
Multi-Level Free-Space Dilation for Sampling
Narrow Passages in PRM Planning

David Hsu∗†, Gildardo Śanchez-Ante†, Ho-lun Cheng∗ and Jean-Claude Latombe‡
∗Department of Computer Science, National University of Singapore, Singapore 117543, Singapore

†Computer Science Program, Singapore MIT Alliance, Singapore 117543, Singapore
‡Department of Computer Science, Stanford University, Stanford, CA 94305, USA

IN Proc. IEEE Int. Conf. on Robotics & Automation, 2006

Abstract— Free-space dilation is an effective approach for
narrow passage sampling, a well-recognized difficulty in prob-
abilistic roadmap (PRM) planning. Key to this approach are
methods for dilating the free space and for determining the
amount of dilation needed. This paper presents a new method
of dilation by shrinking the geometric models of robots and
obstacles. Compared with existing work, the new method is
more efficient in both running time and memory usage. It
is also integrated with collision checking, a key operation in
PRM planning. The efficiency of the dilation method enables a
new PRM planner which quickly constructs a series of dilated
free spaces and automatically determine the amount of dilation
needed. Experiments show that both the dilation method and
the planner work well in complex geometric environments. In
particular, the planner reliably solved the most difficult version
of the alpha puzzle, a benchmark test for PRM planners.

I. I NTRODUCTION

Probabilistic roadmap (PRM) planning is a successful ap-
proach for motion planning of robots with many degrees of
freedom (DOFs) in complex geometric environments (see,e.g.,
[1], [3], [8], [10], [13], [15], [17], [24], [25]). The main idea of
PRM planning is to sample at random a robot’s configuration
spaceC with a suitable probability distribution and capture the
connectivity of C in an extremely simplified representation,
called a probabilistic roadmap. A roadmap is a graph whose
nodes are the collision-free configurations sampled fromC
and whose edges are simple collision-free paths between the
nodes. This way, PRM planners avoid the prohibitive cost of
constructing a complete representation ofC.

It has been argued that the success of PRM planners depends
critically on the assumption thatC verifies favorable visibility
properties [12]. Indeed, many experiments have shown that
PRM planners behave poorly, whenC contains regions with
poor visibility, in particular, narrow passages. Narrow passages
are small regions whose removal changes the connectivity of
C. Due to their small volumes, the probability of sampling at
random in narrow passages is low. This makes it difficult for
PRM planners to capture the connectivity ofC well.

To address this difficulty, one approach is to dilate the free
spaceF [11], [19], defined as the collision-free subset of
C. The dilated free spaceF ′ has better visibility properties.
In particular, dilation widens narrow passages and makes the
planning problem easier. A solution path found inF ′ is then
deformed into one inF . The key element of this approach
is an effective dilation method. Another important element is
to determine the amount of dilation needed. Too little dilation
may fail to improve the visibility properties of the free space
sufficiently for a solution path to be easily found; too much

Fig. 1. The geometric model of a mechanical part from the ABB IRB 2400
robot before shrinking (wireframe) and after shrinking (shaded in yellow).

dilation may change the free space so much that it is difficult
to deform the solution path inF ′ into one inF .

In this paper, we present a new method of dilation by
shrinking the geometric models of robots or obstacles (see
Fig. 1 for an example). This method guarantees that a shrunken
modelM ′ is always contained inside the original modelM so
thatF ′ is a dilation ofF , i.e., F ⊆ F ′. It has several important
advantages when used to dilateF in PRM planning:

• This method is efficient in both running time and memory
usage. Compared with earlier dilation methods based on
medial axes [19], the new method is more efficient and
much simpler to implement.

• This method can shrinkM in a local region without
affecting others and thus avoid unnecessarily changing
the free space during dilation.

• This method creates a data structure fully integrated
with that used for collision checking, a key operation
in PRM planning. There is no need to re-compute the
bounding volume hierarchy for collision checking when
a new shrunken model is generated. This saves both
computation time and memory space.

Taking advantage of the efficiency of this dilation method,
our new PRM planner constructs a series of dilated free spaces,
F(s), for 0 ≤ s ≤ 1, where F(0) = F is the original
free space andF(1) is the maximally dilated free space.
To determine the amount of dilation, the planner performs a
binary search on the dilation parameters and constructsF(s)
on the fly. In our experiments, the planner reliably solved the
most difficult version of the alpha puzzle, a benchmark test
for PRM planners.



