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Abstract— Probabilistic roadmap (PRM) planners have
been successful in path planning of robots with many degrees
of freedom, but narrow passages in a robot’s configuration
space create significant difficulty for PRM planners. This
paper presents a hybrid sampling strategy in the PRM
framework for finding paths through narrow passages. A
key ingredient of the new strategy is thebridge test, which
boosts the sampling density inside narrow passages. The
bridge test relies on simple tests of local geometry and can
be implemented efficiently in high-dimensional configuration
spaces. The strengths of the bridge test and uniform sampling
complement each other naturally and are combined to gener-
ate the final hybrid sampling strategy. Our planner was tested
on point robots and articulated robots in planar workspaces.
Preliminary experiments show that the hybrid sampling
strategy enables relatively small roadmaps to reliably capture
the connectivity of configuration spaces with difficult narrow
passages.

I. I NTRODUCTION

During the past decade, probabilistic roadmap
(PRM) planners[ABD+98], [BK00], [BOvdS99], [HLM99],
[KŠLO96], [NSL99], [LK01] have emerged as a powerful
framework for path planning of robots with many degrees
of freedom (dofs). The main idea of a classic PRM
planner [KŠLO96] is to sample at random a robot’s
configuration space to construct a network, called a
roadmap, that captures the connectivity of the free space.
PRM planners are both simple to implement and efficient,
and thus have found many applications, including
robotics, virtual prototyping, computer animation, and
computational biology (see,e.g., [ABG+02], [ADS02],
[HLM99], [KL00], [LK01], [SLvGC01], [SLB99]).

Despite the success of PRM planners, path planning
for many-dof robots is difficult. Several instances of the
problem have been proven to be PSPACE-hard[HJW84],
[Rei79], [SS83]. It is unlikely that random sampling, the key
idea behind PRM planners, can overcome such difficulty
entirely. Indeed, narrow passages in a robot’s configuration
space pose significant difficulty for PRM planners. Intu-
itively a narrow passage is a small region critical to the
connectivity of the free space. We can also give formal
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Fig. 1. An example of samples generated with the bridge test. In this
and all later figures, black dots indicate sampled milestones, and shaded
regions indicate obstacles.

characterizations[BKL +97], [HLM99] using the notion of
visibility sets. To capture the connectivity of the free space
accurately, a PRM planner must sample configurations in
the narrow passages. This is difficult, because narrow pas-
sages have small volumes, and the probability of drawing
random samples from small sets is low.

In this paper, we propose a hybrid sampling strategy in
the PRM framework in order to find paths through narrow
passages efficiently. Key to our new strategy is thebridge
test, which boosts the sampling density inside narrow
passages and thus improves the connectivity of roadmaps.
In a bridge test, we check for collision at three sampled
configurations: the two endpoints and the midpoint of a
short line segments. We accept the midpoint as a new
node in the roadmap graph being constructed, if the two
endpoints are in collision and the midpoint is collision-
free. We call this a bridge test, because the line segment
s resembles a bridge: the endpoints ofs, located inside
obstacles, act as piers, and the midpoint hovers over the
free space. Inside narrow passages, buildingshort bridges
is easy, due to the geometry of narrow passages; in wide-
open free space, doing so is much more difficult. By
favoring short bridges, we increase the chance of accepting
configurations inside narrow passages (Fig. 1).

The bridge test uses only collision checking as a prim-
itive operation and does not require complex geometric
processing in the configuration space. It can be easily



generalized to high-dimensional configuration spaces. It
is also simple to implement and runs efficiently.

While being very effective in boosting the sampling
density inside narrow passages, the bridge test severely
reduces the sampling density in wide-open collision-
free regions. This may be undesirable, because nodes
in the roadmap need to cover the free space ade-
quately[BKL +97]. Interestingly the difficulty encountered
by the bridge test can be overcome by the uniform
sampling strategy, which tends to place many samples in
wide-open free space. The strengths of these two strategies
complement each other naturally, and are combined with
suitable weights to produce a hybrid sampling strategy
to achieve better results. Our approach is related to the
stratification methods for Monte Carlo integration[KW86].

