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Abstract—Free-space dilation is an effective approach for
narrow passage sampling, a well-recognized difficulty in prob-
abilistic roadmap (PRM) planning. Key to this approach are
methods for dilating the free space and for determining the
amount of dilation needed. This paper presents a new method
of dilation by shrinking the geometric models of robots and
obstacles. Compared with existing work, the new method is
more efficient in both running time and memory usage. It
is also integrated with collision checking, a key operation in
PRM planning. The efficiency of the dilation method enables a
new PRM planner which quickly constructs a series of dilated
free spaces and automatically determine the amount of dilation
needed. Experiments show that both the dilation method and
the planner work well in complex geometric environments. In
particular, the planner reliably solved the most difficult version
of the alpha puzzle, a benchmark test for PRM planners.

Fig. 1. The geometric model of a mechanical part from the ABB IRB 2400
robot before shrinking (wireframe) and after shrinking (shaded in yellow).

[. INTRODUCTION I
o obUCTIO o dilation may change the free space so much that it is difficult
Probabilistic roadmap (PRM) planning is a successful ags geform the solution path i’ into one inF.
proach for motion planning of robots with many degrees of

freedom (DOFs) in complex geometric environments (8ag, shrinking the geometric models of robots or obstacles (see

[11, [3], [8]. [10]'. [13], [15], [17], [24], [25]). The Enam |c_iea Of. Fig. 1 for an example). This method guarantees that a shrunken
PRM planning is to sample at random a robot’s configuration /s ) - L
model M" is always contained inside the original modélso

spaceC \.Nl.th a sungble probability dls.mbl.n.lon and capturg th?hat]—" is a dilation of 7, i.e., F C F'. It has several important
connectivity of C in an extremely simplified representatlon,advantages when used to dilafein PRM planning:

called a probabilistic roadmap. A roadmap is a graph whose '

nodes are the collision-free configurations sampled flom , Thjs method is efficient in both running time and memory
and whose edges are simple collision-free paths between the ,sage. Compared with earlier dilation methods based on
nodes. This way, PRM planners avoid the prohibitive cost of  megial axes [19], the new method is more efficient and

In this paper, we present a new method of dilation by

constructing a complete representationCof much simpler to implement.
Ithas been argued that the success of PRM planners depends This method can shrinki/ in a local region without
critically on the assumption that verifies favorable visibility affecting others and thus avoid unnecessarily changing

properties [12]. Indeed, many experiments have shown that e free space during dilation.

PRM planners behave poorly, whéhcontains regions with | This method creates a data structure fully integrated
poor visibility, in particular, narrow passages. Narrow passages ith that used for collision checking, a key operation
are small regions whose removal changes the connectivity of i, pPRM planning. There is no need to re-compute the
C. Due to their small volumes, the probability of sampling at bounding volume hierarchy for collision checking when

random in narrow passages is low. This makes it difficult for 5 new shrunken model is generated. This saves both
PRM planners to capture the connectivity ®fvell. computation time and memory space.

To address this difficulty, one approach is to dilate the free
spaceF [11], [19], defined as the collision-free subset of Taking advantage of the efficiency of this dilation method,
C. The dilated free spac&’ has better visibility properties. our new PRM planner constructs a series of dilated free spaces,
In particular, dilation widens narrow passages and makes thés), for 0 < s < 1, where 7(0) = F is the original
planning problem easier. A solution path foundA# is then free space andF(1) is the maximally dilated free space.
deformed into one inF. The key element of this approachTo determine the amount of dilation, the planner performs a
is an effective dilation method. Another important element isinary search on the dilation parameteand constructsF(s)
to determine the amount of dilation needed. Too little dilatioan the fly. In our experiments, the planner reliably solved the
may fail to improve the visibility properties of the free spacenost difficult version of the alpha puzzle, a benchmark test
sufficiently for a solution path to be easily found; too mucfor PRM planners.



