
Hybrid PRM Sampling with a Cost-Sensitive Adaptive
Strategy

David Hsu1,2

1Department of Computer Science
National University of Singapore

Singapore
dyhsu@comp.nus.edu.sg

Gildardo Śanchez-Ante2
2Computer Science Program

Singapore MIT Alliance
Singapore

ante@comp.nus.edu.sg

Zheng Sun
Department of Computer Science

Hong Kong Baptist University
Hong Kong S.A.R., China
sunz@comp.hkbu.edu.hk

In Proc. Int. Conf. on Robotics & Automation, 2005

Abstract— A number of advanced sampling strategies have
been proposed in recent years to address the narrow passage
problem for probabilistic roadmap (PRM) planning. These
sampling strategies all have unique strengths, but none of
them solves the problem completely. In this paper, we present
a general and systematic approach for adaptively combining
multiple sampling strategies so that their individual strengths
are preserved. We have performed experiments with this
approach on robots with up to 12 degrees of freedom in
complex 3-D environments. Experiments show that although
the performance of individual sampling strategies varies
across different environments, the adaptive hybrid sampling
strategies constructed with this approach perform consistently
well in all environments. Further, we show that, under
reasonable assumptions, the adaptive strategies are provably
competitive against all individual strategies used.

Index Terms— robotics, motion planning, randomized al-
gorithms, probabilistic roadmap planners.

I. I NTRODUCTION

In recent years, probabilistic roadmap (PRM) plan-
ning [10] has emerged as the most successful approach for
motion planning of robots with many degrees of freedom
(dofs). It has enabled exciting new applications of motion
planning in robotics and beyond,e.g., manufacturing, com-
puter animation, and computational biology [11].

The main idea of PRM planning is tosampleat random a
robot’s configuration space and capture the connectivity of
the space in a graph, called the roadmap. Motion planning
is a provably hard computational problem [17]. Despite
strong experimental evidence showing the effectiveness of
PRM planners, their performance degrades when a robot’s
configuration space contains narrow passages. This diffi-
culty has long been recognized [1], [8], [10]. Several sam-
pling strategies, also called samplers, have been proposed
to address this issue by judiciously picking well-placed
points in crucial regions of a robot’s configuration space in
order to improve the accuracy of PRM planners [1], [3], [5],
[6], [7], [8], [12]. These samplers all have unique strengths,
but none of them solves the problem completely. More
importantly, given a specific motion planning problem,
there is no systematic way to determine which sampler
is most suitable.

In addition, some of these samplers rely on various
parameters to adjust their behaviors for improved per-
formance. For example, the Gaussian sampler [3] selects

small standard deviation large standard deviation

Fig. 1. Sampling distributions generated by Gaussian samplers with
different standard deviations. Shaded areas indicate obstacles. Black dots
indicate sampled points. Note, in particular, the difference in the number
of samples in the narrow passage.

the standard deviation of the Gaussian sampling distribu-
tion. Similarly the randomized bridge builder (RBB) [7]
selects the standard deviation of a Gaussian distribution
that determines the length of a line segment used to test
for narrow passages. For both the Gaussian sampler and
RBB, the resulting sampling distributions sometimes differ
substantially, depending on the parameter chosen (Fig. 1).
Experiments show that by choosing reasonable values for
the parameters, these more sophisticated samplers perform
significantly better than the uniform sampler used in the
classic PRM planner. However, these parameters depend on
configuration space properties, which are difficult to obtain
in advance. It is thus desirable to set these parameters
automatically.