The difficulty posed by narrow passages and its impor-
tance were noted in early work on PRM planners (see,
e.g., [KŠLO96]) and were later articulated in[HKL +98].
Several sophisticated sampling strategies can alleviate
this difficulty, but a satisfactory answer remains elusive.
One possibility is to sample more densely near obstacle
boundaries[ABD+98], [BOvdS99], because configurations
inside narrow passages lie close to obstacles. This ap-
proach admits a simple, efficient algorithm, the Gaussian
sampler [BOvdS99]. However, many configurations near
obstacle boundaries lie outside of narrow passages and do
not help in improving the connectivity of roadmaps. So
despite the improvement, sampling near obstacle bound-
aries may waste many samples in uninteresting regions.
See Fig. 3 for a comparison with samples generated
with the bridge test. In some special cases, the Gaussian
sampler can be extended to reduce the number of wasted
samples by paying a higher computational cost[BOvdS99].
Other approaches for sampling narrow passages include
dilating the free space[HKL +98] and retracting to the
medial axis of the free space[WAS99]. Both require com-
plex geometric operations that are difficult to implement
in high-dimensional configuration spaces. The visibility
roadmap[NSL99] is related to the narrow passage problem.
It tries to reduce the number of unnecessary samples by
checking their visibility.

The rest of the paper is organized as follows. Section II
gives an overview of our planner. Sections III and IV
describe and analyze the bridge test, and show how to
combine it with uniform sampling to produce the hybrid
sampling strategy. Section V reports experimental results.
Section VI discusses alternatives to some choices made
in our current planner. Section VII summarizes the main
results and points out direction for future research.

II. OVERVIEW OF THE PLANNER

A classic multi-query PRM planner proceeds in two
stages. In the first stage, it tries to construct a roadmap
graphG that captures the connectivity of the free space
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Fig. 2. Building short bridges is much easier in narrow passages than
in wide-open free space.

F . The nodes ofG are randomly sampled points fromF ,
calledmilestones. There is an edge between two milestones
if they can be connected via collision-free canonical paths,
typically, straight-line segments. A good roadmapG has
two properties. First, the set of milestones inG coversthe
free space well. In other words, for every pointp ∈ F ,
there is a collision-free straight-line segment betweenp
and a milestone inG with high probability. Second, there is
an edge inG between two milestonesq andq′, if and only
if q andq′ lie in the same connected component ofF . After
constructing the roadmap, the planner searches it for a
collision-free path between two given query configurations
in the second stage. In this paper, we address only the first
stage, roadmap construction. Methods for the second stage
are well-known[KŠLO96], [ABD+98].

Our goal is to build a good roadmap by sampling a small
number of well-placed milestones. To obtain milestones in
narrow passages, we pay a higher cost per milestone than
simpler strategies such as uniform sampling; however, our
roadmap size is often much smaller, thus saving lots of
time in checking whether collision-free straight-line paths
exist between pairs of milestones. The trade-off is well
worthwhile as shown by our experiments (see Section V).

The sampling distribution that we use is a weighted
mixture of πB, the distribution generated by the bridge
test, andπU, the uniform distribution. We describe how to
constructπB and combine the two distributions in the next
two sections. After generating the milestones, for every
pair of milestones close to each other, we check whether
a collision-free straight-line segment exists between them.
If so, we insert an edge between them into the roadmap.

III. T HE BRIDGE TEST

Narrow passages in a freeF are small regions critical
in preserving the connectivity of a roadmap built inF . It
is difficult to sample in narrow passages because of their
small volumes. Any sampling distribution based on the
volumes is likely to fail. In particular, the uniform distribu-
tion does not work well. Furthermore, when dealing with
many-dof robots, we do not have an explicit representation
of configuration spaceC and cannot locate narrow passages
directly by processing the global geometry ofC.

