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Abstract
The difficulty of POMDP planning depends on
the size of the search space involved. Heuris-
tics are often used to reduce the search space
size and improve computational efficiency; how-
ever, there are few theoretical bounds on their
effectiveness. In this paper, we use the cover-
ing number to characterize the size of the search
space reachable under heuristics and connect the
complexity of POMDP planning to the effective-
ness of heuristics. With insights from the the-
oretical analysis, we have developed a practical
POMDP algorithm, Packing-Guided Value Iter-
ation (PGVI). Empirically, PGVI is competitive
with the state-of-the-art point-based POMDP al-
gorithms on 65 small benchmark problems and
outperforms them on 4 larger problems.

1. Introduction
Partially observable Markov decision processes (POMDPs)
provide a rich mathematical model for planning under un-
certainty (Kaelbling et al., 1998). However, POMDPs are
computationally intractable to solve exactly (Madani et al.,
1999). In the past decade, enormous progress has been
made in computing approximate POMDP solutions (Pineau
et al., 2003; Smith & Simmons, 2005; Kurniawati et al.,
2008; Ross et al., 2008; Bonet & Geffner, 2009; Silver &
Veness, 2010; Zhang & Chen, 2012; Grześ et al., 2013;
Shani et al., 2013).

On the theoretical front, the covering number of the reach-
able space has been proposed to quantify the complex-
ity of POMDP planning (Hsu et al., 2007), particularly,
for point-based methods (Smith & Simmons, 2005; Pineau
et al., 2006; Shani et al., 2007; Kurniawati et al., 2008;
Shani et al., 2013). Intuitively, the covering number is the
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minimum number of fixed-size balls required to cover the
search space so that all points in the search space lie within
some ball. Both theoretical and empirical results support
the covering number as a promising complexity measure
for POMDP planning and learning (Hsu et al., 2007; Zhang
et al., 2012).

In practice, many well-known POMDP planning algo-
rithms use the lower and upper bounds of the optimal value
function (Hauskrecht, 2000; Smith & Simmons, 2005; Kur-
niawati et al., 2008), or just the upper bound as heuris-
tics (Hauskrecht, 2000; Bonet & Geffner, 2009) in guid-
ing the search towards the optimally reachable space. Al-
though these algorithms have made impressive progress in
computing approximate solutions by using heuristics and
have been successfully applied in several practical domains
(Hsiao et al., 2007; Pineau et al., 2006; Hsu et al., 2008;
Kurniawati et al., 2011; Grześ et al., 2013), few existing
works have analyzed the relationship between the quality
of the heuristics and the complexity of POMDP planning.

In this paper, we fill this gap by connecting the size of
search spaces reachable under heuristic, as measured by the
covering number, to the complexity of POMDP planning.
We consider two cases, when only an upper bound heuristic
is available and when both upper and lower bound heuris-
tics are available. We show that an ε-optimal solution can
be computed in time polynomial in the covering number for
the both cases. This suggests one avenue of handling prac-
tical problems: use domain knowledge to find good upper
and lower bounds that effectively reduce the covering num-
ber of the reachable space under the heuristics.

One key idea behind our theoretical analysis is to build a
separate packing of sampled beliefs at each level of the
search tree to control the number of beliefs at level d,
so that it does not grow exponentially in d. Packing is
closely related to covering and is used to create a cover-
ing in the proofs. We exploit this proof idea in building a
practical point-based algorithm, Packing-Guided Value It-
eration (PGVI). In addition to providing theoretical guar-
antees, packing helps PGVI to identify interesting parts of
the space that is sparsely packed and to sample new beliefs
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and perform point-based backup there. Compared with
state-of-the-art point-based POMDP algorithms, PGVI is
very efficient on 65 small benchmark problems and 4 larger
robotic problems.

2. Preliminaries
A POMDP models an agent taking a sequence of actions in
a partially observable stochastic environment to maximize
its total reward (Kaelbling et al., 1998). A discrete and
discounted POMDP model can be formally defined by a
tuple (S,A,Z, T,Ω, R, γ). In the tuple, S, A and Z are the
finite and discrete state space, action space, and observation
space, respectively. At each time step, the agent takes some
action a ∈ A and moves from a start state s to an end state
s′. The end state s′ is given by a state-transition function
T (s, a, s′) : S × A × S → [0, 1], where T (s, a, s′) =
Pr(s′|s, a). The agent then makes an observation to gather
information on its current state. The outcome of observing
z ∈ Z is given by an observation function Ω(a, s′, z) :
A× S × Z → [0, 1], where Ω(a, s′, z) = Pr(z|a, s′). The
reward function R(s, a) : S × A → R gives the agent
a real-value reward after it takes action a in state s. We
let Rmax = maxs∈S,a∈A |R(s, a)|. The last element γ ∈
(0, 1) is the discount factor. Thus, the expected total reward
is given by E[

∑∞
t=0 γ

tR(st, at)], where st and at are the
agent’s state and action at time t.

A belief state (or belief ) b is a discrete probability dis-
tribution over the state space, whose element b(s) gives
the probability that the system’s state is s. A belief state
space B is comprised of all possible beliefs. A search
space B is a subset of B and can be represented as an
AND/OR belief tree TB rooted at the initial belief b0. In
the tree, nodes and edges correspond to beliefs and action-
observation pairs, respectively. Suppose that a child node
b′, denoted by τ(b, a, z), is connected to its parent b by an
edge (a, z). We can compute b′ using the Bayesian formula
b′(s′) = 1

Pr(z|b,a)Ω(a, s′, z)
∑
s∈S T (s, a, s′)b(s), where

Pr(z|b, a) =
∑
s′∈S Ω(a, s′, z)

∑
s∈S T (s, a, s′)b(s)

(Kaelbling et al., 1998).

A POMDP solution is a policy π that specifies the action
π(b) for every belief b. Our goal is to find an optimal pol-
icy π∗ that maximizes the expected total reward. A policy π
induces a value function V π(b) that specifies the expected
total reward of executing π starting from any belief b. The
optimal value function V ∗(b) is the value function asso-
ciated with the optimal policy π∗. We define Q∗(b, a) as∑
s∈S R(s, a)b(s) +

∑
z∈Z Pr(z|b, a)V ∗(τ(b, a, z)), and

therefore, have V ∗(b) = maxa∈AQ
∗(b, a). We denote V L

and V U as the lower and upper bounds of V ∗, respectively.
Both V L and V U are assumed to be uniformly improvable
(Smith, 2007) in this paper, meaning that applying a point-
based update brings them everywhere closer to V ∗. We

also assume that we are provided with heuristics, f and g,
that can provide initial values V Lf to the lower bound and
V Ug to the upper bound. Similarly, we use QL, QU , QLf
and QUg for the corresponding bounds of Q∗. In practice,
the bounds forQ can be constructed from the bounds for V
by one step lookahead (Hauskrecht, 2000).

We describe the mathematical definition of the covering
number of a set of points as follows:

Definition 1. (Hsu et al., 2007) Given a metric space X ,
a δ-cover of a set B ⊆ X is a set of points C ⊆ X such
that for every point b ∈ B, there is a point c ∈ C with
||b − c|| ≤ δ. The δ-covering number of B, denoted by
CB(δ), is the size of the smallest δ-cover of B.

Intuitively, the covering number is equal to the minimum
number of balls of radius δ needed to cover the set B. In
this paper, we measure the distance between belief points
in an L1 metric space B: for b1, b2 ∈ B, ||b1 − b2|| =∑
s∈S |b1−b2|. We refer a belief b’s δ-region as a subspace

in X that satisfies ||b′ − b|| ≤ δ for all b′ in the region.

We use the covering number to measure the size of belief
spaces. The set of beliefs that are reachable from the initial
belief b0 under arbitrary sequences of actions and observa-
tions is denoted by R(b0). The optimally reachable belief
space R∗(b0) refers to the set of beliefs that are reachable
from b0 under some optimal policy. We denote C(δ) as the
δ-covering number ofR(b0), C∗(δ) as the δ-covering num-
ber ofR∗(b0), and TR as the tree rooted at b0 consisting of
beliefs in the reachable belief spaceR(b0).