Motivated by the above considerations, we present a
general and systematic approach for adaptively combining
multiple samplers. We call itadaptive hybrid sampling. It
assembles a set of component samplers with complemen-
tary strengths and forms a hybrid sampler that identifies
the best component samplers automatically. The component
samplers may consist of heterogeneous ones such as the
different samplers mentioned earlier, or they may consist
of homogeneous ones such as the Gausssian samplers with
different parameters. The overall performance of the hybrid
sampler certainly depends on the component samplers,
but our emphasis is to develop a general approach for
combining multiple samplers, independent of the specific
samplers used. We want to point out that hybrid sampling



cannot make bad component samplers good; instead, it tries
to combine component samplers so that their individual
strengths are preserved. We demonstrate this experimen-
tally. We also show, through a competitive analysis, that
under reasonable assumptions, the hybrid sampler has guar-
anteed performance, compared with the best component
sampler.

The basic idea of our approach is simple. We observe the
performance of component samplers and choose the ones
with good performance to run more frequently. However,
it is important to observe that the computational costs of
running various component samplers may differ. For ex-
ample, the uniform sampler takes only one collision check
in a single trial to sample a point from the configuration
space and determine whether it should be added to the
roadmap; the more sophisticated RBB takes up to three
collision checks. Thus, when measuring the performance of
component samplers, we must consider thecost involved.

In the following, Section II briefly reviews related work.
Section III gives an overview of PRM planning. Section IV
presents our algorithm for adaptively combining multiple
samplers for PRM planning. Section V and VI report
experiments with the algorithm and analyze its perfor-
mance formally. Finally, Section VII concludes with some
thoughts on future directions of research.

II. RELATED WORK

Earlier work on PRM planning explored the idea of
using multiple samplers or hybrid samplers [4], [5], [7], [9],
[10], [14]. Among the general approaches for combining
samplers, one possibility is to partition the configuration
space into regions and assign a different sampler for each
region manually [4] or through supervised learning [14].
Manual assignment is likely not effective, due to the inher-
ent complexity of motion planning [17]. On the other hand,
the learning-based assignment requires arepresentative
training set, which is difficult to define and construct.
Another approach is to combine samplers by weighting
their respective sampling distributions [7]. The question
is then how to choose the weights effectively. Our earlier
work on combining multiple samplers follows a similar
approach used here, but employs an adaptive strategy that
does not take into account the costs of component samplers
and offers no guaranteed performance [9].

The adaptive strategy that we use here is inspired by the
work in the on-line learning, in particular, prediction from
expert advice [13] and the multi-armed bandit problem [2].
However, in the work on learning, cost is not considered
in selecting component strategies.

III. OVERVIEW OF PRM PLANNING

A classic multi-query PRM planner computes feasible
motions of a robot in a given environment in two phases.
In the roadmap construction phase, it uses a sampler with a
suitable distribution to pick at random a set of points, called
milestones, in F , whereF is the collision-free subset of
the robot’s configuration space. It uses these milestones as
nodes to construct a roadmap graphG by adding an edge

between every pair of milestones that can be connected
by a simple collision-free path, typically, a straight-line
segment. After the roadmap has been constructed, multiple
queries can be answered efficiently in the query phase.
Each query consists of an initial configurations and a
goal configurationg, and asks for a collision-free path
connectings andg. The planner first finds two milestones
s′ and g′ in the roadmapG such thats (g, respectively)
and s′ (g′, respectively) can be connected by a collision-
free path, and then searches for a path betweens′ and g′

in G.
The effectiveness of PRM planners depends on two

crucial properties ofG: coverageand connectivity. First,
the union of thevisibility setsof all milestones inG should
cover a significant portion ofF , where the visibility set
of a point p ∈ F is defined as the set of all points in
F that can be connected top via a straight-line segment
in F . Otherwise, the PRM planner may have difficulty
in connecting a given query configuration to an existing
milestone. Second,G should capture the connectivity of
the underlying free spaceF that it represents. Any two
milestones in the same connected component ofF should
also be connected by a path inG. Without these two
properties, a PRM planner may give false negative answers
to many queries.

Clearly a key ingredient of PRM planners is the sampler
used for generating the milestones. So we focus on sam-
pling in this paper. Other details on the general framework
of PRM planning can be found in [10].