Fig. 2. The dashed lines indicate the medial axes of the shaded objects. A
small perturbation on the object changes its medial axis dramatically.

Fig. 3. Moving a vertexp arbitrarily may fail the requirementM ′ ⊆ M .
The figure shows a cross section of a polyhedron.

II. PREVIOUS WORK

The difficulty of narrow passage sampling and its im-
portance to PRM planning have long been recognized [15],
[11]. We can characterize narrow passages formally using
visibility properties inC [13]. Thus, many techniques have
been proposed to increase sampling density in regions ofF
expected to have poor visibility (see [5] for a comprehensive
survey). One approach is to sample more densely near the
boundary ofF [1], [3], because points in narrow passages,
which have poor visibility, lie close to the boundary. Another
approach is to use workspace information to locate regions
with poor visibility [24], [8], [10], [16], [25], because narrow
passages in the workspace often suggest the presence and the
location of narrow passages in the configuration space. Instead
of trying to locate regions with poor visibility, an alternative
is to check the definition of visibility explicitly [23].

Locating regions ofF with poor visibility is often difficult,
because we do not have an explicit representation ofF . A
different approach is to dilateF in order to improve its
visibility properties [11], [19]. One way of dilatingF is to
allow a small penetration of the robot into the obstacles [11].
Unfortunately, penetration distance is difficult to compute
efficiently [18], which has prevented this technique from being
used in complex geometric environments. The more recent
small-step retraction planner (SSRP) dilatesF by shrinking
the geometric models of the robot or the obstacles towards
their medial axes and greatly improves the planner’s perfor-
mance [19]. However, a drawback of SSRP is that the medial
axis is difficult to compute even approximately. The medial
axis may also change dramatically by a small perturbation
of the geometry. See Fig. 2 for an example. Due to these
difficulties, the work on medial axis computation in three
dimensions has been limited [7], [9], [21], [25]. Furthermore,
the amount of dilation, an important parameter in SSRP, must
be chosen manually. Our new planner also uses the free-
space dilation approach, but our dilation method is much more
efficient in both running time and memory usage, and the
planner chooses the amount of dilation automatically.

The idea of shrinking the geometry of a robot has also
been used in motion planners quite different from PRM. For
example, the planner in [2] uses shrinking to estimate the

Algorithm 1 Shrink (M, s)
1: for each surface vertexp ∈ M do
2: star(p)←{σ ∈ T | p ∈ σ}.
3: vp←

⋃
star(p).

4: Compute a pointτp ∈ kr(vp) so thatp can move freely
within pτp.

5: p(s)←p + (s ·min{ε, ‖pτp‖}) pτp

‖pτp‖

penetration of a path into the obstacles and tries to modify
the path iteratively to reduce the amount of shrinking needed,
until a collision-free path is obtained. However, this planner
has a very limited shrinking method that applies only to simple
geometric objects such as rectangular boxes.

III. T HE SHRINKING ALGORITHM

Our shrinking algorithm takes as input a polyhedral model
M . It first computes a tetrahedralizationT of M , i.e., partitions
the interior of M into a set of tetrahedra. Although some
polyhedra cannot be tetrahedralized,e.g., the Scḧonhardt poly-
hedron, tetrahedralization is always possible if we add a small
number of additional vertices toM [4], [6]. To shrinkM , we
move each surface vertex ofM towards the interior ofM and
ensure that the shrunken modelM ′ is always contained inside
M , i.e., M ′ ⊆ M . The amount of shrinking is controlled by
setting a parameterε, which determines the maximum distance
that each vertex can move. This implies that for every point on
M , there exists a point onM ′ such that the distance between
the two points are less thanε. Formally, the Hausdorff distance
between the surfaces ofM andM ′ is at mostε. The shrinking
process is sketched out in Algorithm 1.

A. Moving a surface vertex

To move a surface vertexp of M , we first compute the
volume to whichp can move in order to ensureM ′ ⊆ M .
Arbitrary movement ofp may fail the requirement. See Fig. 3
for an example. This volume is thekernel of the star ofp, for
brevity, also called the kernel ofp.