3. Related Work
Kakade and his colleagues applied the notion of the cov-
ering number into reinforcement learning (Kakade et al.,
2003). Later, Hsu et al. (2007) extended use of covering
number from MDPs to POMDP planning. Recent research
work provided empirical evidence that estimated covering
number ofR(b0) was better than the state space size in pre-
dicting the difficulty of POMDP planning and learning on
small benchmark problems (Zhang et al., 2012).

In (Hsu et al., 2007), the key point of connecting the cover-
ing number to POMDP planning complexity is the follow-
ing: for any two beliefs, if their distance is small, then their
optimal values are also similar. Thus, when the value of a
belief b is accurate enough, it can be used to estimate the
value of beliefs that are close to b with only small error. By
stopping the search when it is near to a region that has been
searched before, the covering number can be exploited to
bound the width of the search tree. Together with the idea
of bounding the depth of the search tree by the discount fac-
tor, it was shown that an approximately optimal POMDP
solution can be computed in time at most quadratic poly-
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nomial in both C(δ) and C∗(δ).

In the past decade, point-based value-iteration algorithms
have made impressive progress in computing approximate
solutions to large POMDPs (Shani et al., 2013). Their
success is mainly due to the efficient sampling strategies.
Point-Based Value Iteration (PBVI) (Pineau et al., 2003)
prefers to sample beliefs that are far away from those sam-
pled beliefs. Heuristic Search Value Iteration (HSVI2)
(Smith & Simmons, 2005), SARSOP (Kurniawati et al.,
2008) and GapMin (Poupart et al., 2011) sample beliefs by
using both the lower and upper bound heuristics. The lower
bound is usually obtained by using the blind policy and the
upper bound is often initialized by the QMDP or Fast In-
formed Bound (FIB) method (Hauskrecht, 2000). These
algorithms use the action-selection strategy that chooses
the action with the highest upper bound. Compared with
HSVI2 and SARSOP, GapMin strives to compute tight
bounds by performing a prioritized breadth-first search,
propagating upper bound improvements, and computing
exact interpolations by Linear Programming (LP) (Poupart
et al., 2011). However, the idea of using the insight from
the covering number to control the width of the search tree
has not been exploited in the three state-of-the-art algo-
rithms. The performance guarantee for HSVI2, provided in
(Smith, 2007), is O(h · |A|h|Z|h), where h is the height of
the search tree. It is essentially the time required to search
the whole depth-bounded search tree.

4. Complexity of Heuristic-Based POMDP
Planning

We examine the complexity of POMDP planning when var-
ious heuristics are used. We show that these heuristics can
be used to define various search spaces and that approx-
imately optimal POMDP solutions can be found in time
polynomial in the covering number of these search spaces.

We start with insights from practical POMDP algorithms
such as HSVI2 and SARSOP. These algorithms are action
optimistic – they select actions with the highest QU dur-
ing the search process. Since V ∗(b) ≤ maxa∈AQ

U (b, a)
and QU is uniformly improvable, we know that action op-
timistic algorithms have zero probability of visiting beliefs
under the action branch a that satisfies QUg (b, a) < V ∗(b).
This allows us to define the search space reachable under
action optimistic algorithms with heuristic g, RUg (b0), as
the set of beliefs b that can be reached from b0 by taking
action branches a that satisfy QUg (b, a) ≥ V ∗(b).

The size of RUg (b0) gives a reasonable indication of the
complexity of solving the POMDP exactly. However, we
would like to approximate in two ways: by fixing the depth
of the search tree and by interpolating the values of nearby
beliefs to take advantage of the Lipschitz property. We

define CUg (δ) as the δ-covering number of RUg (b0). Inter-
estingly, approximately optimal POMDP solutions can be
found in time polynomial in CUg (δ). As CUg (δ) depends on
QUg , the covering number of the space reachable under ac-
tion optimistic algorithms is a reasonable measure of the
quality of the heuristic. Note also that RUg (b0) becomes
R∗(b0) if we use Q∗ as our heuristic, hence the covering
number converges to the covering number ofR∗(b0) as the
quality of the heuristic improves.

Theorem 1. Given any constant ε > 0 and any ini-
tial belief b0 ∈ B. Let CUg (δ) be the δ-covering num-
ber of RUg (b0). Then, an approximation V (b0) of V ∗(b0),
with error |V ∗(b0) − V (b0)| ≤ ε, can be found in time
O(h · CUg (δ/2)2), where h = logγ

(1−γ)ε
2Rmax

, δ = (1−γ)2ε
2γRmax

and
QUg (b, a) is used for the initial upper bound.

Before proving Theorem 1, we state two lemmas from (Hsu
et al., 2007). The first lemma states that the optimal value
function V ∗ satisfies the following Lipschitz condition:

Lemma 1. (Hsu et al., 2007) For any two belief points b
and b′, if ||b− b′|| ≤ δ, then |V ∗(b)− V ∗(b′)| ≤ Rmax

1−γ δ.

The second one is related to the packing number, a notion
closely related to the covering number:

Definition 2. Given a metric space X , a δ-packing of a set
B ⊆ X is a set of pointsP inB such that for any two points
p1, p2 ∈ P , ||p1 − p2|| > δ. The δ-packing number of a set
B, denoted PB(δ), is the size of the largest δ-packing ofB.

For any set B, the following relationship holds between its
packing number and covering number.

Lemma 2. (Hsu et al., 2007) CB(δ) ≤ PB(δ) ≤ CB(δ/2).

Proof. (of Theorem 1) To prove the result, we give an al-
gorithm that computes the required approximation. It per-
forms a depth-first search on a depth-bounded belief tree
and uses approximate memorization to avoid unnecessarily
computing the values of very similar beliefs. Intuitively, to
achieve a polynomial time algorithm, we bound the height
of the tree by using the discount factor and bound the width
of the tree by exploiting the covering number.

We perform the depth-first search recursively on TR that
has root b0 and height h, while maintaining a δ-packing
at every level of TR. By convention, the root node is at
level 0 and the leaf nodes are at level h. Each leaf node
bl is initialized with estimated value V (bl) = 0. At an
internal node b, we first check if b is within a distance δ
of a point b′ in the current packing at level i. If it is we
set the estimate V (b) = V (b′), abort the recursion at b,
and backtrack. Otherwise, we add b to the packing, sort
the actions using QUg (b, a) and explore the actions accord-
ing to the sorted order, with the larger values searched ear-
lier. The estimate V (b) is initialized to the value returned
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by searching the first action and updated each time search-
ing a new action, which returns an improved value, until
QUg (b, a) < V (b) + ε

2γi + ε(1−γh−i)
2 .

We now prove that |V ∗(b) − V (b)| ≤ ε
2γi + ε(1−γh−i)

2 af-
ter the update operations are completed at any b at level
i of TR. Following (Hsu et al., 2007), we prove that
|V (b) − V ∗(b)| ≤ γRmax(1−γh−i)

(1−γ)2 δ + γh−i Rmax

1−γ . This

gives |V ∗(b) − V (b)| ≤ ε
2γi + ε(1−γh−i)

2 by setting h =

logγ
(1−γ)ε
2Rmax

and δ = (1−γ)2ε
2γRmax

.