IV. A DAPTIVE HYBRID SAMPLING

Our adaptive hybrid samplerSada generates milestones
for a roadmapG by invoking a set of component samplers
S1, S2, . . . , SK . Intuitively, to take advantage of the
strengths of different component samplers,Sada should
invoke more frequently the ones that are more effective
in sampling a given configuration spaceC. However, it is
difficult to compute geometrical properties ofC and decide
a priori which component samplers are more effective.
Thus Sada observes the performance of the component
samplers and tries to identify the more effective ones
automatically in an on-line fashion. Specifically,Sada

maintains a probabilitypi for each component sampler
Si. In each step, it invokesSi with probability pi and
then updatespi according to the performance ofSi. This
way, Sada naturally favors component samplers with good
performance and invokes them more frequently. A sketch
of the PRM planner usingSada is given in Algorithm 1.

To be effective,Sada needs good ways to measure the
performance of component sampler and to adapt their
probabilities, which we describe in the two subsections
next.

A. Measuring the performance of component samplers

One way to evaluate a component samplerSi is to
measure theusefulnessof the milestones thatSi generates:
How much do these milestones improve the quality of the
roadmapG? To answer this question, after inserting a new



Algorithm 1 The PRM planner with an adaptive hybrid
sampler.

1: Let pi be the probability of picking a component
samplerSi. Initialize pi = 1/K, for i = 1, 2, . . . , K.

2: for t = 1, 2, . . . do
3: Pick a component sampler at random according to

the probability vector[p1, p2, . . . , pK].
4: Let Si(t) be the sampler chosen. RunSi(t) and

generate a new milestoneq.
5: Insertq into the roadmapG.
6: Nq← the set ofM milestones closest toq among all

existing milestones ofG within a distance ofDmax

from q, whereM andDmax are fixed constants.
7: for all q′ ∈ Nq do
8: if q′ andq lie in different connected components

of G then
9: Check whether there is a collision-free straight-

line path betweenq andq′. If so, insert an edge
betweenq andq′ into G,

10: Determine how much the new milestoneq′ improves
G, and update[p1, p2, . . . , pK ] accordingly.

milestoneq into G and connect it with existing milestones
in G, we classifyq into one of three types:

1) The milestoneq is not connected to any other mile-
stones inG. As a result,G has one more connected
component, which contains the single milestoneq.

2) The milestoneq is connected to milestones all be-
longing to the same connected component ofG. The
number of connected components ofG remains the
same.

3) The milestoneq is connected to milestones that
originally belong to different connected components
of G. As a result, these connected components are
merged into a single connected component.

According to the desirable roadmap properties described
in Section III, a milestone of Type 3 is clearly useful, as it
improves the connectivity ofG. A milestoneq of Type 1
is also useful, as it improves the coverage ofG. Without q,
if a query configurations lies nearq, s may not be visible,
i.e., connected via a collision-free straight-line segment, to
any milestone inG. The PRM planner would then likely
give a false negative answer to the query. For a milestone
q of either of these two types, we consider ituseful and
assign a reward of1.

A milestone q of Type 2 could possibly improve the
coverage ofG, as q’s visibility set may cover a subset
of F not visible to other milestones inG. However, if G
already contains many milestones, it is more likely that
such a milestoneq does not improve the coverage ofG.
Thus we consider a milestone of Type 2uselessand assign
a reward of0.

These same considerations were used in the visibility-
based PRM planner [16], and were shown to improve the
efficiency of PRM planning by rejecting the milestones that
are unlikely useful.

Other reasonable criteria of reward assignment can also
be used. For example, we may assign a partial reward
to a milestone of Type 2 if it has few other milestones
nearby. We may also assign a reward greater than 1 to
a Type 3 milestone if it is deemed more important to
merge together multiple connected components ofG. Our
adaptive strategy, to be described in the next subsection,
is general and does not depend on a particular reward
assignment scheme.