The bridge test is designed to boost the sampling density
inside narrow passages using only simple tests of local



geometry. It is based on the following observation. A nar-
row passage in ann-dimensional configuration space has
at least one directionv, in which the robot’s motion is very
restricted. Small perturbation of the robot’s configuration
along v results in collision with obstacles. The robot is
free to move only in those directions perpendicular to the
restricted ones. Therefore, for a collision-free pointp in
a narrow passage, it is easy to sample at random a short
line segments throughp such that the endpoints ofs lie
in obstacles inC (Fig. 2a). The line segments is called
a bridge, because it resembles a bridge across the narrow
passage, with the endpoints ofs acting as piers and the
point p hovering over the free space. We say that a point
p ∈ F passes the bridge test, if we succeed in building a
bridge throughp. Clearly buildingshort bridges is much
easier in narrow passages than in wide-open free space
(Fig. 2). By favoring short bridges over longer ones, we
increase the chance of accepting points in narrow passages.

Sampling milestones.To sample a new milestone using
the bridge test, we pick a line segments from C at random
by choosing its endpoints and determine whethers passes
the bridge test. If so, we insert the midpoint ofs into the
roadmapG as a new milestone. The details are shown in
Algorithm 1, which is called Randomized Bridge Builder
(RBB). RBB calls the functionCLEARANCE to determine
whether a point inC is collision-free.

Algorithm 1 Randomized Bridge Builder (RBB).

1. repeat
2. Pick a pointx from C uniformly at random.
3. if CLEARANCE(x) returnsFALSE then
4. Pick a pointx′ in the neighborhood ofx accord-

ing to a suitable probability densityλx.
5. if CLEARANCE(x′) returnsFALSE then
6. Setp to be the midpoint of line segmentxx′.
7. if CLEARANCE(p) returnsTRUE then
8. Insertp into G as a new milestone.

To perform the bridge test, RBB uses only one geometric
primitive, CLEARANCE, which can be implemented very
efficiently using a collision detection algorithm (see,e.g.,
[Qui94], [GLM96]). The bridge test is purely local and does
not require processing the global geometry ofC.

RBB pays a higher cost to obtain a milestone than
simpler strategies such as uniform sampling, because it
accepts a milestone only if a sampled point passes the
bridge test, which makes three calls toCLEARANCE each.
However, RBB generates milestones in narrow passages
critical in capturing the connectivity of the free space,
resulting in much smaller roadmaps; lots of computation
time is saved in checking whether collision-free paths
exist between pairs of milestones, a much more expensive
operation than the simple collision checkCLEARANCE.

Choosing the probability densityλ. The density function
λ determines how frequently a particular bridge is chosen
for a test. Short bridges are preferred over longer ones in
order to increase the probability of sampling in narrow
passages. We chooseλx to be a Gaussian with its center
at x and the same small standard deviationσ for each
dimension ofC. If we havea priori information on the
narrow passages, then there may be other distributions
more suitable than this radially symmetric Gaussian. See
Section VI for further discussion.

Analysis of the sampling distribution. One may wonder:
what doesπB, the probability density created by RBB, look
like? To calculateπB, let us first defineX and X ′ to be
two random variables, representing respectively the two
endpoints of a bridge. The first endpointX is distributed
uniformly over the set of configuration-space obstacles
B = C\F . So the densityfX(x) is non-zero if and only
if x lies in B. Assume, without loss of generality, thatB
has volume 1. ThenfX(x) is 1 if x ∈ B and 0 otherwise.
GivenX = x, we choose the other endpointX ′ according
to the densityλx. The pointX ′ is accepted only if it lies
in B. Let I be a binary function such that for any point
p ∈ C, I(p) = 1 if p ∈ B and 0 otherwise. The conditional
density ofX ′ given X is given by

fX′|X(x′ | x) = λx(x′)I(x′)/Zx,

whereZx =
∫
C λx(x′)I(x′) dx′ is a normalizing constant.