Let εi = |V (b) − V ∗(b)| be the approximation error for a
node b at level i of TR, if search is not aborted at b. Let ε′i
be the error for b, if the search aborts at b and sets V (b) =
V (b′) for some b′ in the packing at level i. We have

ε′i = |V ∗(b)− V (b′)|
≤ |V ∗(b)− V ∗(b′)|+ |V ∗(b′)− V (b′)|

≤ Rmax

1− γ
δ + εi,

where the last inequality uses Lemma 1 and the defini-
tion of εi. At the leaves, we set the estimated value to 0,
hence εh ≤ Rmax/(1 − γ). The children of b, which are
at level i − 1, have error at most ε′i−1. We do a proof by
induction. Assume that, at level i + 1, |V (b) − V ∗(b)| ≤
γRmax(1−γh−i−1)

(1−γ)2 δ + γh−i−1Rmax

1−γ . For every action a that
we search at level i, we have

|Q(b, a)−Q∗(b, a)|

≤ γ

(
γRmax(1− γh−i−1)

(1− γ)2
δ + (δ + γh−i−1)

Rmax

1− γ

)
=

γRmax(1− γh−i)
(1− γ)2

δ + γh−i
Rmax

1− γ

=
ε

2γi
+
ε(1− γh−i)

2

when we set h = logγ
(1−γ)ε
2Rmax

and δ = (1−γ)2ε
2γRmax

.

Each action is backed up in sorted order until QUg (b, a) <

V (b) + ε
2γi + ε(1−γh−i)

2 , where the right hand side is
the current upper bound on V ∗(b). Because the remain-
ing actions a′ have QUg (b, a′) ≤ QUg (b, a), we know for

sure that V ∗(b) ≤ V (b) + ε
2γi + ε(1−γh−i)

2 . At the
same time, any action a that has been searched estab-
lishes that V ∗(b) ≥ Q(b, a) − ε

2γi − ε(1−γh−i)
2 . As V (b)

is the value of the largest Q(b, a) found so far, we have
V ∗(b) ≥ V (b) − ε

2γi − ε(1−γh−i)
2 . Taken together, this

implies |V ∗(b)− V (b)| ≤ ε
2γi + ε(1−γh−i)

2 .

Finally, we calculate the running time of the algorithm. We
first note that V ∗(b) ≤ V (b) + ε

2γi + ε(1−γh−i)
2 , hence we

will never search an action for which QUg (b, a) < V ∗(b).
This implies that the number of elements in the pack-
ing at each level is bounded by the packing number of
RUg (b0). For each node b in the packing of RUg (b0) is
expanded and it takes O(|A| log |A|) time to determine
the search order of action branches. Then, it calculates
the beliefs and the corresponding values for all its (ex-
panded) children and performs a point-based update at b
to compute V (b). It takes O(|S|2) time to calculate the
belief at a child node. After that, we perform a nearest
neighbour search in O(PUg (δ)|S|) time to check whether
the child node lies within a distance δ of any point in
the packing of RUg (b0) at that level. Since b has at most
|A||Z| expanded children, the expansion operation takes
O(|A| log |A|+ |A||Z|(|S|2+ |S|PUg (δ))) time. The point-
based update then computes V (b) as an average of its chil-
dren’s values, weighted by the probabilities specified by the
observation function, and takes onlyO(|A||Z|) time. Since
there are h packing of size PUg (δ) each and by Lemma 2,
PUg (δ) ≤ CUg (δ/2), the total running time of our algo-

rithm is O
(
h · CUg (δ/2)(|A| log |A|+ |A||Z|(|S|2 + (|S|+

1)CUg (δ/2)))
)

. Assume that |S|, |A|, and |Z| are constant
to focus on the dependency on the covering number. So,
we get the final result.

In Theorem 1, only an initial upper bound is utilized. Al-
gorithms such as HSVI2 and SARSOP utilize an initial
lower bound as well (Smith & Simmons, 2005; Kurniawati
et al., 2008). The use of a good initial lower bound may cut
down the size of the search space substantially. We define
a search space limited by lower bound V Lf (b) and upper
bound V Ug (b) as follows: Rg,Uf,L(b0) is the space reachable
from b0 under all action-observation sequences satisfying
QUg (b, a) ≥ V ∗(b) and V Ug (b) − V Lf (b) > ε

γdb
, where db

is the depth (or level) of b in the belief tree TR.

Theorem 2. Given any constant ε > 0 and any initial
belief b0 ∈ B. Let Cg,Uf,L (δ) be the δ-covering number

of Rg,Uf,L(b0). Then, an approximation V (b0) of V ∗(b0),
with error |V ∗(b0) − V (b0)| ≤ 2ε, can be found in time
O(h · Cg,Uf,L (δ/2)2), where h = logγ

ε(1−γ)
2Rmax

, δ = (1−γ)2ε
2γRmax

,
V Lf (b) is used as an initial lower bound and V Ug (b) is used
as an initial upper bound.

Proof. We prove this theorem by using a modified algo-
rithm in the proof of Theorem 1. We perform the depth-first
search recursively on a belief tree TR that has root b0 and
height h, while maintaining a δ-packing ofRg,Uf,L(b0) at ev-

ery level. If b is not inRg,Uf,L(b0), namely V U0 (b)−V L0 (b) ≤
ε
γdb

, we set V (b) =
V L
f (b)+V U

g (b)

2 , abort the recursion at b,
and backtrack. Else, if b is within a distance δ of a b′ in
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the current packing at level i, we set V (b) = V (b′), abort
the recursion at b, and backtrack. Otherwise, we add b to
the packing, sort the actions using QUg (b, a) and explore
the actions according to the sorted order, with the larger
values searched earlier. The estimate V (b) is initialized to
the value returned by searching the first action and updated
each time searching a new action, which returns an im-
proved value, until QUg (b, a) < V (b) + 3ε

2γi + ε(1−γh−i−1)
2 .

We now calculate the values for h and δ required to achieve
the given approximation bound 2ε at b0. Let εi = |V ∗(b)−
V (b)| denote the approximation error for a node b at level
i of TR, if the recursive search continues in the children of
b. Let ε′i denote the error for b, if the search aborts at b and
sets V (b) = V (b′) for some b′ in the packing at level i.
Hence, ε′i ≤ Rmax

1−γ δ + εi. As in Theorem 1, we explore an
action only if its initial upper bound is at least as large as
the best upper bound among the searched actions. By the
same argument as in Theorem 1’s proof, after completing
the update operations at b at level i, we have

εi ≤ γmax

{
ε

γi+1
, ε′i+1

}
≤ γ

[ ε

γi+1
+ ε′i+1

]
and thus we can write the recurrence

εi ≤ γ
[ ε

γi+1
+
(Rmax

1− γ
δ + εi+1

)]
.

Clearly, we can set V Ug (b) ≤ Rmax

1−γ and V Lf (b) ≥ −Rmax

1−γ

for all b ∈ B. So εh ≤ maxb∈B
V U
g (b)−V L

f (b)

2 ≤ Rmax

1−γ .

Expanding the recurrence, we get

εk ≤ ε

γk
+
γRmax(1− γ(h−1)−k)

(1− γ)2
δ +

γh−kRmax

1− γ

=
3ε

2γk
+
ε(1− γ(h−1)−k)

2
,

which holds for all 0 ≤ k ≤ h− 2, by setting δ = (1−γ)2ε
2γRmax

and h = logγ
ε(1−γ)
2Rmax

. The final equality explains why we

use 3ε
2γi + ε(1−γh−i−1)

2 to instead of ε
2γi + ε(1−γh−i)

2 that
was used in the proof of Theorem 1. So, we find that the
error ε0 at the root b0 is given by |V ∗(b0)− V (b0)| ≤ 3ε

2 +
ε(1−γh−1)

2 ≤ 2ε.

Using the same analysis method in the proof of The-
orem 1, the running time of the algorithm here is
O
(
h · Cg,Uf,L (δ/2)(|A| log |A| + |A||Z|(|S|2 + (|S| +

1)Cg,Uf,L (δ/2)))
)

. Thus, we get the final result.

The theorem suggests one avenue of fighting the curses of
dimensionality and history (Pineau et al., 2003; Silver &
Veness, 2010): use domain knowledge to find good lower
and upper bounds, V Lf and V Ug , so that Cg,Uf,L (δ/2) is small.

Algorithm 1 π = PGVI(ε, δ).