B. Adapting preferences on component samplers

The total reward that a component samplerSi receives
reflects its performance. Thus we would like to design an
adaptive strategy that dynamically changes the preferences
on the component samplers based on the total rewards
received. Ideally such a strategy should have the following
desirable properties:

• It should favor a component samplerSi if Si fre-
quently discovers useful milestones, and punishSi if
Si repeatedly draws useless milestones.

• It should be robust. It ensures that every component
samplerSi has a reasonable chance of being picked
so that the performance ofSi can be evaluated. Also
a bad component sampler may draw a few useful
milestones by chance. The adaptive strategy should
not change the preference drastically as a result of
this.

• It should be responsive. The performance of compo-
nent samplers may change over time. For example,
the uniform sampler may work well in the beginning
of roadmap construction, when there is a lot of wide
open free space to cover and most of the milestones
sampled are useful. Specialized samplers for narrow
passages may work well towards the end, when useful
milestones are rarely found. The adaptive strategy
should respond to such changes quickly.

• It should take into account the fact that the costs of
generating a milestone may differ among the compo-
nent samplers.

Our adaptive samplerSada maintains a weightwi for
component samplerSi. These weights “record” the past
performance of component samplers. Initially setwi = 1
for all i.

Based on the weights,Sada first computes acost-
insensitiveprobability p∗i for Si in each step:

p∗i = (1−γ)
wi(t)∑K

j=1 wj(t)
+γ

1
K

, i = 1, 2, . . . ,K, (1)

where wi(t) is the weight ofSi in step t and γ is a
fixed constant. The probabilityp∗i is a weighted sum of
two components. The first component is proportional to
the weight so that a component sampler with good past
performance is chosen with high probability. The second
component is the same for all component samplers so that
every one has a chance of being chosen, ensuring the
robustness ofSada.



To take into account the cost variations among the
component samplers, the probabilitypi of choosingSi in
each step is defined as

pi =
p∗i /ci∑K

j=1 p∗j/cj

, i = 1, 2, . . . , K, (2)

where ci is the average cost of runningSi to obtain a
milestone and inserting it into the roadmap. Consequently
a high-cost component sampler has a smaller probability
of being chosen.

Now suppose that a component samplerSi is chosen
and receives a rewardxi. For anySj , j 6= i, we assign its
rewardxj = 0. To update the weights, we first compute
for each component sampler the adjusted reward that takes
into account itscost-insensitiveprobability:

x′i = xi/p∗i , i = 1, 2, . . . , K. (3)

Next we update the weights

wi(t + 1) = wi(t) exp(γx′i/K), i = 1, 2, . . . , K. (4)

The new weight is the current weight multiplied by a factor
that depends exponentially on the reward received. The
exponential factors enable the weights to adapt quickly
with the samplers’ performance changes so thatSada is
responsive.

In Section VI, we will show that, under reasonable
assumptions, the adaptive samplerSada is competitive
against all individual component samplers, for a given total
computation cost. More precisely, ifR is the expected
total reward ofSada and R̂ is the total reward of the best
component sampler, we have

R̂− R≤ (e− 1)γR̂+
K ln K

γ
. (5)

C. Average costs of component samplers

The cost ci of generating a single milestone by a
component samplerSi can be defined in various ways,
depending on our objective.

Often a roadmap is used for processing many queries.
So we would like to have a high-quality roadmap and can
sometimes afford to spend substantial computation time for
roadmap construction. In this case, we simply setci = 1 for
all i, basically ignoring the computational cost in deciding
the preferences on component samplers.

On the other hand, if we are interested in not only the
quality of the roadmap but also the computation time for
roadmap construction, we then define the costci of generat-
ing a milestone bySi to be the number of collision checks
invoked by Si to acquire the milestone and connect it
with other existing milestones in the roadmap. To illustrate,
suppose thatSada uses two component samplersS1 andS2.
If both S1 andS2 obtain useful milestones with the same
frequency, butS1 uses fewer collision checks thanS2 on
the average,Sada will still favor S1. We use the number
of collision checks as a measure of computational cost,
because collision checking is the dominant factor in the
total computation time for PRM planners.