Algorithm 1 Shrink (M, s)
1: for each surface vertex € M do
2. stafp)«—{oceT|pco}.
3 vy Jstarp).
Fig. 2. The dashed lines indicate the medial axes of the shaded objects. & Compute a point,, € kr(v,) so thatp can move freely
small perturbation on the object changes its medial axis dramatically. within DTp-

5 p(s)p+ (s-minfe, [|p7,|[}) HZEH

penetration of a path into the obstacles and tries to modify
the path iteratively to reduce the amount of shrinking needed,
until a collision-free path is obtained. However, this planner
has a very limited shrinking method that applies only to simple

Fig. 3.  Moving a vertexp arbitrarily may fail the requirement/’ C M. geometric objects such as rectangular boxes.
The figure shows a cross section of a polyhedron.

1. THE SHRINKING ALGORITHM
Il. PREVIOUS WORK o ) )
Our shrinking algorithm takes as input a polyhedral model

The difficulty of narrow passage sampling and its imy . It first computes a tetrahedralizati@hof M, i.e., partitions

portance to PRM planning have long been recognized [1 e interior of M into a set of tetrahedra. Although some

[11]. We can characterize narrow passages formally USiBglyhedra cannot be tetrahedralizedy, the Scldnhardt poly-

visibility properties inC [13]. Thus, many techniques haVehedron, tetrahedralization is always possible if we add a small

been proposed to increase sampling density in regions O.fnumber of additional vertices tdf [4], [6]. To shrink M, we

expected to have poor visibility (see [5] for a comprehensi ove each surface vertex 8f towards the interior of\/ and

survey). One approach is to sample more densely near fure that the shrunken modet is always contained inside
boundary of F [1], [3], because points in narrow passage ,i.e, M’ C M. The amount of shrinking is controlled by

which hav<_a poor visibility, lie close to the boundary. AnOtheéetting a parameter, which determines the maximum distance

) L fifat each vertex can move. This implies that for every point on
with poor visibility [24], [8], [10], [16], [25], because narrow 4% . there exists a point oA/’ such that the distance between

passages in the workspace often suggest the presence an he fwo points are less thanFormally, the Hausdorff distance
location of narrow passages in the configuration space. Inst%% ’

) . . S ) een the surfaces 8f and M’ is at mosts. The shrinking
pf trying to locate regions wn_h_po_or VISIl.)I|.Ity, an alternatlveprocess is sketched out in Algorithm 1.
is to check the definition of visibility explicitly [23].

Locating regions ofF with poor visibility is often difficult, A Moving a surface vertex

because we do not have an explicit representatiodr ofA
different approach is to dilaté in order to improve its
visibility properties [11], [19]. One way of dilating- is to
allow a small penetration of the robot into the obstacles [11]. . .
Unfortunately, penetration distance is difficult to comput ran example. This volume is themel of the star op, for
efficiently [18], which has prevented this technique from bein fevity, aiso called .the.kernel of
used in complex geometric environments. The more recent! (€ tetrahedralization a¥/, thestar of a vertexp, starp),

small-step retraction planner (SSRP) dilatEsby shrinking 'S the set of all teyrahedra to which b'elongs'. It can be
the geometric models of the robot or the obstacles towal mpute_:d by coIIect_lng the tet_rahedra adjacentito' T (Im_e 2
their medial axes and greatly improves the planner's perfdt- Algorithm 1). 'I_'akmg the union (.)f these tetrahedra gives the
mance [19]. However, a drawback of SSRP is that the med!&/UMe vp occupied by the star (line 3). o

axis is difficult to compute even approximately. The medial We then compute a point, in the ker_ne_l Ofvp, \_Nh'Ch ISa
axis may also change dramatically by a small perturbati&?lyhedron’ so thah can move freely within the line segment

of the geometry. See Fig. 2 for an example. Due to thek& (line 4). Formally, the kernel of a polyhedrap is
difficulties, the work on medial axis computation in three kr(v,)
dimensions has been limited [7], [9], [21], [25]. Furthermore,
the amount of dilation, an important parameter in SSRP, mustpolyhedron with a non-empty kernel &ar convex Intu-
be chosen manually. Our new planner also uses the fré@ely, if we imagine thatv, is a room, the kernel is the
space dilation approach, but our dilation method is much maset of points from which we can see the entire room. One
efficient in both running time and memory usage, and theay of computing the kernel is to first take all the triangles
planner chooses the amount of dilation automatically. on the boundary ofv,. For each triangle, there is a plane
The idea of shrinking the geometry of a robot has aldbat contains the triangle and divides the space into two half-
been used in motion planners quite different from PRM. Fepaces. Take the half-spaces containipgThe kernel kfv,,)
example, the planner in [2] uses shrinking to estimate tliethe intersection of all such halfspaces.