1: Initialize the bounds V L and V U ;
2: packing = ∅, finished = ∅;
3: while V U (b0)− V L(b0) > 2ε do
4: EXPLORE(b = b0, db = 0, ε, δ);
5: end while
6: return the action corresponding to V L;

Algorithm 2 EXPLORE(b, db, ε, δ).
1: if excess(b, db, ε) ≤ 0 then
2: insert b into finished(db);
3: return ;
4: end if
5: a∗ = arg maxa∈AQ

U (b, a);
6: z∗ = arg maxz∈ZUF [Pr(z|b, a∗) · excess(τ(b, a∗, z),
db + 1, ε) · dis(τ(b, a∗, z), packing(db + 1), δ)];

7: if z∗ == NULL or excess(τ(b, a∗, z∗), db + 1, ε) ≤ 0
then

8: insert b into finished(db);
9: else

10: p′min = arg minp∈packing(db+1) ||τ(b, a∗, z∗)− p||;
11: if ||τ(b, a∗, z∗)− p′min|| > δ then
12: insert τ(b, a∗, z∗) into packing(db + 1);
13: end if
14: if ||τ(b, a∗, z∗)− p′min|| >

(1−γ)2ε
2γRmax

then
15: EXPLORE(τ(b, a∗, z∗), db + 1, ε, δ);
16: else if p′min /∈ finished(db + 1) then
17: EXPLORE(p′min, db + 1, ε, δ);
18: else
19: insert τ(b, a∗, z∗) into finished(db + 1);
20: end if
21: end if
22: Perform a point-based update of lower and upper

bounds at belief b;

5. Packing-Guided Value Iteration
The algorithms in the proofs of Theorems 1 and 2 are
designed to prove performance bounds, hence use depth-
first search as the search strategy. Practical algorithms such
as HSVI2 and SARSOP do a trial-based search, where the
current bounds are used to select a path from b0 to one leaf
belief. The advantage of this is that the algorithm can be
greedy with respect to the current best bounds, and this
appears to be useful in practice. However, these algorithms
do not really utilize the other insight of the analysis – that
packing can be helpful in getting good performance.

In this section, we describe PGVI. It gets power by using
the idea of building a separate packing of sampled beliefs at
each level of the search tree in the proofs of our theorems.
Such an idea can alleviate the curse of history in both the-
oretical and practical aspects. First, it controls the number
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of sampled beliefs at each level of search tree so that it does
not grow exponentially in the depth of the tree (subject to
Cg,Uf,L (δ) being manageably small). Second, it can be used
to spread the sampling areas in the search tree reduced by
heuristics. PGVI achieves this by preferring to sample be-
liefs at level i which are far away from the beliefs in the
packing of sampled beliefs at level i and that no belief in
its δ-region has performed point-based updates recently.

5.1. PGVI Overview

PGVI is outlined in Algorithms 1 and 2. In these al-
gorithms, we used the packing container to store a set
of δ-packing and the finished container to store fin-
ished belief nodes at each level of the search tree in
PGVI. Since PGVI is an extension of SARSOP, they
have common points in selecting actions (Line 5), re-
cursively invoking the EXPLORE function (Lines 15 and
17), and performing point-based updates (Line 22), as
shown in Algorithm 2. We now emphasize some key
differences between SARSOP and PGVI (see Algorithm
2). The first difference is the definition of finished be-
lief nodes. Let excess(b, db, ε) = V U (b) − V L(b) −
3ε

2γdb
− ε(1−γh−db−1)

2 , where h = logγ
ε(1−γ)
4Rmax

. A be-
lief node b in the packing of sampled beliefs at level
db, packing(db), is finished if excess(b, db, ε) ≤ 0. Let
pmin(b) = arg minp∈packing(db) ||b − p||. A node b that is
not in the packing(db) is finished if excess(b, db, ε) ≤ 0, or
||b− pmin(b)|| ≤ (1−γ)2ε

2γRmax
and pmin(b) is finished. The sec-

ond difference is the observation selection strategy in Line
6. We define ZUF = {z ∈ Z|τ(b, a∗, z) /∈ finished(db +
1)}. PGVI calculates the distance between τ(b, a∗, z) and
the δ-packing of sampled beliefs at level db + 1, denoted
dis(τ(b, a∗, z), packing(db + 1), δ), to use it to spread the
sampling inRg,Uf,L(b0). The new observation selection plays
a key role in PGVI’s efficient performance. The third dif-
ference is the criterion of forward exploration in Lines 7 ∼
21. Line 7 is used to check whether all successors of b are
finished, where b is a belief in the packing(db). If yes, Line
8 is executed to change b’s status into finished. The belief
p′min in Line 10 is the belief in the packing(db + 1) of sam-
pled beliefs with minimal distance to the belief τ(b, a∗, z∗).
Algorithm 2 inserts τ(b, a∗, z∗) into the packing at level
db + 1 only if the distance is greater than δ (see Lines 11 ∼
13). If the distance between τ(b, a∗, z∗) and p′min is greater
than (1−γ)2ε

2γRmax
, it recursively invokes the EXPLORE func-

tion at τ(b, a∗, z∗). Otherwise, it checks whether p′min is
finished. If yes, it changes the status of τ(b, a∗, z∗) into
finished. If not, it recursively invokes the EXPLORE func-
tion at p′min. Overall, Lines 14 ∼ 20 are used to control the
width of the tree and the frequency of point-based updates
to ensure PGVI’s polynomial time performance, as stated
later. If PGVI encounters a belief b at level db that is close

to some belief b′ in the packing at level db, it only explores
forward from b′ and terminates the forward search from b.

5.2. Packing-Guided Search

Besides using the set of δ-packing to control the width of
the search tree, PGVI also uses it to guide search based
on the two following principles. First, for beliefs b with at
least δ distance to the δ-packing of sampled beliefs at level
db of the tree, it prefers to sample beliefs that are far away
from beliefs in packing(db). This is implemented by setting
dis(b, packing(db), δ) = minp∈packing(db) ||b − p|| when
minp∈packing(db) ||b − p|| > δ. Second, for beliefs with at
most δ distance to the corresponding δ-packing, it biases
sampling beliefs b that pmin(b) has not performed a point-
based update recently. We record the time index of the
last update at pmin(b) and denote it as N(pmin(b)). Let N
be the total number of point-based updates that have been
performed by PGVI. We set dis(b, packing(db), δ) = ωδ,
where ω = (N + 1 − N(pmin(b)))/(N + 1), when
minp∈packing(db) ||b− p|| ≤ δ. Together, we define

dis(τ(b, a∗, z), packing(db + 1), δ)

=

{
ωδ if minp∈packing(db+1) ||τ(b, a∗, z)− p|| ≤ δ
minp∈packing(db+1) ||τ(b, a∗, z)− p|| otherwise

in Line 6 of Algorithm 2. The dis(b, packing(db), δ) is
always greater than 0 in our setting. The key innovation
here is to use the packing container to spread the sampling
areas by modifying the observation selection strategy in
HSVI2 and SARSOP to enable much better exploration.

5.3. Convergence

Theorem 3 shows that PGVI(ε, δ) terminates after perform-
ing at most h2Cg,Uf,L (δ/2)|A||Z| point-based updates. Its
proof is a combination of the proof in HSVI2 style algo-
rithm (Smith, 2007) and the proof in Theorem 2.

Theorem 3. Given any constant ε > 0 and any initial be-
lief b0 ∈ B, PGVI(ε, δ) guarantees V ∗(b0) − V π(b0) ≤
2ε after at most h2Cg,Uf,L (δ/2)|A||Z| point-based updates,

where h = logγ
ε(1−γ)
2Rmax

, δ = (1−γ)2ε
2γRmax

, V Lf (b) and V Ug (b)
are used as initial lower and upper bounds respectively.

Proof. In the proof of Theorem 2, we have shown that if a
point-based update is performed at b when all its children
are finished, then b will also be finished. This shows the
correctness of Lines 7 and 8 in the code.