(a) A Puma robot on a holo-
nomic mobile base.

(b) A FANUC robot transfer-
ring a metal plate.

(c) Modified alpha puzzle
(v1.5).

(d) Two fixed-base robot ma-
nipulators performing spot-
welding.

Fig. 2. Test environments.

For many samplers, it is difficult to know in advance the
average number of collision checks needed for generating
a milestone, but we can estimate it by keeping a history
of the number of collision checks used by each component
sampler. In our current implementation, we simply use the
number of collision checks thatSi uses when it is last
chosen to generate a milestone. Initiallyci is set to be1
for all i, and is updated every timeSi generates a new
milestone.

V. EXPERIMENTAL RESULTS

We used four 3-D environments in our experiments
(Fig. 2). The manipulator robots used have six dofs. The
α-puzzle, shown in Fig. 2(c), can be considered as a free-
flying rigid body in 3-D space, also with six dofs.

• The environment in Fig. 2(a) contains several narrow
passages through the car’s door frame, where the
Puma arm can be inserted into the car body. The rest
of the space is wide-open. The query used in this case
requires the Puma arm to get out from the car body
and then be re-inserted into another place. So the robot
must go through one narrow passage to a wide-open
region and go through another narrow passage.

• For the environment in Fig. 2(b), the FANUC robot
has to transfer a metal sheet from a table to a press.
The robot’s motion near the initial and goal configu-



TABLE I

COMPARING THE PERFORMANCE OF VARIOUS SAMPLERS.

U RBB1 RBB5 RBB9 G1 G5 G9 FHS1 FHS2 AHS1 AHS2

Fig. 2(a) 1.00 33.55 49.16 43.89 5.28 5.69 5.78 8.95 9.77 0.53 0.16
Fig. 2(b) 5.61 2.65 2.27 1.87 1.00 1.18 1.51 4.39 2.78 0.13 1.06
Fig. 2(c) 17.28 2.21 1.00 1.13 3.56 4.31 4.07 7.18 3.56 1.50 1.17
Fig. 2(d) 4.45 6.37 5.19 5.69 1.39 1.00 1.58 1.65 1.93 1.15 0.91

rations are very constrained. Small changes in almost
any dof of the robot may cause a collision. However,
the narrow passages here are rather short.

• The environment shown in Fig. 2(c) has been sug-
gested as a benchmark for motion planning prob-
lems [1]. It consists of two tubes, each twisted into an
alpha shape, and the goal is to separate the intertwined
tubes. There are several versions of the problem. The
results shown here are for version 1.5, the easiest one.
The configuration space corresponding to this environ-
ment contains a somewhat long narrow passage.

• Finally, we illustrate the applicability of adaptive
hybrid sampling for environments that involve more
dofs. The environment in Fig. 2(d) shows two manip-
ulator robots with 6 dofs each and 12 dofs in total.

The configuration spaces for all these environments con-
sists of both narrow passages and relatively open free space.
Our purpose is to test how well hybrid samplers adapt in
such spaces.

The overall performance of adaptive hybrid samplers
depends on two factors: (i) the component samplers and
(ii) the strategy for combining them. In our experiments,
we used three component samplers of complementary
strengths. The uniform sampler (U) provides good cov-
erage of the configuration space. The Gaussian sampler
(G) [3] and the Randomized Bridge Builder (RBB) [7]
are good for improving the connectivity of roadmaps in
narrow passages. Since both the Gaussian sampler and
RBB are parametrized, we created several instances of each
in our experiments. Other samplers (e.g., [1], [6], [12])
can also be considered. Although the component samplers
clearly affect overall performance, making a reasonable,
not necessarily the best choice is not difficult, and the main
emphasis of this work is to investigate and demonstrate the
benefits of combining multiple samplers.