To move a surface vertey of M, we first compute the
volume to whichp can move in order to ensurkl’ C M.
rbitrary movement ofpp may fail the requirement. See Fig. 3

= {zev, |TF Cu, forallreu,}.



Fig. 4. The construction of a surface vertgxwvhose kernel is a singleton.  Fig. 5. After computing the point,,, we move vertexp towardsr,,.

The shaded triangles are the surface triangles. After adding two new tetrahedra

(right) to the tetrahedralized model (left), the kernelpoifs a singleton. The . .

reason is that the kernel must lie within the intersection of the two wedgtie Size of each leaf bounding volumesdyFor each surface

formed by the two new tetrahedra, and they only intersegt at triangle, this enlargement ensures that the bounding volume
now encloses every version of the triangle for any shrinking
By definition, if p moves within its kernel, the new polyhe-factor. Other than this extension, we do not need any other
dron is always contained within the original oriee, M’ C  changes in the collision checker and requires no additional
M. The result is stated below formally. memory space.

Theorem 1 If every surface vertex of a modéll moves IV. THE MULTI-LEVEL DILATION PLANNER

within the kernel of its star one by one, the shrunken modelNarrow passages are difficult to sample, because of their

M’ is contained withinM. small volumes. Using Algorithm 1, we shrink the geometry

olf the robot or the obstacles and dilate the free space

ki(v,) = {p}. Although v, is always star convex in our case?nythe dilated free spac&”’, narrow passages become wider,
p ' P thus simplifying planning. A solution path found i’ can

the vertexp cannot move to any other place if its kernel is en be deformed into one in the original free spaeAn

singleton. See Fig. 4 for an example. In such cases, we GRiportant issue here is to determine the dilation arameter
either leave the vertex unmoved, or cut out from the model P P

. : Vshich controls the amount of shrinking. To address this issue,
sufficiently small neighborhood of the vertex. - o
S we take advantage of the efficiency of our dilation method and
Now we may chooser, to be any point in kfv,) and

o o . erform a binary search on
move p within p7,. To be specific, we have decided to mov . . . I
b . Algorithm 2 shows the main steps of omulti-level dilation
p along the direction of the approximated surface normal g o
S ; . . planner (MLDP). To start, we set the dilation parameteto
p, Np, which is estimated with thiMean Weighted by Angle . : : : .
. . . 0.5 (line 3) and dilateF by callingShrink (M, s), which uses
method [14]. Let¢ be a line going througlp and having . ; ; ! .
o ) . the method described in Section 1l to shrink the geometric
the same direction ad/,. We compute the intersection &f

and ki(v,). Since kfv,) is convex, the intersection is a Iine.modeI M of the robot and the obstacles (line 4). We then

o ! . invoke a PRM planner in the dilated free spagéto find a
segmenir,. However, .'t Is possible Fhaﬁ does_not Intersect path between the given initial configuratign,;; and the goal
kr(v,) except atp. In this case, we simply projeétonto the fi ) I Anv PRM bl b d
boundary of kv, ). (r:‘on |gurat|opqgc,la1 (line 5). ny ) p anrf1f'er' can eI use

The method desribed above for finding is conceptually ere. In our implementation, we chose an efficient single-query

. . . : PRM planner called SBL [20]. If no path is found J&, then
simple, but the more efficient method is to use linear program- . . i

) . . S n s may be too small and the free space is not sufficiently dilated
ming, which computes, as an extreme point lying in the

o2 : .~ to allow a path to be easily found. We then increagkne 7).
direction of —NV,, and obeying all the half-space constraunts.If a path~/ is found in ', ~/ may still be in collision in the