To calculateπB at a pointp ∈ F , we condition onX:

πB(p) =
∫

C
fX′|X(x′ | x)fX(x) dx. (1)

Note thatp is the midpoint of the line segmentxx′ and so
x′ = 2p − x. Substituting the expressions forfX , fX′|X ,
andx′ into (1), we have

πB(p) =
∫

B
λx(2p− x)I(2p− x)/Zx dx. (2)

Recall thatλx is a Gaussian with its center atx and a
small standard deviation. The densityλx is large if x′ =
2p−x lies close tox. Furthermore, the integrand in (1) is
non-zero only ifI(2p − x) = 1, i.e., x′ ∈ B. For a point
p in a narrow passage, both conditions are more likely
satisfied, resulting in a large value forπB at p.

Comparison with sampling near obstacle boundaries.
RBB is related to the Gaussian sampler[BOvdS99]. Both
use one simple geometric primitiveCLEARANCE to create
favorable distributions. Their objectives, however, are quite
different. RBB increases the sampling density inside nar-
row passages; the Gaussian sampler increases the sampling
density near obstacle boundaries. RBB is slightly more
expensive: it makes one more call toCLEARANCE per
sample than the Gaussian sampler. However, by focusing
on narrow passages, RBB gains efficiency by avoiding
sampling uninteresting obstacle boundaries that do not
contribute to improving the connectivity of roadmaps.
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Fig. 3. The samples generated by (a) the Gaussian sampler and (b)
RBB.

See Fig. 3 for a comparison between these two sam-
pling strategies. In some special cases, an extension of
the Gaussian sampler can reduce the number of wasted
samples by picking a triple instead of a pair of points and
checking that two of the three picked points lie indifferent
obstacles[BOvdS99]. It is unclear how well this extension
works in general,e.g., in a narrow passage formed by one
single non-convex obstacle.

The idea of sampling near obstacle boundaries fails
when the boundaries are uninteresting. The bridge test may
fail, too, though less often. This happens whenF contains
sharp corners, because near the tip of a corner, it is easy to
build short bridges. In Fig. 3(b), RBB generated a number
of milestones in the six corners ofF . These samples are
unhelpful. Nonetheless, our experiments suggest that the
benefits gained by sampling in narrow passages outweigh
the computation time wasted in sampling near sharp cor-
ners (see Section V).

IV. COMBINING COMPLEMENTARY SAMPLING

DISTRIBUTIONS

We have seen that the bridge test is effective in boosting
the sampling density inP, the subset ofF occupied by
narrow passages. The densityπB is heavily biased towards
P. At the same time,πB penalizes wide-open collision-
free regions: few points are sampled inF\P. This may
be undesirable, because a good roadmap must cover the
entire free space adequately.

Interestingly we can make up the deficiency ofπB

with the uniform distributionπU, which samplesF with
probability proportional to the volumes of subsets inF .
For πU, most samples fall intoF\P. The two sampling
distributions complement each other:πU provides good
coverage ofF\P, and πB samples more densely inP
and thus improves the connectivity of the roadmap. They
are combined to produce a hybrid sampling distribution:

π = (1− w) · πB + w · πU, (3)

wherew is a weight, with0 ≤ w ≤ 1. The choice ofw
depends on the difficulty of sampling in narrow passages
and the number of milestones needed to coverF . The
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Fig. 4. The hybrid sampling distributionπ. The distributionsπB andπU

perform well onP andF\P, respectively. Combining them with suitable
weights leads to good performance over the entire sampling domain.

best choice depends on the specific problem. Currently
we setw manually to favorπB, because we assume thatF
contains at least some difficult narrow passages. We intend
to conduct more experiments to determine the range ofw
that works well for typical problems.

One fruitful way of thinking about this hybrid distri-
bution π is to divide the free spaceF into two subsets,
the narrow passagesP and its complementF\P. We
use a different sampling strategy tailored to each subset
to achieve good performance over the entire sampling
domain. See Fig. 4 for an illustration. This approach
is related to the stratification methods for Monte Carlo
integration[KW86] and the multiple-importance sampling
for ray-tracing photo-realistic images[VG95].