Now we argue that each trial will switch one unfinished
belief node into finished belief node if b0 is still unfin-
ished. From Algorithm 2 we can see a belief b is in-
serted into the finished(db) at the end of each trial. In Line
2 it inserts b in the packing(db) into finished nodes only
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when excess(b, db, ε) ≤ 0. In Line 8 it inserts b in the
packing(db) into finished nodes only when all of its chil-
dren become finished. In Line 19 it inserts b not in the
packing(db) into finished nodes only when pmin(b) is fin-
ished. So, all nodes b inserted into the finished(db) satisfy
the condition of finished nodes.

PGVI only searches in Rg,Uf,L(b0). From Lines 1 ∼ 3 and 7
∼ 8 we can see that it does not search and perform point-
based updates on nodes that satisfy excess(b, db, ε) ≤ 0.
Since maxa∈AQ

U (b, a) ≥ V ∗(b), from Line 5 we can see
that PGVI does not search towards action branches a that
satisfy QU (b, a) < V ∗(b).

Finally, Algorithm 2 only searches the children of be-
lief nodes b in the packing(db). Thus, there are at
most Cg,Uf,L (δ/2)|A||Z| unfinished beliefs at each level of
the search tree in PGVI. Totally, there are at most h ·
Cg,Uf,L (δ/2)|A||Z| unfinished beliefs. Each trial performs at
most h point-based updates at beliefs. So, PGVI converges
after performing at most h2 ·Cg,Uf,L (δ/2)|A||Z| updates.

This theorem implies that PGVI converges with a number
of updates that is quadratic polynomial rather than expo-
nential in the planning horizon h, given there is no h’s
exponential term hidden in Cg,Uf,L (δ).

6. Experiments
In this section, we compare PGVI with some existing point-
based algorithms in their performance on 65 out of the
68 small benchmark problems from Cassandra’s POMDP
website1 and 4 larger robotic problems (Ross et al., 2008;
Hsu et al., 2008; Kurniawati et al., 2008; 2011). We
discarded 3 of the 68 problems (1d.noisy, 4×4.95 and
bulkhead.A) due to parsing issues. Our experimental
platform is a CPU at 2.40GHz, with 3GB memory. We used
the APPL-0.95 software package2 to implement the PGVI
algorithm, but did not use the MOMDP representation
(Ong et al., 2010). We used α-vectors as lower bounds and
sawtooth representations as upper bounds (Smith, 2007).
Although the convergence proof of PGVI suggests using
δ = (1−γ)2ε

2γRmax
, the value is not useful for achieving the

best performance in practice because δ often becomes very
small for problems with large Rmax and γ. We set δ =
(tmax − t)δ0/tmax, where δ0 = 0.5, tmax represents the
upper bound of running time, and t represents the elapsed
time in running PGVI, to make PGVI do the best in the
available time. Given that the value of δ changes with time,
we use the simpler value of excess(b, db, ε) = V U (b) −
V L(b) − ε/γdb to terminate trials. Theorem 3 still holds
when using the simple one. In PGVI and SARSOP, ε is set
to 0.5× [V U (b0)− V L(b0)] in the beginning of each trial.

1http://www.pomdp.org
2http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

6.1. 65 Small Benchmark Problems

We compared PGVI with HSVI2, SARSOP, and GapMin
on the suite of 65 benchmark problems:

• PGVI found a near optimal solution (gap smaller
than one unit at the third significant digit) in less than
1,000 seconds for 35 problems. In comparison, HSVI
found 33, SARSOP found 32, and GapMin found 46
(Poupart et al., 2011).

• Among the 33 problems in Tables 1 and 2 of (Poupart
et al., 2011) with 1,000 seconds limit, PGVI achieved
the highest lower bound on 31 problems, while
GapMin (LP) only on 1 problem. PGVI achieved the
smallest gap on 12 problems, while GapMin (LP) on
19 problems. PGVI achieved smaller gap than HSVI2
on 27 problems and than SARSOP on all 33 problems.

• Among the 8 problems in Table 3 of (Poupart et al.,
2011) with 50,000 seconds limit, PGVI achieved the
highest lower bound on 6 of the problems and the
smallest gap on 2 of the problems (cit, pentagon).

To summarize, the performance of PGVI is comparable to
HSVI2, SARSOP, and GapMin on these small problems.

For the 35 problems on which PGVI performed well, we
recorded the number of α-vectors (|Γ|), the number of
beliefs expanded (|Bs|), the estimated δ-packing number
of Bs (P̂g,Uf,L (δ)), with δ = 10−6, and the corresponding
computation time (Time). The linear correlation coef-
ficient between P̂g,Uf,L (δ) and Time is as high as 0.987,
while the correlation coefficient between |Γ| and Time

is only −0.045. This suggests that P̂g,Uf,L (δ) is a good
indicator of the running time of PGVI.

6.2. Larger Benchmark Problems

We now report PGVI and SARSOP’s experimental results
on 4 more challenging robotic tasks: FieldVisionRockSam-
ple[5,5] (Ross et al., 2008), Tracking (Hsu et al., 2008),
Homecare (Kurniawati et al., 2008) and 3D Navigation
(Kurniawati et al., 2011) (see Table 1). For lack of space,
we present only the comparison with SARSOP in details.
While GapMin variants have good performance on small
benchmarks, the software package3 provided by the authors
is unable to scale up on these larger problems. In general,
SARSOP outperforms HSVI2 (Kurniawati et al., 2008).

For each problem, we ran SARSOP and recorded the gap
it achieved and other performance measurements when
10,000 seconds reached. Then, for all test problems except
3D Navigation, we recorded the time that PGVI needed to
achieve the same gap and other performance measurements
at that time point. For the 3D Navigation problem we chose
a time point to better distinguish PGVI from SARSOP.

3https://cs.uwaterloo.ca/ ppoupart/
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Table 1. Performance comparison.

Algorithm Reward Gap V L(b0) V U (b0) |Γ| |Bs| P̂g,U
f,L (δ) T0 (s) T ime (s)

FieldVisionRockSample[5,5] (|S| = 801, |A| = 5, |Z| = 32)
SARSOP 23.31± 0.14 0.47 23.27 23.74 24,289 10,187 6,204 0.2 9,764
PGVI 23.32± 0.14 0.47 23.29 23.76 14,207 6,473 5,107 0.2 2,570
Tracking (|S| = 9, 248, |A| = 9, |Z| = 1, 264)
SARSOP 14.79± 0.14 0.69 14.41 15.10 24,174 2,240 1,762 893 9,998
PGVI 14.76± 0.15 0.69 14.43 15.12 7,734 1,601 1,365 893 2,294
Homecare (|S| = 5, 408, |A| = 9, |Z| = 928)
SARSOP 16.97± 0.14 3.43 16.55 19.98 27,134 5,242 2,624 410 9,987
PGVI 17.06± 0.14 3.43 16.56 19.99 7,583 3,452 2,338 410 1,819
3D Navigation (|S| = 16, 969, |A| = 5, |Z| = 14)
SARSOP −63± 0 754,977 −100 754,877 2 38,541 31,717 12 9,934
PGVI 202,665±1,859 744,045 16,339 760,383 289 15,687 13,085 12 1,719

In Table 1, Column 2 lists the estimated expected total re-
wards for the computed policies and the 95% confidence
intervals. Each pair of reward and confidence interval was
received over 100,000 simulation runs respectively. Each
simulation was terminated after 100 steps. Columns 3∼10
list the gap between V L(b0) and V U (b0), lower bound
V L(b0), upper bound V U (b0), |Γ|, |Bs|, P̂g,Uf,L (δ) with δ =

10−1, the lower and upper bounds initialization time T0,
and the total computation time (including T0), respectively.
PGVI found the same gaps (see Column 3) but required
significantly fewer α-vectors, expanded beliefs and com-
putation time than SARSOP (see Columns 6, 7 and 10).
Compared with SARSOP, PGVI had higher P̂g,Uf,L (δ) / |Bs|
empirically (see Columns 7 and 8), which captured well the
fact that PGVI prefers to sample beliefs far away from the
sampled set. Since SARSOP and PGVI used the blind pol-
icy and FIB methods to initialize bounds, their initialization
time T0 were the same as each other on each problem (see
Column 9). On these larger POMDP problems, PGVI sub-
stantially outperformed SARSOP by 3.80 ∼ 5.78 times in
terms of Time (see Column 10), and by 3.80 ∼ 6.80 times
in terms of Time− T0 (see Columns 9 and 10).