Finally, given a shrinking factos € [0, 1] and the maximum | f " o forming it
distances that each vertex can move, we maveowardsr, actuq ree spacE 'We must ‘repair™y” by ple orming It into
' P~ avalid path inF (line 9). If the deformation fails, then the

to a new position (line 5): dilation parameter is too large: the dilation may have altered

In some cases, the kernel may be a singleton, nam

p = p+(s-minfe, HprH})&~ the connectivity ofF and introduced spurious passages, thus
p7pll making it difficult to deform a path i’ into one inF. We
See Fig. 5 for an illustration. then must decrease(line 11). After updatings, we repeat the

) ) . ) i i process until a maximum numbéf of iterations is reached.
B. Integration with collision checking hierarchies

Most hierarchical collision checking algorithms [18] pre/- Finding a path in the dilated free space

compute bounding-volume trees. Every leaf node of a treeSBL takes as input the shrunken model’ as well as
contains a bounding volume enclosing a surface triangle ozgi; and ¢goa1. SBL grows two trees rooted at af,;; and
model. Every non-leaf node contains a volume enclosing theg,..1, respectively. The nodes of each tree are sampled con-
volumes contained in the children af Our planner may use figurations, callednilestonesin every iteration, SBL picks a
several versions of a model with different shrinking factors. Wailestoneg in one of the two trees and samples at random in
want to avoid constructing a new tree for every version. Sintiee neighborhood of until a collision-free configuration’ is
every vertex moves a maximum distancewe can enlarge obtained. It then addg as a child ofq in the corresponding



Algorithm 2 Multi-level dilation planner (MLDP).
1: Slow<0, shigh‘_l- Forearm
2. fori=1,2,...,K do =
3 s (Siow + Shign)/2.

M'<Shrink (M, s).

Wrist 2
Wrist 1

N
End
effector

4.
y Upper A
5 ’YIHSBL(Qinita Jgoals ]\J/) Lever arm per "
6: if v/ = NIL then
7: Slow < S. Shoulder
8: else
0: ~v+—Repair (v, M).
10: if v = NIL then ) Base
11: Shigh<—S$.
12: I
else Fig. 6. ABB IRB 2400 manipulator.
13 return ~.
14: return NIL. TABLE |
) RUNNING TIMES FOR SHRINKING THEABB ROBOT.
tree and creates an edge betwgéand the closest milestone ar = T 7
in the other tree, thus establishing a candidatg path peMeen fetra o (;etc"‘) (xlojél sec.)
¢init 8Nd ggoa1. SBL then checks whether there is a collision- base 2491 5890 038 1.3
free straight-line connection between every pair of consecutive ~ shoulder 22360 52399 11.6 114
milestones in the candidate path. If so, SBL returns the path Lpper arm 2424 o8 1 1
: jale patn. , p lever arm 1246 2878 0.6 0.6
as the solution. Otherwise, SBL removes from the trees the lever 2096 4906 0.9 1.0
edge with collision and proceeds to the next iteration. SBL ~ forearm 4089 9466 15 2.0
its with failure if it does not find a path after generatin st 1 12810 29575 2.0 6.0
exits with fai _ p rg Ing wrist 2a 2025 4829 0.9 11
a given maximum number of milestones. SBL is probabilis- wrist 2b 6660 15619 2.4 3.4
total 56201 131419 25.2 28.3