The significance of a hybrid distribution is not about
putting together two distributions, but rather about identi-
fying distributions complementary in their strengths and
combining them so that their individual strengths are
preserved. Our approach differs from the previous work
(e.g., [DA01]) in that the two sampling distributionsπB

andπU naturally complement each other. No computation
is necessary to explicitly decompose the sampling domain.

To implement the hybrid distribution, we can certainly
generate new random points fromπU, but actually we can
get at least some of these points “for free” by reusing the
points rejected in line 3 of Algorithm 1.

V. I MPLEMENTATION AND EXPERIMENTS

To test the hybrid sampling strategy, we applied it
to both a point robot and articulated robots in planar
environments. Preliminary experiments indicate that our
planner is able to efficiently capture the connectivity of
free spaces containing difficult narrow passages.

Implementation details. Two parameters need to be cho-
sen for our hybrid sampling strategy. First, for RBB, we
chose the density functionλ to be an independent Gaussian
for each dof of a robot, with a small standard deviationσ to
bias towards sampling short bridges. In our experiments,
we set σ to be roughly 10% of the smallest allowable
range of motion among all dofs. Makingσ too small
may adversely impact the performance of the planner. The
reason is that if a bridge is too short, the second endpoint
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Fig. 5. Environments used for testing our planner.

(a) (b)

Fig. 6. Experiments with (a) a 7-dof articulated robot with a fixed base
and (b) an 8-dof articulated robot with a mobile base.

of the bridge would be unable to cross the narrow passage
and fall in F , causing many potentially useful points to
fail the bridge test. The second parameter is the weight
for combiningπB andπU. We use the ratio 5:1 in favor of
πB, meaning that for every five milestones generated from
πB, we pick one milestone fromπU.

Our program was implemented in Java, and the results
reported below were acquired from a PC with a 1.8GHz
Pentium 4 processor.

Experimental results. We first tested our planner on a
point robot in planar environments, containing different
kinds of narrow passages. Environment A (Fig. 1) consists
of four chambers connected by multiple narrow corridors.
To go from one chamber to the diagonally opposite one,
the point robot must pass through two narrow corridors.
Environment B (Fig. 3) contains a very narrow and short
corridor that connects two large square chambers. The
corridor in environment C (Fig. 5a) is longer and has
multiple turns. So each milestone in the corridor has low
visibility and covers only a small portion of the free space.
Environment D (Fig. 5b) contains a very long narrow
corridor. It illustrates an interesting scenario in which RBB
and the Gaussian sampler behave similarly, because almost
every point in the narrow passages lies close to obstacle
boundaries andvice versa.

We also performed preliminary experiments with planar
articulated robots. Environment E contains a seven-dof

TABLE I

PERFORMANCE STATISTICS OF DIFFERENT SAMPLING STRATEGIES.

Env. Sampler Nmil Nclear Ncon Time (sec.)

uniform 773 1859 3184 0.44
A RBB 46 4071 266 0.08

hybrid 63 4543 384 0.09
uniform 675 1710 2685 0.81

B RBB 16 3040 46 0.03
hybrid 22 3836 75 0.04
uniform 566 963 2556 0.19

C RBB 359 47372 1674 0.44
hybrid 69 6680 515 0.06
uniform 111 315 839 0.03

D RBB 101 2255 873 0.04
hybrid 98 1776 951 0.04

uniform 3200 4677 37270 325
E RBB 1092 735056 20206 148

hybrid 1164 638421 19303 174
uniform 13699 24005 83170 1431

F RBB 1091 806759 23290 193
hybrid 384 231305 3146 38

Nmil : number of milestones in the resulting roadmap
Nclear: number of calls toCLEARANCE
Ncon : number of calls to check collision-free connection be-

tween two milestones

articulated robot with a fixed base (Fig. 6a). At both the
initial and goal configurations, the robot is trapped in
narrow openings and must execute difficult maneuvers in
order to find a path. Fig. 6b shows environment F. The
workspace is similar to that in environment C, but the
robot is an articulated robot with six links and a mobile
base, eight dofs in total.

