosen according to our understanding ffe target is dangerously close to escape. We describe below
target behaviors. In our experiments, we chosto be the the specific robot actions when the target is in region | of a
distance that the target can reach with maximum V6|OCity. Tr@%p edgeg The actions for the other cases are Simp|er_ We
is an aggressive choice, indicating high confidence in the targghit the details for lack of space.
motion model. First, we estimate the escape timg. based ore and the
Good velocity prediction helps the robot to focus on the intyrrent velocities of the robot and the targetzdf. is below
portant gap edges and improve tracking performance. Consigdethreshold, then the robot must reduce the immediate risk
the example in Fig. 6. It compares our new tracking strategyaximally by increasing its tangential motion w.gt. It does
with the one in [5], [9], which does not use velocity predictiongs by settingy = V.
Each image in Flg 6 shows several small line segments rOOteCNext, if the target indeed escapes from an occlusion @dge
at the current robot position. Each segment corresponds to {he best that the robot can hope for is to eliminaté naive
heading probability of a gap edge. The length of the segme@éy is to run directly towards the corresponding occlusion
is proportional to the heading probability, and its orientatiopoint by settingv = V#. The fastest way of eliminating
points to the gap edge associated with the heading probabilyrequires knowledge of an obstacle edge lying outside the
For the old strategy, all the gap edges are weighted with eqeghot's visibility set. In this case, the optimal robot actions is
probabilities. For the new strategy, the gap edge to which theswing out along a suitably constructed circular path [6].
target is headed has a distinctively large heading probability,
indicated by a long segment. V. EXPERIMENTS IN SIMULATION
When the target makes abrupt turns, the velocity predictionWe implemented our new tracking strategy in C++ and
is usually inaccurate. Our tracking strategy may cause tbhempared it with earlier work [5] in simulation. To have a fair
robot to make the wrong move. Consider the example in Fig.domparison, we provided the old strategy the same emergency
The target makes several abrupt turns. However, the velodigtions that our new strategy uses, though they are not in the



TABLE |

PERFORMANCE COMPARISON OF THE OLD AND THE NEW TRACKING STRATEGIES

Env. Total No. Old Strategy New Strategy

Target Steps  No. Steps Visible (%) No. Times Lost (Steps Lost) No. Steps Visible (%) No. Times Lost (Steps Lost)
Maze 82 35 (43%) 2 (11,12) 74 (90%) 1(8)
City Blocks 156 78 (49%) 6 (14, 15, 16, 15, 8, 10) 131 (84%) 2 (13, 12)

original work. Some of the comparison results have already

old strategy new strategy

been presented in Figs. 3, 4, 6, and 7. Here, we show two
additional examples with more complex geometry (Fig. 8):

a) Maze.This environment brings together various geomet-
ric features, such as long corridors, open spaces, and shar
turns. The target takes a long and winding path. Even with
emergency actions, the old strategy loses the target midway
The new strategy follows the target to the end. It loses the
target once, but recovers it quickly through emergency actions.

b) City blocks. This example mimics city blocks in an

urban environment. The old strategy has lots of difficulty in
this environment. It loses the target many times for extended

periods (see Table I) and fails to follow the target to the end.
The new strategy has much improved performance.

Detailed performance statistics on these two environments
are shown in Table I. Column 2 of the table lists the length
of the target trajectory in time steps. For the old strategy,
column 3 lists the number of steps that the robot has the
target visible as well as the number as a percentage of the
total number of target steps. Column 4 lists the number of
times that the target is losind recovered with emergency

actions, as well as the durations for which the target is lost.
Columns 5-6 give the same information for our new strategy.
The comparison in these two environments shows that the new
strategy (i) less likely loses the target, (ii) has the target visible
for much longer total duration, and (iii) always follows the [2]
target the end. All these indicate better performance.

VI. CONCLUSION 3]

This paper presents a practical algorithm for target tracking,
an interesting class of motion planning problems that combirﬂé
the usual motion constraints with robot sensors’ visibility con-
straints. We introduced the notion of vantage time, which prof]
vides a systematic way to integrate various factors contributing
to the escape risk. It is used to formulate a risk function ang
construct a greedy tracking strategy. We compared our new
strategy with earlier work in extensive simulation experiment%]
and obtained much improved results. We believe that the
improvements result from a better-formulated risk functiori8]
that takes into account both the relative positions of the robot
and the target and the velocity of the target. [9]

We plan to implement our algorithm and test it on real
robots. For this, we will improve the robot motion modeI[10
incorporating nonholonomic constraints for wheeled robots 'if
necessary. We will also improve the robot sensor model by im-
posing limited viewing angles. Another interesting extensidht]
is to use this approach for multi-robot tracking [12].
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