In the tetrahedralization ofM , thestarof a vertexp, star(p),
is the set of all tetrahedra to whichp belongs. It can be
computed by collecting the tetrahedra adjacent top in T (line 2
of Algorithm 1). Taking the union of these tetrahedra gives the
volumevp occupied by the star (line 3).

We then compute a pointτp in the kernel ofvp, which is a
polyhedron, so thatp can move freely within the line segment
pτp (line 4). Formally, the kernel of a polyhedronvp is

kr(vp) = {x ∈ vp | xr ⊆ vp for all r ∈ vp}.
A polyhedron with a non-empty kernel isstar convex. Intu-
itively, if we imagine thatvp is a room, the kernel is the
set of points from which we can see the entire room. One
way of computing the kernel is to first take all the triangles
on the boundary ofvp. For each triangle, there is a plane
that contains the triangle and divides the space into two half-
spaces. Take the half-spaces containingvp. The kernel kr(vp)
is the intersection of all such halfspaces.



a

b

b3
3

2

1

b
p

a

b

p

a
a2

a

b2

1

11

2

Fig. 4. The construction of a surface vertexp whose kernel is a singleton.
The shaded triangles are the surface triangles. After adding two new tetrahedra
(right) to the tetrahedralized model (left), the kernel ofp is a singleton. The
reason is that the kernel must lie within the intersection of the two wedges
formed by the two new tetrahedra, and they only intersect atp.

By definition, if p moves within its kernel, the new polyhe-
dron is always contained within the original one,i.e., M ′ ⊆
M . The result is stated below formally.

Theorem 1 If every surface vertex of a modelM moves
within the kernel of its star one by one, the shrunken model
M ′ is contained withinM .

In some cases, the kernel may be a singleton, namely
kr(vp) = {p}. Althoughvp is always star convex in our case,
the vertexp cannot move to any other place if its kernel is a
singleton. See Fig. 4 for an example. In such cases, we can
either leave the vertex unmoved, or cut out from the model a
sufficiently small neighborhood of the vertex.

Now we may chooseτp to be any point in kr(vp) and
movep within pτp. To be specific, we have decided to move
p along the direction of the approximated surface normal at
p, Np, which is estimated with theMean Weighted by Angle
method [14]. Let` be a line going throughp and having
the same direction asNp. We compute the intersection of`
and kr(vp). Since kr(vp) is convex, the intersection is a line
segmentpτp. However, it is possible that̀ does not intersect
kr(vp) except atp. In this case, we simply project̀onto the
boundary of kr(vp).

The method desribed above for findingτp is conceptually
simple, but the more efficient method is to use linear program-
ming, which computesτp as an extreme point lying in the
direction of−Np and obeying all the half-space constraints.

Finally, given a shrinking factors ∈ [0, 1] and the maximum
distanceε that each vertex can move, we movep towardsτp

to a new position (line 5):

p′ = p + (s ·min{ε, ‖pτp‖}) pτp

‖pτp‖ .

See Fig. 5 for an illustration.

B. Integration with collision checking hierarchies

Most hierarchical collision checking algorithms [18] pre-
compute bounding-volume trees. Every leaf node of a tree
contains a bounding volume enclosing a surface triangle of a
model. Every non-leaf nodeu contains a volume enclosing the
volumes contained in the children ofu. Our planner may use
several versions of a model with different shrinking factors. We
want to avoid constructing a new tree for every version. Since
every vertex moves a maximum distanceε, we can enlarge

τ τ

p
p

p p

N Npp

Fig. 5. After computing the pointτp, we move vertexp towardsτp.

the size of each leaf bounding volumes byε. For each surface
triangle, this enlargement ensures that the bounding volume
now encloses every version of the triangle for any shrinking
factor. Other than this extension, we do not need any other
changes in the collision checker and requires no additional
memory space.

IV. T HE MULTI -LEVEL DILATION PLANNER

Narrow passages are difficult to sample, because of their
small volumes. Using Algorithm 1, we shrink the geometry
of the robot or the obstacles and dilate the free spaceF .
In the dilated free spaceF ′, narrow passages become wider,
thus simplifying planning. A solution path found inF ′ can
then be deformed into one in the original free spaceF . An
important issue here is to determine the dilation parameters,
which controls the amount of shrinking. To address this issue,
we take advantage of the efficiency of our dilation method and
perform a binary search ons.