tically complete, with fast convergence rate. More details are

available in [20].
For this experiment, we ran TetGen and Algorithm 1 on

B. Repairing a path a PC with an 1.6 GHz processor. The total time for tetrahe-
Suppose thaBBL(ginit, 7z0a1, M) returns successfully with dralizing the robot is 25.2 seconds, and the time for shrinking
a pathy’. The pathy’ may contain milestones or edges whiclthe robot is2.8 x 10~* seconds. In comparison, the shrinking
lie in the dilated free spac&’ but not in the actual free spacemethod based the medial axis took 4671 seconds to compute
F. Thus, we must deforny’ so that it lies entirely inF. the approximate medial axis of the robot and 8.3 seconds to
To repair a milestong, we sample in a neighborhood ofcompute a shrunken version of the robot on a PC with an 1
g. If a new free milestone is obtained, we continue to th@Hz processor [19]. It should be noted that our computer is
next milestone iny’. If not, we increase the size of theslightly faster, but the drastic improvement in running times
neighborhood and sample again. This process repeats ugiinot be possibly explained by the computer speed alone.
a given maximum number of iterations is reached or a freeln general, shrinking is considered as precomputation for
milestone is obtained. robots. However, if the robot is too thin and cannot be
To repair an edge between two milestopemsidq’, we break shrunken effectively, we may have to shrink the obstacles
the edge at its midpoint,, and checky,, for collision. If ¢, is in the environment instead. Since the environment changes
in collision, we use the procedure in the previous paragraphrtwre often, we must shrink on the fly. The efficiency of our
repair it. If the repair succeeds and provides a new milestosirinking method then becomes a significant advantage.
q.., the edge is split into two new edges, one betwegemnd ) )
¢ and one betweeq(, andq’. We then recursively repair the B- Comparing MLDP with SBL

two new edges until a given resolution is reached. SBL is an efficient single-query planner capable of solving
complex motion planning problems for robots with dozens of
V. EXPERIMENTAL RESULTS DOFs [20]. To compare the performance of MLDP with that

A. Shrinking of SBL, we used four 3D environments depicted in Fig. 7.

To test our shrinking algorithm, we used an ABB manip- « The environment in Fig. 7(a) consists of a robot arm
ulator robot (see Fig. 6). We tetrahedralized each link using that has to maneuver inside a cluttered space. There are
TetGen [22] and applied Algorithm 1 to compute a shrunken narrow passages connected by a wide-open region.
version ¢ = 1). Table | lists for every part of the robot, the o In the environment shown in Fig. 7(b), the robot arm
numbers of tetrahedrdVi...»), the number of triangles on the barely fits between adjacent bars of the cage. The robot
surface (Vi;;), as well as the time for tetrahedralizatidi ..) must retract its arm, maneuver inside the cage, and get
and the time for shrinkingT(y,). the arm out again through the ceiling of the cage.



(a) (b) (© (d)

Fig. 7. Test environments.

TABLE Il TABLE Il
COMPARISON OF THE RUNNING TIMES OFSBL AND MLDP. RUNNING TIME STATISTICS OFMLDP.

Env. SBL (sec.) MLDP (sec.) Env. lter. Shrink SBL Repair Total

7(@) 215 13 (Fig.) (x10~* sec.)  (sec.) (sec.) (sec.)

7(b) 5203 11 7(a) 2 1.8 10.0 3.3 13.3

7(c) > 100000 434 7(b) 1 0.9 8.7 2.8 11.5

7(d) > 100000 5850 7(c) 3 1.1 428.6 5.7 434.3
7(d) 3 1.2 5703.4 1459 5849.3

« The environment in Fig. 7(c) contains a long narrow , .
passage that changes orientation several times. To solp&C&/ are close to the surface of the obstacles, which allows
the query, the robot must align horizontally the long bdRePair  to quickly deformy” and find a path inF.
held by the end-effector and navigate through the narrow The environment in Fig. 7(c) is more complicated. A
space while keeping the bar horizontal. long narrow passage which changes orientation is created by
« Fig. 7(d) shows the alpha puzzle, a benchmark test f8gfining a very small clearance between the upper and lower
PRM planners [1]. The goal is to separate two intertwingefrts of the obstacles. If we shrink too much, we drastically
tubes. There are several versions of the problem, depeffi@nge. Spurious passages are created and repairing a path
ing on the clearance between the tubes. The hardesgfiNg through them is very difficult. In a typical run of MLDP
version 1.0, which is used in our experiments. on this environment, it finds a path fer= 0.5, but fails to
r%epair the path. The model at= 0.25 is then computed, but

We tested MLDP and SBL on these four environment BL fails b finad te dilationf A hrunk
using a PC with a 2.8 GHz processor and 512 MB of memo alls because otinadequate driatio NEW shrunken