For each of the environments A–D, we generated 30
random queries that require the point robot to go through
narrow passages. For environment E and F, we handpicked
the queries. We then performed 10 independent runs for
each query. We terminated the planner as soon as a path
was found between query configurations, and recorded the
running times and other statistics. For comparison, we per-
formed the same experiments with both pure RBB (without
mixing with uniform sampling) and hybrid sampling. We
also used uniform sampling as a way to calibrate the
relative difficulty of queries. The results for each environ-
ment and sampling strategy are averaged and reported in
Table I. Note that the running times were acquired from a
Java implementation. So the relative performance is more
important than the absolute values of running times.

Table I shows consistent results from experiments on
different robots and environments. Hybrid sampling is
usually the best performer in terms of running times.
Although it rejects more samples and makes more calls
to CLEARANCE, it produces a roadmap with a smaller
number of milestones and thus greatly reduces the time
in checking that pairs of milestones can be connected
via collision-free straight-line segments. In general, such
a connection check is much more expensive than a call



to CLEARANCE. So hybrid sampling was able to achieve
good overall performance.

For some queries, pure RBB performs as well as hybrid
sampling. However, when the initial and goal configura-
tions lie in wide-open free space (environment C and F),
pure RBB performs much worse, because it places almost
all samples inside narrow passages and does not cover the
free space well. In such cases, pure RBB may need to use
a largerσ to cover the free space.

The only exception to our general observations is en-
vironment D. As expected, all three sampling strategies
generated roadmaps of comparable sizes to answer the
queries. However, since hybrid sampling and RBB made
more calls toCLEARANCE, they took slightly longer.

VI. D ISCUSSION

In designing the bridge test, the choice of the density
function λ is important. So far we have assumed thatλ
is a radially symmetric Gaussian, which works well if a
robot’s dofs are all symmetric,e.g., a point robot. The
symmetry breaks down on free-flying rigid-bodies and
articulated robots, for which each dof must be scaled to
reflect its influence on the global movement of the robot.
To deal with the problem, we assign a different Gaussian
standard deviation to each dof. This simple extension has
already been implemented for planar articulated robots in
our experiments.

Furthermore, one may question whether there are other
density functions better than the Gaussian. In practice, we
may have some estimates on the width of narrow passages.
For instance, if a robot is stuck in a narrow corridor, it has
a rough idea of how much room there is to maneuver based
on its knowledge of the environment. Let us assume that
the width of the narrow passage is roughlyc. Then it is
useless to sample bridges much shorter thanc, because the
bridge test is bound to fail, as explained in Section V. Soλ
should have a shape that peaks at roughlyc and decreases
quickly to 0 as the length of the bridge gets much shorter
or longer.

VII. C ONCLUSION AND FUTURE WORK

We have presented a new sampling strategy in the PRM
framework for finding paths through narrow passages. A
key ingredient of the new strategy is the bridge test, which
boosts the sampling density inside narrow passages. The
bridge test makes use of only one geometric primitive,
which checks whether a configuration is collision-free.
The bridge test is purely local and can be implemented
efficiently in high-dimensional configuration spaces. The
strengths of the bridge test and the uniform sampling
are complementary. We combine them to obtain a hybrid
sampling strategy that generates small roadmaps that cover
the free space well and have good connectivity. In our
preliminary tests on a point robot and articulated robots

with up to eight dofs, our planner was able to reliably
capture the connectivity of free spaces with difficult nar-
row passages.

Several interesting issues regarding the bridge test and
the hybrid sampling strategy require further exploration.

We are conducting additional experiments with high-dof
planar articulated robots to better understand the strength
and weakness of our planner. We are also implementing
the planner for free-flying rigid bodies in 3-D workspaces.
Based on our experience with PRM planners and that of
other researchers, we are confident that the new planner
will perform well in 3-D workspaces.

We would also like to further develop the hybrid sam-
pling strategy. The important issues here are to identify
sampling distributions that are naturally complementary
and do not require explicitly decomposing the sampling
domain, and to find a systematic weight assignment
method that preserves the strengths of individual distri-
butions.
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