Algorithm 2 shows the main steps of ourmulti-level dilation
planner (MLDP). To start, we set the dilation parameters to
0.5 (line 3) and dilateF by callingShrink (M, s), which uses
the method described in Section III to shrink the geometric
model M of the robot and the obstacles (line 4). We then
invoke a PRM planner in the dilated free spaceF ′ to find a
path between the given initial configurationqinit and the goal
configurationqgoal (line 5). Any PRM planner can be used
here. In our implementation, we chose an efficient single-query
PRM planner called SBL [20]. If no path is found inF ′, then
s may be too small and the free space is not sufficiently dilated
to allow a path to be easily found. We then increases (line 7).
If a pathγ′ is found inF ′, γ′ may still be in collision in the
actual free spaceF . We must “repair”γ′ by deforming it into
a valid path inF (line 9). If the deformation fails, then the
dilation parameter is too large: the dilation may have altered
the connectivity ofF and introduced spurious passages, thus
making it difficult to deform a path inF ′ into one inF . We
then must decreases (line 11). After updatings, we repeat the
process until a maximum numberK of iterations is reached.

A. Finding a path in the dilated free space

SBL takes as input the shrunken modelM ′ as well as
qinit and qgoal. SBL grows two trees rooted at atqinit and
qgoal, respectively. The nodes of each tree are sampled con-
figurations, calledmilestones. In every iteration, SBL picks a
milestoneq in one of the two trees and samples at random in
the neighborhood ofq until a collision-free configurationq′ is
obtained. It then addsq′ as a child ofq in the corresponding



Algorithm 2 Multi-level dilation planner (MLDP).
1: slow←0, shigh←1.
2: for i = 1, 2, . . . , K do
3: s←(slow + shigh)/2.
4: M ′←Shrink (M, s).
5: γ′←SBL(qinit, qgoal, M

′).
6: if γ′ = NIL then
7: slow←s.
8: else
9: γ←Repair (γ′,M).

10: if γ = NIL then
11: shigh←s.
12: else
13: return γ.
14: return NIL .

tree and creates an edge betweenq′ and the closest milestone
in the other tree, thus establishing a candidate path between
qinit andqgoal. SBL then checks whether there is a collision-
free straight-line connection between every pair of consecutive
milestones in the candidate path. If so, SBL returns the path
as the solution. Otherwise, SBL removes from the trees the
edge with collision and proceeds to the next iteration. SBL
exits with failure if it does not find a path after generating
a given maximum number of milestones. SBL is probabilis-
tically complete, with fast convergence rate. More details are
available in [20].

B. Repairing a path

Suppose thatSBL(qinit, qgoal,M
′) returns successfully with

a pathγ′. The pathγ′ may contain milestones or edges which
lie in the dilated free spaceF ′ but not in the actual free space
F . Thus, we must deformγ′ so that it lies entirely inF .

To repair a milestoneq, we sample in a neighborhood of
q. If a new free milestone is obtained, we continue to the
next milestone inγ′. If not, we increase the size of the
neighborhood and sample again. This process repeats until
a given maximum number of iterations is reached or a free
milestone is obtained.

To repair an edge between two milestonesq andq′, we break
the edge at its midpointqm and checkqm for collision. If qm is
in collision, we use the procedure in the previous paragraph to
repair it. If the repair succeeds and provides a new milestone
q′m, the edge is split into two new edges, one betweenq and
q′m and one betweenq′m andq′. We then recursively repair the
two new edges until a given resolution is reached.

V. EXPERIMENTAL RESULTS

A. Shrinking

To test our shrinking algorithm, we used an ABB manip-
ulator robot (see Fig. 6). We tetrahedralized each link using
TetGen [22] and applied Algorithm 1 to compute a shrunken
version (s = 1). Table I lists for every part of the robot, the
numbers of tetrahedra (Ntetra), the number of triangles on the
surface (Ntri), as well as the time for tetrahedralization (Ttetra)
and the time for shrinking (Tsh).

Fig. 6. ABB IRB 2400 manipulator.

TABLE I

RUNNING TIMES FOR SHRINKING THEABB ROBOT.