With this goal in mind, we ran experiments with three
types of samplers. The first type consists of the individual
samplers, U, G1, G2, . . ., and RBB1, RBB2, . . ., where the
subscripts indicate different parameter values. The second
type consists of hybrid samplers that combine component
samplers with fixed weights. The third type consists of
hybrid samplers using the adaptive strategy described in
Section IV. We created two such samplers, AHS1 and
AHS2. AHS1 uses 10 component samplers: the uniform
sampler and nine instances of RBB with different param-
eters. AHS2 uses 11 component samplers: the uniform
sampler, five instances of RBB and five instances of the
Gaussian sampler.

All the experiments were conducted on a Pentium 4 PC
with 512 Mb of physical memory.

A. The performance of adaptive hybrid samplers

Table I summarizes the results obtained. For every test
environment, we ran the planner until the roadmap being
constructed was sufficient to answer the given query. Every
test was repeated 20 times, and the results were averaged.
The numbers listed represent the relative performance,
which is defined as the ratio of the time used by a particular
sampler and the time used by the best individual sampler.
So the best-performing individual sampler has a ratio of
1.0, and and a ratio smaller than 1.0 indicates performance
better than of the best individual sampler. Columns 2–8
of Table I report the relative performance of individual
samplers. Due to the space limitation, we show only the
individual samplers with the best performance plus some
additional ones for comparison. The next two columns
report the results for fixed-weight hybrid samplers (FHS),
and the last two columns report the results for AHS.

Observe that among the individual samplers, the best
performer changes from one environment to another. It is
thus difficult for the user to choose a good sampler in
advance. For example, consider environment 2(a). Despite
the apparent presence of narrow passages, the uniform
sampler performs unexpectedly well. The reverse applies
to environment 2(b), where most of the space seems empty
and the robot has a lot of room to move. Apparently, the
regions close to the initial or goal configurations are critical
for solving the query, and it takes the uniform sampler more
time to succeed.

The fixed-weight hybrid samplers perform better than
some of the individual samplers. However, if the choices
of the weights are not good, the overhead generated by in-
efficient samplers can be significant. Consider, for example,
environment 2(a). Using the uniform sampler alone leads to
good performance. Adding RBB and the Gaussian sampler
increases the running time by nearly 9 and 10 times for
FHS1 and FHS2, respectively.

In contrast, the two adaptive hybrid samplers perform
consistently well in all environments. They adapt the
weights on the component samplers over time so that their
performance is always close to that of the best component
sampler. They are sometimes even better than the best
component sampler running alone, by taking advantage of
the complementary strengths of component samplers.



0 10000 20000 30000 40000 50000 60000 70000
Iteration

0

0.05

0.1

0.15

0.2

0.25

0.3

Pr
ob

ab
ili

ty

Uniform
RBB1
RBB3
RBB5
RBB7
RBB9
G1
G3
G5
G7
G9

Fig. 3. The change in probabilities for choosing component samplers
over time.

B. The behavior of adaptive hybrid samplers

To gain some intuition on the behavior of adaptive
hybrid samplers, we recorded the probabilities for pick-
ing component samplers at different times. Fig. 3 shows
the probability chart for AHS2 running on environment
2(d). In this chart, we have highlighted three component
samplers: the uniform sampler (marked with circles), one
RBB (marked with squares), and one Gaussian sampler
(marked with diamonds). At the beginning of roadmap
construction, the uniform sampler is very useful, and its
probability quickly increases, because there is a lot of
free space to cover. As more milestones are sampled,
the free space becomes well covered, and it is more and
more difficult for the uniform sampler to obtain useful
milestones. Consequently its probability decreases. Almost
the contrary happens with the Gaussian samplers, several
of which have probabilities increasing over time. In this
environment, the RBBs are not very helpful. The adaptive
strategy recognizes this and keeps their probabilities low
throughout.

VI. A NALYSIS

The experiments show that the adaptive hybrid sampler
Sada performs well. We now analyze the performance of
Sada formally through a competitive analysis [15]. Our
goal is to show that under reasonable assumptions, the
performance ofSada is comparable to that of the best
component sampler in terms of the total reward received.