Figure 1 compares the evolution of the bound gap over time
between PGVI and SARSOP. We have two observations
from it. First, PGVI achieved a smaller gap than SARSOP
over time on each problem. This implies that PGVI is
more efficient. Second, PGVI was risky in consuming
more space in order to store the packing set. As shown on
the 3D Navigation task, PGVI ran out of memory around
6,000 seconds. Here, we leave the space reduction of the
packing set stored in PGVI as a future topic.

7. Conclusions
In this paper, we presented two theoretical results that re-
spectively connect the complexity of approximate POMDP
planning to covering numbers of the search spaces reduced
by the upper bound, and both the lower and upper bounds
of the optimal value function. We designed the novel
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Figure 1. Evolution of the gap between upper and lower bounds
(y-axis) over running time (x-axis) in PGVI and SARSOP.

PGVI algorithm by using the idea of building a separate
packing at each level of the search tree. The set of packing
is used to alleviate the curse of history by controlling
the width of the search tree and spreading the sampling
areas in the search space reachable under heuristics. The-
oretically, PGVI guarantees to find an ε-optimal solution
after performing at most h2Cg,Uf,L (δ/2)|A||Z| point-based
updates. Empirically, PGVI outperformed SARSOP by
3.80 ∼ 6.80 times on 4 challenging robotic problems; it
also showed a very efficient performance compared with
other state-of-the-art point-based algorithms on 65 small
benchmark problems from Cassandra’s POMDP website.
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Supplementary Materials

Table 2. Results for the 33 benchmark problems that were not solved (near) optimally by all solvers: comparison of the gap between
V L(b0) and V U (b0), lower bound V L(b0), upper bound V U (b0), the number of α-vectors (|Γ|) to represent V L and time (seconds) for
runs terminated after 1,000 seconds or when the gap is less than one unit at the 3rd significant digit. The smallest gaps or the highest
lower bounds among algorithms are labeled with red color. Note that HSVI2, SARSOP and GapMin’s results were reported in Tables 1
and 2 in (Poupart et al., 2011).

Algorithm Gap V L(b0) V U (b0) |Γ| T ime Algorithm Gap V L(b0) V U (b0) |Γ| T ime
aloha.10 aloha.30
(|S| = 30, |A| = 9, |Z| = 3, γ = 0.999) (|S| = 90, |A| = 29, |Z| = 3, γ = 0.999)
HSVI2 9.0 535.4 544.4 4,729 997 HSVI2 38 1,212 1,249 2,062 1,000
SARSOP 9.5 535.2 544.7 48 1,000 SARSOP 74 1,177 1,252 86 999
GapMin ST 10.3 534.1 544.4 136 673 GapMin ST 113 1,136 1,249 44 800
GapMin LP 7.6 536.5 544.2 152 968 GapMin LP 111 1,136 1,247 46 799
PGVI 7.3 537.4 544.7 58 999 PGVI 19 1,231 1,250 342 994
cheng.D3-1 cheng.D3-2
(|S| = 3, |A| = 3, |Z| = 3, γ = 0.999) (|S| = 3, |A| = 3, |Z| = 3, γ = 0.999)
HSVI2 11 6,417 6,428 16 997 HSVI2 10 8,240 8,250 8 404
SARSOP 15 6,417 6,432 10 1,000 SARSOP 12 8,240 8,252 6 1,000
GapMin ST 10 6,412 6,422 8 26 GapMin ST 10 8,235 8,245 3 15
GapMin LP 10 6,412 6,422 8 25 GapMin LP 10 8,235 8,245 3 22
PGVI 10 6,417 6,427 8 990 PGVI 10 8,240 8,250 4 59
cheng.D3-3 cheng.D3-4
(|S| = 3, |A| = 3, |Z| = 3, γ = 0.999) (|S| = 3, |A| = 3, |Z| = 3, γ = 0.999)
HSVI2 105 7,457 7,562 13 991 HSVI2 41 5,827 5,868 15 993
SARSOP 129 7,457 7,585 8 999 SARSOP 48 5,827 5,875 5 1,000
GapMin ST 10 7,452 7,462 7 56 GapMin ST 10 5,822 5,832 8 78
GapMin LP 10 7,452 7,462 7 37 GapMin LP 10 5,822 5,832 5 37
PGVI 102 7,457 7,559 14 999 PGVI 39 5,827 5,866 19 999
cheng.D3-5 cheng.D4-1
(|S| = 3, |A| = 3, |Z| = 3, γ = 0.999) (|S| = 4, |A| = 4, |Z| = 4, γ = 0.999)
HSVI2 26 8,673 8,698 63 990 HSVI2 167 6,715 6,882 19 999
SARSOP 34 8,673 8,706 10 1,000 SARSOP 180 6,715 6,894 10 1,000
GapMin ST 10 8,668 8,678 9 34 GapMin ST 10 6,710 6,720 11 553
GapMin LP 10 8,668 8,678 10 15 GapMin LP 10 6,711 6,721 11 288
PGVI 31 8,673 8,703 19 1,000 PGVI 171 6,715 6,886 11 999
cheng.D4-2 cheng.D4-3
(|S| = 4, |A| = 4, |Z| = 4, γ = 0.999) (|S| = 4, |A| = 4, |Z| = 4, γ = 0.999)
HSVI2 63 8,381 8,443 22 995 HSVI2 55 7,661 7,715 20 997
SARSOP 71 8,378 8,450 8 999 SARSOP 60 7,660 7,721 11 1,000
GapMin ST 10 8,376 8,386 12 135 GapMin ST 10 7,656 7,666 10 91
GapMin LP 10 8,376 8,386 13 115 GapMin LP 10 7,656 7,666 10 68
PGVI 64 8,381 8,445 9 1,000 PGVI 55 7,661 7,715 11 999
cheng.D4-4 cheng.D4-5
(|S| = 4, |A| = 4, |Z| = 4, γ = 0.999) (|S| = 4, |A| = 4, |Z| = 4, γ = 0.999)
HSVI2 65 7,670 7,735 18 997 HSVI2 91 7,884 7,975 35 994
SARSOP 69 7,669 7,738 6 1,000 SARSOP 96 7,884 7,980 14 1,000
GapMin ST 10 7,665 7,675 16 313 GapMin ST 10 7,879 7,889 19 415
GapMin LP 10 7,665 7,675 11 109 GapMin LP 10 7,879 7,889 17 197
PGVI 64 7,670 7,734 16 1,000 PGVI 90 7,884 7,974 18 998
cheng-D5-1 cit
(|S| = 5, |A| = 3, |Z| = 3, γ = 0.999) (|S| = 284, |A| = 4, |Z| = 28, γ = 0.990)
HSVI2 59 6,549 6,608 19 996 HSVI2 0.095 0.743 0.838 3,739 975
SARSOP 64 6,549 6,613 9 999 SARSOP 0.049 0.791 0.840 3,108 967
GapMin ST 10 6,544 6,554 1 26 GapMin ST 0.838 0.000 0.838 1 802
GapMin LP 10 6,544 6,554 1 25 GapMin LP 0.838 0.000 0.838 1 855
PGVI 54 6,549 6,603 12 999 PGVI 0.016 0.822 0.838 6,748 990
tiger-grid (|S| = 81, |A| = 4, |Z| = 3, γ = 0.990) GapMin ST 0.106 2.296 2.402 386 912
HSVI2 0.388 2.138 2.525 3,394 990 GapMin LP 0.132 2.271 2.402 255 923
SARSOP 0.262 2.267 2.529 945 997 PGVI 0.215 2.293 2.508 1,947 991