Part Ntetra Ntri Ttetra Tsh

(sec.) (×10−5 sec.)
base 2491 5890 0.8 1.3
shoulder 22360 52399 11.6 11.4
upper arm 2424 5857 1.5 1.5
lever arm 1246 2878 0.6 0.6
lever 2096 4906 0.9 1.0
forearm 4089 9466 1.5 2.0
wrist 1 12810 29575 5.0 6.0
wrist 2a 2025 4829 0.9 1.1
wrist 2b 6660 15619 2.4 3.4
total 56201 131419 25.2 28.3

For this experiment, we ran TetGen and Algorithm 1 on
a PC with an 1.6 GHz processor. The total time for tetrahe-
dralizing the robot is 25.2 seconds, and the time for shrinking
the robot is2.8× 10−4 seconds. In comparison, the shrinking
method based the medial axis took 4671 seconds to compute
the approximate medial axis of the robot and 8.3 seconds to
compute a shrunken version of the robot on a PC with an 1
GHz processor [19]. It should be noted that our computer is
slightly faster, but the drastic improvement in running times
cannot be possibly explained by the computer speed alone.

In general, shrinking is considered as precomputation for
robots. However, if the robot is too thin and cannot be
shrunken effectively, we may have to shrink the obstacles
in the environment instead. Since the environment changes
more often, we must shrink on the fly. The efficiency of our
shrinking method then becomes a significant advantage.

B. Comparing MLDP with SBL

SBL is an efficient single-query planner capable of solving
complex motion planning problems for robots with dozens of
DOFs [20]. To compare the performance of MLDP with that
of SBL, we used four 3D environments depicted in Fig. 7.

• The environment in Fig. 7(a) consists of a robot arm
that has to maneuver inside a cluttered space. There are
narrow passages connected by a wide-open region.

• In the environment shown in Fig. 7(b), the robot arm
barely fits between adjacent bars of the cage. The robot
must retract its arm, maneuver inside the cage, and get
the arm out again through the ceiling of the cage.



(a) (b) (c) (d)

Fig. 7. Test environments.
TABLE II

COMPARISON OF THE RUNNING TIMES OFSBL AND MLDP.

Env. SBL (sec.) MLDP (sec.)
7(a) 215 13
7(b) 5203 11
7(c) > 100000 434
7(d) > 100000 5850

• The environment in Fig. 7(c) contains a long narrow
passage that changes orientation several times. To solve
the query, the robot must align horizontally the long bar
held by the end-effector and navigate through the narrow
space while keeping the bar horizontal.

• Fig. 7(d) shows the alpha puzzle, a benchmark test for
PRM planners [1]. The goal is to separate two intertwined
tubes. There are several versions of the problem, depend-
ing on the clearance between the tubes. The hardest is
version 1.0, which is used in our experiments.

We tested MLDP and SBL on these four environments,
using a PC with a 2.8 GHz processor and 512 MB of memory.
The average running times of 20 runs are shown in Table II.
The numbers do not consider tetrahedralization time.

Table II shows that MLDP drastically improves the perfor-
mance of a single-query planner such as SBL, fully demon-
strating the benefits of multi-level dilation. For instance, the
improvement is more than three orders of magnitude for the
environment in Fig. 7(b). For two environments, SBL was
unable to find a path after a maximum number of iterations
was reached. We indicated this by “> 100000”.

C. Running times breakdown for MLDP

We measured the running times for the main functions in
MLDP. The averages over 20 runs are shown in Table III. The
table lists the number of iterations required by MLDP to find
the solution and the time required by the functionsShrink ,
SBL, andRepair .

For the environment in Fig. 7(a), the configuration space
contains some short narrow passages connected to a wide open
region. The initial and goal configurations lie inside them. Two
iterations of MLDP were enough to solve the query.

For the environment in Fig. 7(b), a solution path was found
in the first iteration of MLDP (s = 0.5). Apparently, the
milestones and edges of the pathγ′ found in the dilated free

TABLE III

RUNNING TIME STATISTICS OFMLDP.

Env. Iter. Shrink SBL Repair Total
(Fig.) (×10−4 sec.) (sec.) (sec.) (sec.)
7(a) 2 1.8 10.0 3.3 13.3
7(b) 1 0.9 8.7 2.8 11.5
7(c) 3 1.1 428.6 5.7 434.3
7(d) 3 1.2 5703.4 145.9 5849.3

spaceF ′ are close to the surface of the obstacles, which allows
Repair to quickly deformγ′ and find a path inF .