For the sake of analysis, we create a set ofmodified
samplersS′1, S

′
2, . . . , S

′
K , as well as amodified adaptive hy-

brid samplerS′ada that usesS′1, S
′
2, . . . , S

′
K as component

samplers. Our plan is to show first thatS′ada is competitive
against the best component sampler. We then show that
Sada andS′ada are equivalent to obtain the competitive ratio
for Sada.

Similar to Sada, S′ada maintains a weightwi for each
component samplerS′i. In each step, it choosesS′i with
probability p∗i , specified in (1). IfS′i is not chosen, it re-
ceives a reward of 0. OtherwiseS′i runsSi with probability

1/ci

C
,

whereci is the cost of runningSi andC is a normalizing
factor chosen so that(1/ci)/C ≤ 1 for all i. If Si is run,S′i
receives the rewardxi of Si and incurs the corresponding
cost. If Si is not run, it receives a reward of 0 and incurs
no cost. The weight for eachS′i is then updated according
to (4).

Clearly the expected costc′i of runningS′i in each step
is

c′i = ci · 1/ci

C
+ 0 · (1− 1/ci

C
) =

1
C

So all modified samplers have exactly the same expected
cost in each step. We further assume that a new milestone
added to the roadmap does not affect the rewards of future
milestones significantly. This assumption is valid over a
small, finite number of steps. NowS′ada fits exactly into
the scenario covered by a multi-armed bandit theorem [2],
and it follows that

R̂
′ − R′ ≤ (e− 1)γR̂

′
+

K ln K

γ
, (6)

whereR′ andR̂
′

are the expected total rewards ofS′ada and
its best component sampler, respectively.

Note also that, althoughSi and S′i are not the same,
their expected total rewards are. This impliesR̂

′
= R̂. Now

to get a competitive ratio forSada, we just need to show
thatSada andS′ada are equivalent. For this, let us focus on
the how often they runSi, i = 1, 2, . . . , K, because they
can only receive rewards by runningSi and thus adapt
the probabilities of choosing their respective component
samplers. ForSada, this probability is given by (2). For
S′ada, it runs Si, if it choosesS′i and S′i runs Si, and the
probability isp∗i · 1

ci·C . Otherwise,S′ada moves to the next
step without doing anything, and the probability isq =

1 − ∑K
j=1

p∗j
cj ·C . Thus, the probability thatSi is the next

sampler thatS′ada actually runs is given by

+∞∑

j=0

qj · p∗i
ci · C =

1
1− q

· p∗i
ci · C =

p∗i /ci∑K
j=1 p∗j/cj

,

which is exactly same as that in (2). In addition,Sada

and S′ada update the weights determine the probabilities
of choosing component samplers, only ifSi is run and a
reward is received. ThusSada andS′ada runS1, S2, . . . , SK

with the same probabilities, implying that they are equiva-
lent andR = R′. Therefore, we have the following result.

Theorem 1:Suppose thatSada usesK component sam-
plers. LetR andR̂ be the expected total reward ofSada and
its best component sampler, respectively. For anyK > 0
andγ ∈ (0, 1],

R̂− R≤ (e− 1)γR̂+
K ln K

γ
.

Assuming that the reward function defined in Section IV-
A is a reasonable measure of a roadmap’s quality, this result
provides the guarantee that the adaptive hybrid sampler will



perform almost as well as the best component sampler,
regardless how badly the other component samplers may
behave. However, as we have mentioned earlier, this result
holds over a small, finite number of steps. It is possible
to extend it by periodically resetting the weights of com-
ponents sampler to 1; however, the bound then becomes
weaker and depends on the total number of steps run.