The average running times of 20 runs are shown in Table E_arspn is computed fos = 0':.375' In this case, bot'SBL and ,
The numbers do not consider tetrahedralization time. epair sucgegd. The solution p:;_\th fOI!OWEd by the robot's
Table Il shows that MLDP drastically improves the perfor?nd,'e‘cfeCtor IS |Ilqstrated sghematlcally in 7(c). )

mance of a single-query planner such as SBL, fully demon-F'na"y’ the environment in Fig. ?(d) possesses an interest-
strating the benefits of multi-level dilation. For instance, th@d property. To sol\_/e the query, tight coordl_nat|on between
improvement is more than three orders of magnitude for tltlrgnslatlon and_ rota’gop IS r?quwed. If we shrink to_o_ much, a
environment in Fig. 7(b). For two environments, SBL Waglmple translation will S(_)Ive th? problem, bu_t repairing such
unable to find a path after a maximum number of iteratior?spath would be almost impossible. If we shrink too little, the

was reached. We indicated this by 100000 space is nqt dllr_:lted enough to he®BL find a path. MLDP
took three iterations to solve the query.
C. Running times breakdown for MLDP These results show that multi-level dilation helps to improve

We measured the running times for the main functions fRe planner’s performance. They also show the efficiency of
MLDP. The averages over 20 runs are shown in Table I1I. TiIr dilation method, which only adds small overhead to the
table lists the number of iterations required by MLDP to finéPtal running time.
the solution and the time required by the functi®@iwink . ) o
SBL, andRepair . D. The importance of multi-level dilation

For the environment in Fig. 7(a), the configuration space Free-space dilation improves the performance of PRM plan-
contains some short narrow passages connected to a wide apens, provided that a suitable value of the dilation parameter is
region. The initial and goal configurations lie inside them. Twohosen. In this experiment, we fixed the value of the dilation
iterations of MLDP were enough to solve the query. parameters at 0,0.2,0.4,...,1 and runSBL. If a path is

For the environment in Fig. 7(b), a solution path was founidund, we then runRepair until a maximum number of
in the first iteration of MLDP § = 0.5). Apparently, the trials is reached. For these parameter values, the running time
milestones and edges of the pathfound in the dilated free of SBL ranges from roughly 10 seconds to more than 10,000



seconds, and the running time Bepair ranges from less [3]
than 1 second to roughly 1,000 seconds. §er 0 or 0.2, SBL
could not find a path an®epair was not run. Fos = 0.8 4
or 1, SBL found a path inF" but Repair could not fix it.
Clearly, the bigger the dilation, the easier it is ®BL planner
to find a solution, but the harder it is fétepair to succeed.
Unfortunately, it is difficult to know in advance the right level
of dilation. MLDP provides an automated way to address thi€]
problem.

(5]

-
VI. CONCLUSION AND FUTURE WORK .

We have introduced a new method for dilating the free spade]
by shrinking the geometric models of robots and obstacles. It
is efficient in both running time and memory usage. Afteryg,
preprocessing, computing a new shrunken model takes mil-
liseconds on a desktop PC for a model with more than 100,0[&8
triangles. Multiple shrunken models can be represented in e]
same data structure, which is also fully integrated with that
for hierarchical collision checking, a key operation in PRl\ﬂll]
planning. The efficiency of the new method enables us to
develop MLDP, a new PRM planner that quickly constructs
a series of dilated free spaces and automatically determine
the amount of dilation needed. Experiments show that bqth,
the dilation method and the planner work well in complex
geometric environments with difficult narrow passages. 13]

Of course, free-space dilation does not work for all getg—
metric environments. Some environments cannot be shrunken
effectively, e.g, those with a cloud of points or thin bars ad!4l
obstacles. However, in many practical problems, such as the
one in Fig. 7(a), dilation is effective, and MLDP provide$15]
significant computational advantages.

During this work, we have observed that the maximum
amount of shrinking possible on a model depends substantidll§l
on the tetrahedralization of the model. We are investigating this
relationship and developing new tetrahedralization methodsin
order to increase the maximum amount of shrinking possible.
In addition, our algorithm can shrink a model in a local reging]
without affecting others. We plan to develop a new planner that
uses this ability to determine which regions of a model cauBé]
a path to be in collision. This is important for mechanical
assembly design, where one wishes to find out which partsgf
a model should be modified in order to enable certain paths.

[21]
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