The environment in Fig. 7(c) is more complicated. A
long narrow passage which changes orientation is created by
defining a very small clearance between the upper and lower
parts of the obstacles. If we shrink too much, we drastically
changeF . Spurious passages are created and repairing a path
going through them is very difficult. In a typical run of MLDP
on this environment, it finds a path fors = 0.5, but fails to
repair the path. The model ats = 0.25 is then computed, but
SBL fails because of inadequate dilation ofF . A new shrunken
version is computed fors = 0.375. In this case, bothSBL and
Repair succeed. The solution path followed by the robot’s
end-effector is illustrated schematically in 7(c).

Finally, the environment in Fig. 7(d) possesses an interest-
ing property. To solve the query, tight coordination between
translation and rotation is required. If we shrink too much, a
simple translation will “solve” the problem, but repairing such
a path would be almost impossible. If we shrink too little, the
space is not dilated enough to helpSBL find a path. MLDP
took three iterations to solve the query.

These results show that multi-level dilation helps to improve
the planner’s performance. They also show the efficiency of
our dilation method, which only adds small overhead to the
total running time.

D. The importance of multi-level dilation

Free-space dilation improves the performance of PRM plan-
ners, provided that a suitable value of the dilation parameter is
chosen. In this experiment, we fixed the value of the dilation
parameters at 0, 0.2, 0.4, . . . , 1 and run SBL. If a path is
found, we then runRepair until a maximum number of
trials is reached. For these parameter values, the running time
of SBL ranges from roughly 10 seconds to more than 10,000



seconds, and the running time ofRepair ranges from less
than 1 second to roughly 1,000 seconds. Fors = 0 or 0.2, SBL
could not find a path andRepair was not run. Fors = 0.8
or 1, SBL found a path inF ’ but Repair could not fix it.
Clearly, the bigger the dilation, the easier it is forSBL planner
to find a solution, but the harder it is forRepair to succeed.
Unfortunately, it is difficult to know in advance the right level
of dilation. MLDP provides an automated way to address this
problem.

VI. CONCLUSION AND FUTURE WORK

We have introduced a new method for dilating the free space
by shrinking the geometric models of robots and obstacles. It
is efficient in both running time and memory usage. After
preprocessing, computing a new shrunken model takes mil-
liseconds on a desktop PC for a model with more than 100,000
triangles. Multiple shrunken models can be represented in the
same data structure, which is also fully integrated with that
for hierarchical collision checking, a key operation in PRM
planning. The efficiency of the new method enables us to
develop MLDP, a new PRM planner that quickly constructs
a series of dilated free spaces and automatically determine
the amount of dilation needed. Experiments show that both
the dilation method and the planner work well in complex
geometric environments with difficult narrow passages.

Of course, free-space dilation does not work for all geo-
metric environments. Some environments cannot be shrunken
effectively, e.g., those with a cloud of points or thin bars as
obstacles. However, in many practical problems, such as the
one in Fig. 7(a), dilation is effective, and MLDP provides
significant computational advantages.

During this work, we have observed that the maximum
amount of shrinking possible on a model depends substantially
on the tetrahedralization of the model. We are investigating this
relationship and developing new tetrahedralization methods in
order to increase the maximum amount of shrinking possible.
In addition, our algorithm can shrink a model in a local region
without affecting others. We plan to develop a new planner that
uses this ability to determine which regions of a model cause
a path to be in collision. This is important for mechanical
assembly design, where one wishes to find out which parts of
a model should be modified in order to enable certain paths.

ACKNOWLEDGEMENTS

D. Hsu’s research is partially supported by a grant from the
National University of Singapore. Jean-Claude Latombe’s research is
partially supported by NSF grants ACI-02-5671 and IIS-0412884.

REFERENCES

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM: An
obstacle-based PRM for 3D workspaces,” inRobotics: The Algorithmic
Perspective: 1998 Workshop on the Algorithmic Foundations of Robotics,
P. Agarwalet al., Eds. Wellesley, MA: A. K. Peters, 1998, pp. 155–168.

[2] B. Baginski, “Local motion planning for manipulators based on shrink-
ing and growing geometry models,” inProc. IEEE Int. Conf. on Robotics
& Automation, 1996, pp. 3303–3308.

[3] V. Boor, M. Overmars, and F. van der Stappen, “The Gaussian sampling
strategy for probabilistic roadmap planners,” inProc. IEEE Int. Conf.
on Robotics & Automation, 1999, pp. 1018–1023.