Covering Number for Efficient Heuristic-based POMDP Planning

Table 3. Results continued (1,000 seconds limit).
Algorithm Gap V L(b0) V U (b0) |Γ| T ime Algorithm Gap V L(b0) V U (b0) |Γ| T ime
ejs1 ejs2
(|S| = 3, |A| = 4, |Z| = 2, γ = 0.999) (|S| = 2, |A| = 2, |Z| = 2, γ = 0.999)
HSVI2 7.8 421.3 429.1 13 991 HSVI2 91 1,781 1,872 8 997
SARSOP 48.8 421.3 470.1 9 1,000 SARSOP 115 1,781 1,896 7 1,000
GapMin ST 0.4 421.1 421.5 9 52 GapMin ST 10 1,777 1,787 6 22
GapMin LP 0.3 421.2 421.6 9 65 GapMin LP 10 1,776 1,786 6 13
PGVI 0.1 421.3 421.4 9 184 PGVI 83 1,781 1,864 7 1,000
ejs4 fourth
(|S| = 3, |A| = 2, |Z| = 2, γ = 0.999) (|S| = 1, 052, |A| = 4, |Z| = 28, γ = 0.990)
HSVI2 20.2 -133.6 -113.4 7 999 HSVI2 0.376 0.242 0.617 3,345 994
SARSOP 22.8 -133.6 -110.8 2 1,000 SARSOP 0.330 0.288 0.618 3,595 975
GapMin ST 1.0 -134.1 -133.1 2 26 GapMin ST 0.618 0.000 0.618 1 532
GapMin LP 1.0 -134.1 -133.1 2 13 GapMin LP 0.618 0.000 0.618 1 669
PGVI 15.5 -133.6 -118.0 2 1,000 PGVI 0.142 0.475 0.617 6,166 984
hallway2 hallway
(|S| = 92, |A| = 5, |Z| = 17, γ = 0.950) (|S| = 60, |A| = 5, |Z| = 21, γ = 0.950)
HSVI2 0.525 0.361 0.886 2,393 997 HSVI2 0.250 0.945 1.195 1,367 996
SARSOP 0.525 0.374 0.898 262 992 SARSOP 0.210 0.995 1.206 456 998
GapMin ST 0.372 0.417 0.789 294 940 GapMin ST 0.078 1.008 1.086 290 765
GapMin LP 0.428 0.362 0.790 153 759 GapMin LP 0.085 1.003 1.089 159 845
PGVI 0.422 0.440 0.862 736 996 PGVI 0.176 1.004 1.180 838 1,000
iff learning.c2
(|S| = 104, |A| = 4, |Z| = 22, γ = 0.999) (|S| = 12, |A| = 8, |Z| = 3, γ = 0.999)
HSVI2 0.924 8.931 9.855 7,134 999 HSVI2 0.090 1.549 1.639 4,082 996
SARSOP 0.775 9.095 9.871 6,811 997 SARSOP 0.093 1.556 1.648 4,903 996
GapMin ST 0.722 9.214 9.936 544 785 GapMin ST 0.078 1.553 1.631 810 893
GapMin LP 0.660 9.261 9.920 532 940 GapMin LP 0.024 1.558 1.582 470 885
PGVI 0.657 9.233 9.890 12,795 999 PGVI 0.055 1.558 1.613 13,606 997
learning.c3 learning.c4
(|S| = 24, |A| = 12, |Z| = 3, γ = 0.999) (|S| = 48, |A| = 16, |Z| = 3, γ = 0.999)
HSVI2 0.250 2.364 2.614 4,229 988 HSVI2 0.567 3.055 3.622 4,569 999
SARSOP 0.222 2.446 2.668 981 997 SARSOP 0.321 3.358 3.679 923 982
GapMin ST 0.214 2.442 2.655 446 944 GapMin ST 0.363 3.308 3.671 349 858
GapMin LP 0.180 2.441 2.622 515 947 GapMin LP 0.353 3.306 3.658 500 989
PGVI 0.192 2.450 2.642 9,423 982 PGVI 0.296 3.367 3.663 7,436 991
machine milos-aaai97
(|S| = 256, |A| = 4, |Z| = 16, γ = 0.990) (|S| = 20, |A| = 6, |Z| = 8, γ = 0.900)
HSVI2 3.49 63.18 66.66 662 982 HSVI2 18.31 49.15 67.46 3,965 998
SARSOP 3.57 63.18 66.75 150 998 SARSOP 19.61 49.74 69.35 3,699 997
GapMin ST 2.98 62.93 65.90 77 817 GapMin ST 17.67 49.89 67.55 1,212 774
GapMin LP 3.20 62.39 65.59 67 856 GapMin LP 15.42 49.97 65.39 581 730
PGVI 3.09 63.18 66.27 209 990 PGVI 17.40 50.06 67.46 10,096 980
query.s2 mit
(|S| = 9, |A| = 2, |Z| = 3, γ = 0.990) (|S| = 204, |A| = 4, |Z| = 28, γ = 0.990)
HSVI2 4.2 490.7 495.0 1,366 992 HSVI2 0.094 0.791 0.885 5,539 1,000
SARSOP 5.5 490.7 496.3 113 999 SARSOP 0.067 0.819 0.885 2,820 999
GapMin ST 1.0 490.4 491.4 37 224 GapMin ST 0.039 0.845 0.884 152 806
GapMin LP 1.0 490.5 491.5 31 57 GapMin LP 0.055 0.828 0.883 120 859
PGVI 3.8 490.7 494.6 495 1,000 PGVI 0.028 0.857 0.885 6,218 999
query.s3 pentagon
(|S| = 27, |A| = 3, |Z| = 3, γ = 0.990) (|S| = 212, |A| = 4, |Z| = 28, γ = 0.990)
HSVI2 26.2 546.8 573.1 1,203 997 HSVI2 0.192 0.634 0.826 4,361 997
SARSOP 28.1 546.8 574.8 112 999 SARSOP 0.131 0.696 0.827 3,196 971
GapMin ST 10.8 546.7 557.5 154 686 GapMin ST 0.826 0.000 0.826 1 990
GapMin LP 7.0 546.7 553.7 119 706 GapMin LP 0.826 0.000 0.826 1 893
PGVI 26.0 546.9 572.9 549 1,000 PGVI 0.072 0.754 0.826 5,842 996
query.s4 sunysb
(|S| = 81, |A| = 4, |Z| = 3, γ = 0.990) (|S| = 300, |A| = 4, |Z| = 28, γ = 0.990)
HSVI2 51.9 569.5 621.4 2,846 999 HSVI2 0.240 0.557 0.796 4,370 997
SARSOP 54.3 569.1 623.4 166 1,000 SARSOP 0.323 0.475 0.798 3,537 986
GapMin ST 46.1 569.6 615.6 377 958 GapMin ST 0.796 0.000 0.796 1 930
GapMin LP 43.2 569.5 612.7 169 939 GapMin LP 0.796 0.000 0.796 1 974
PGVI 52.2 569.6 621.8 446 979 PGVI 0.137 0.659 0.796 5,974 987
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Table 4. Results for 8 problems of the 18 problems that were not solved (near) optimally by any of the solvers, with 50,000 seconds limit.
The smallest gaps or the highest lower bounds among algorithms are labeled with red color. Note that HSVI2, SARSOP and GapMin’s
results were reported in Table 3 in (Poupart et al., 2011).