VII. C ONCLUSION AND FUTURE WORK

This paper presents an adaptive strategy for combining
multiple samplers for PRM planning. Experiments show
that our adaptive hybrid samplerSada hasconsistentlygood
performance for both rigid and articulate robots with up to
12 dofs in complex 3-D environments. Furthermore, un-
der reasonable assumptions,Sada is provably competitive
against its best component samplers in terms of the total
rewards received.

So far, we have been mostly comparing ourSada

against individual component samplers. However, some
preliminary experiments in Section V indicate thatSada

or a modification of it may be competitive against any
fixed-weight combination of component samplers. We are
currently exploring this possibility from both experimental
and theoretical angles.

ACKNOWLEDGMENTS

This work was supported in part by NUS un-
der grant R252-000-145-112 and by RGC under grant
HKBU2107/04E. We thank Lee Wee Sun from the National
University of Singapore for many valuable discussions of
the multi-armed bandit problem.

REFERENCES

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM:
An obstacle-based PRM for 3D workspaces,” inRobotics: The Algo-
rithmic Perspective: 1998 Workshop on the Algorithmic Foundations
of Robotics, P. Agarwalet al., Eds. Wellesley, MA: A. K. Peters,
1998, pp. 155–168.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The non-
stochastic multiarmed bandit problem,”SIAM J. Computing, vol. 32,
no. 1, pp. 48–77, 2002.

[3] V. Boor, M. Overmars, and F. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” inProc. IEEE
Int. Conf. on Robotics & Automation, 1999, pp. 1018–1023.

[4] L. Dale and N. Amato, “Probabilistic roadmaps—putting it all
together,” inProc. IEEE Int. Conf. on Robotics & Automation, 2001,
pp. 1940–1947.

[5] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A Voronoi-based
hybrid motion planner,” inProc. IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, 2001, pp. 55–60.

[6] C. Holleman and L. E. Kavraki, “A framework for using the
workspace medial axis in PRM planners,” inProc. IEEE Int. Conf.
on Robotics & Automation, 2000, pp. 1408–1413.

[7] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” inProc. IEEE
Int. Conf. on Robotics & Automation, 2003, pp. 4420–4426.

[8] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, “On
finding narrow passages with probabilistic roadmap planners,” in
Robotics: The Algorithmic Perspective: 1998 Workshop on the Algo-
rithmic Foundations of Robotics, P. Agarwalet al., Eds. Wellesley,
MA: A. K. Peters, 1998, pp. 141–154.

[9] D. Hsu and Z. Sun, “Adaptive hybrid sampling for probabilistic
roadmap planning,” National University of Singapore, Singapore,
Tech. Rep. TRA5/04, May 2004.

[10] L. Kavraki, P.Švestka, J. Latombe, and M. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration
space,”IEEE Trans. on Robotics & Automation, vol. 12, no. 4, pp.
566–580, 1996.

[11] J. Latombe, “Motion planning: A journey of robots, molecules,
digital actors, and other artifacts,”Int. J. Robotics Research, vol. 18,
no. 11, pp. 1119–1128, 1999.

[12] J.-M. Lien, S. Thomas, and N. Amato, “A general framework for
sampling on the medial axis of the free space,” inProc. IEEE Int.
Conf. on Robotics & Automation, 2003, pp. 4439–4444.

[13] N. Littlestone and M. Warmuth, “The weighted majority algorithm,”
Information & Computation, vol. 108, no. 2, pp. 212–261, 1994.

[14] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. Amato, “A
machine learning approach for feature-sensitive motion planning,”
in Proc. The Sixth Int. Workshop on the Algorithmic Foundations of
Robotics, 2004.

[15] R. Motwani and P. Raghavan,Randomized Algorithms. Cambridge
University Press, 1995.

[16] C. Nissoux, T. Siḿeon, and J.-P. Laumond, “Visibility based prob-
abilistic roadmaps,” inProc. IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, 1999, pp. 1316–1321.

[17] J. Reif, “Complexity of the mover’s problem and generalizations,”
in Proc. IEEE Symp. on Foundations of Computer Science, 1979,
pp. 421–427.