[4] H.-L. Cheng and T. Tan, “Approximating polygonal objects by de-
formable smooth surfaces,” inMathematical Foundations of Computer
Science, 2005.

[5] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
and S. Thrun,Principles of Robot Motion: Theory, Algorithms, and
Implementations. The MIT Press, 2005, ch. 7.

[6] D. Cohen-Steiner, E. D. Verdiere, and M. Yvinec, “Conforming delaunay
triangulations in 3d,” inACM Symp. on Computational Geometry, 2002,
pp. 199–208.

[7] T. Dey and W. Zhao, “Approximate medial axis as a voronoi subcom-
plex,” in ACM Symp. on Solid Modeling & Applications, 2002, pp. 356–
366.

[8] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A Voronoi-based
hybrid motion planner,” inProc. IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, 2001, pp. 55–60.

[9] M. Foskey, M. Lin, and D. Manocha, “Efficient computation of a sim-
plified medial axis,” inACM Symp. on Solid Modeling & Applications,
2003, pp. 96–107.

[10] L. Guibas, C. Holleman, and L. Kavraki, “A probabilistic roadmap
planner for flexible objects with a workspace medial-axis based sampling
approach,” inProc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems,
1999, pp. 254–260.

[11] D. Hsu, L. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin, “On find-
ing narrow passages with probabilistic roadmap planners,” inRobotics:
The Algorithmic Perspective: 1998 Workshop on the Algorithmic Foun-
dations of Robotics, P. Agarwalet al., Eds. Wellesley, MA: A. K.
Peters, 1998, pp. 141–154.

[12] D. Hsu, J. Latombe, and H. Kurniawati, “On the probabilistic founda-
tions of probabilistic roadmap planning,” inProc. Int. Symp. on Robotics
Research, 2005.

[13] D. Hsu, J. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,”Int. J. Computational Geometry & Applications,
vol. 9, no. 4-5, pp. 495–512, 1999.

[14] S. Jin, R. Lewis, and D. West, “A comparison of algorithms for vertex
normal computation,”The Visual Computer, vol. 21, no. 1-2, pp. 71–82,
2005.

[15] L. Kavraki, P.Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration space,”
IEEE Trans. on Robotics & Automation, vol. 12, no. 4, pp. 566–580,
1996.

[16] H. Kurniawati and D. Hsu, “Workspace importance sampling for prob-
abilistic roadmap planning,” inProc. IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, 2004, pp. 1618–1623.

[17] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”Int. J.
Robotics Research, vol. 20, no. 5, pp. 278–400, 2001.

[18] M. Lin and D. Manocha, “Collision and proximity queries,” inHandbook
of Discrete and Computational Geometry, J. Goodman and J. O’Rourke,
Eds. Chapman & Hall/CRC, 2004, pp. 787–807.

[19] M. Saha and J. Latombe, “Finding narrow passages with probabilistic
roadmaps: The small step retraction method,” inProc. IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems, 2005.

[20] G. Śanchez and J.-C. Latombe, “On delaying collision checking in PRM
planning – application to multi-robot coordination,”Int. J. of Robotics
Research, vol. 21, no. 1, pp. 5–26, 2002.

[21] E. Sherbrooke, N. Patrikalakis, and E. Brisson, “Computation of the
medial axis transform of 3-D polyhedra,” inProc. ACM Symp. on Solid
Modeling & Applicaitons, 1995, pp. 187–200.

[22] H. Si, “TetGen, a quality tetrahedral mesh generator and three-
dimensional Delaunay triangulator,” Weierstrass Institute for Applied
Analysis and Stochastics, Tech. Rep., 2004.

[23] T. Siméon, J. Laumond, and C. Nissoux, “Visibility-based probabilistic
roadmaps for motion planning,”J. Advanced Robotics, vol. 14, no. 6,
pp. 477–494, 2000.

[24] J. van den Berg and M. Overmars, “Using workspace information as a
guide to non-uniform sampling in probabilistic roadmap planners,” in
Proc. IEEE Int. Conf. on Robotics & Automation, 2004, pp. 453–460,.

[25] Y. Yang and O. Brock, “Adapting the sampling distribution in PRM
planners based on an approximated medial axis,” inProc. IEEE Int.
Conf. on Robotics & Automation, 2004.