Algorithm Gap V L(b0) V U (b0) |Γ| T ime Algorithm Gap V L(b0) V U (b0) |Γ| T ime
cit hallway
(|S| = 284, |A| = 4, |Z| = 28, γ = 0.990) (|S| = 60, |A| = 5, |Z| = 21, γ = 0.950)
HSVI2 0.018 0.819 0.837 29,803 49,760 HSVI2 0.179 0.994 1.173 15,374 49,951
SARSOP 0.017 0.823 0.840 21,168 49,916 SARSOP 0.178 1.013 1.191 3,053 49,992
GapMin ST 0.023 0.814 0.837 739 48,931 GapMin ST 0.043 1.015 1.058 947 34,828
GapMin LP 0.015 0.822 0.836 648 45,473 GapMin LP 0.036 1.016 1.051 851 43,184
PGVI 0.007 0.831 0.838 32,041 49,861 PGVI 0.134 1.017 1.150 18,902 49,831
hallway2 iff
(|S| = 92, |A| = 5, |Z| = 17, γ = 0.950) (|S| = 104, |A| = 4, |Z| = 22, γ = 0.999)
HSVI2 0.421 0.432 0.853 18,505 49,983 HSVI2 0.199 9.302 9.501 40,984 50,000
SARSOP 0.448 0.434 0.882 1,901 49,973 SARSOP 0.290 9.259 9.549 54,016 49,966
GapMin ST 0.262 0.461 0.723 1,647 46,687 GapMin ST 0.634 9.273 9.908 1,614 34,472
GapMin LP 0.226 0.468 0.694 1,135 36,766 GapMin LP 0.156 9.275 9.431 1,626 40,046
PGVI 0.340 0.485 0.825 3,846 49,999 PGVI 0.237 9.267 9.504 63,784 49,978
machine mit
(|S| = 256, |A| = 4, |Z| = 16, γ = 0.990) (|S| = 204, |A| = 4, |Z| = 28, γ = 0.990)
HSVI2 2.89 63.18 66.07 7,857 49,998 HSVI2 0.058 0.827 0.885 34,461 49,942
SARSOP 3.02 63.18 66.20 996 49,963 SARSOP 0.020 0.866 0.885 20,662 49,616
GapMin ST 1.67 63.17 64.84 139 49,261 GapMin ST 0.011 0.871 0.882 861 41,564
GapMin LP 1.14 63.17 64.30 173 49,036 GapMin LP 0.009 0.872 0.881 832 43,680
PGVI 2.45 63.18 65.63 592 49,987 PGVI 0.011 0.874 0.885 30,598 49,911
pentagon sunysb
(|S| = 212, |A| = 4, |Z| = 28, γ = 0.990) (|S| = 36, |A| = 5, |Z| = 17, γ = 0.950)
HSVI2 0.135 0.691 0.826 29,033 49,924 HSVI2 0.217 2.286 2.502 28,182 49,978
SARSOP 0.070 0.757 0.827 21,950 49,994 SARSOP 0.231 2.290 2.522 5,333 49,987
GapMin ST 0.825 0.000 0.825 1 44,437 GapMin ST 0.055 2.322 2.377 2,404 38,675
GapMin LP 0.150 0.675 0.824 425 40,436 GapMin LP 0.052 2.321 2.373 2,404 43,254
PGVI 0.026 0.800 0.826 29,292 49,845 PGVI 0.160 2.317 2.477 20,836 49,935

Table 5. Parameters for the 35 small benchmark problems that PGVI could find near optimal solutions within 1,000 seconds.

Problem |S| |A| |Z| γ Problem |S| |A| |Z| γ
1d 4 2 2 0.750 4×3.95 11 4 6 0.950
4×5×2.95 39 4 4 0.950 bridge-repair 5 12 5 0.950
cheese.95 11 4 7 0.950 cheese-taxi 34 7 10 0.950
cheng.D3-1 3 3 3 0.999 cheng.D3-2 3 3 3 0.999
concert 2 3 2 0.999 ejs1 3 4 2 0.999
ejs3 2 2 2 0.999 ejs5 2 2 2 0.999
ejs6 2 2 2 0.999 ejs7 2 2 2 0.999
ejs-ft-counter 2 2 2 0.900 line4-2goals 4 2 1 0.999
marking 9 4 3 0.870 marking2 9 4 3 0.870
mcc-example1 4 3 3 0.750 mcc-example2 4 3 3 0.750
mini-hall2 13 3 9 0.950 network.95 7 4 2 0.950
network 7 4 2 0.950 paint.95 4 4 2 0.950
parr95.95 7 3 6 0.950 saci-s12-a6-z5.95 12 6 5 0.950
saci-s100-a10-z31 100 10 31 0.950 shuttle.95 8 3 5 0.950
stand-tiger.95 4 4 4 0.950 tiger.95 2 3 2 0.950
tiger.aaai 2 3 2 0.750 web-ad 4 3 5 0.950
web-mall 2 3 2 0.950 hanks.95 4 4 2 0.950
baseball 7,681 6 9 0.999
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Table 6. PGVI’s results for the 35 small benchmark problems that it could find a near optimal solution (gap smaller than one unit
at the third significant digit) within 1,000 seconds. The linear correlation coefficient between |Γ| and T ime is -0.0451, the linear
correlation coefficient between |S| and T ime is -0.0406, the linear correlation coefficient between |Bs| and T ime is 0.9842, and the
linear correlation coefficient between P̂g,U

f,L (δ) with δ = 10−6 and T ime is 0.9869.

Problem Gap V L(b0) V U (b0) |Γ| |Bs| P̂g,U
f,L (δ) T ime (s)

1d 0.00 1.26 1.26 6 9 9 0.00
4×3.95 0.01 1.89 1.90 227 152 152 0.25
4×5×2.95 0.01 2.08 2.09 2,428 1,680 1,679 30.62
bridge-repair 63 40,421 40,484 7 22 21 0.02
cheese.95 0.01 3.48 3.49 56 12 12 0.02
cheese-taxi 0.00 2.48 2.48 174 33 33 0.02
cheng.D3-1 10 6,417 6,427 8 31,565 26,202 989.98
cheng.D3-2 10 8,240 8,250 6 6,920 4,802 85.06
concert 0.00 0 0 1 1 1 0.01
ejs1 1 421 422 9 12,089 11,359 448.04
ejs3 0 1,712 1,712 5 12 11 0.07
ejs5 0 0 0 1 1 1 0.00
ejs6 0 0 0 1 1 1 0.00
ejs7 0 0 0 1 1 1 0.00
ejs-ft-counter 0.00 -3.18 -3.18 3 2 2 0.00
line4-2goals 0.00 0.47 0.47 2 3 3 0.00
marking 0.00 2.75 2.75 50 16 16 0.01
marking2 0.00 2.75 2.75 48 16 16 0.01
mcc-example1 0.00 0.38 0.38 10 21 21 0.00
mcc-example2 0.00 0.38 0.38 10 21 21 0.00
mini-hall2 0.01 2.71 2.72 166 18 18 0.04
network.95 1 293 294 24 3,023 3,023 10.40
network 1 293 294 24 3,065 3,065 10.12
paint.95 0.00 3.29 3.29 14 157 153 0.09
parr95.95 0.01 7.19 7.20 8 7 7 0.01
saci-s12-a6-z5.95 0.03 14.80 14.83 9 58 58 0.02
saci-s100-a10-z31 0.06 16.56 16.62 2 29 29 0.41
shuttle.95 0.10 32.79 32.89 109 6 6 0.02
stand-tiger.95 0.08 50.38 50.46 136 40 40 0.09
tiger.95 0.05 19.36 19.41 12 21 19 0.02
tiger.aaai 0.00 1.93 1.93 5 7 6 0.00
web-ad 0.001 0.804 0.805 543 738 725 1.32
web-mall 0.01 6.90 6.91 13 63 60 0.03
hanks.95 0.01 3.29 3.30 14 157 153 0.14
baseball 0.001 0.641 0.642 424 258 257 4.02

Table 7. Performance comparison, SARSOP and PGVI. Here, T ime represents the total computation time, and T0 represents the initial-
ization time on each test problem.

Problem Gap Time (seconds) Time− T0 (seconds)
SARSOP PGVI Speedup SARSOP PGVI Speedup

FieldVisionRockSample[5,5] 0.47 9,764 2,570 3.80 9,764 2,570 3.80
Tracking 0.69 9,998 2,294 4.36 9,105 1,401 6.50
Homecare 3.43 9,987 1,819 5.49 9,577 1,409 6.80
3D Navigation 754,977 9,934 < 1,719 > 5.78 9,922 < 1,707 > 5.81


