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Abstract

Trial-based asynchronous value iteration algorithms for
large Partially Observable Markov Decision Processes
(POMDPs), such as HSVI2, FSVI and SARSOP, have
made impressive progress in the past decade. In the
forward exploration phase of these algorithms, only
the outcome that has the highest potential impact is
searched. This paper provides a novel approach, called
Palm LEAf SEarch (PLEASE), which allows the selec-
tion of more than one outcome when their potential im-
pacts are close to the highest one. Compared with exist-
ing trial-based algorithms, PLEASE can save consider-
able time to propagate the bound improvements of be-
liefs in deep levels of the search tree to the root belief
because of fewer point-based value backups. Experi-
ments show that PLEASE scales up SARSOP, one of
the fastest algorithms, by orders of magnitude on some
POMDP tasks with large observation spaces.

Introduction
Partially Observable Markov Decision Processes (POMDPs)
provide a rich mathematical model for planning under
uncertainty (Kaelbling, Littman, and Cassandra 1998).
However, POMDP planning is notoriously hard due to the
computational complexity of solving it exactly (Lusena,
Goldsmith, and Mundhenk 2001). Consequentially, there
have been much works on computing approximate POMDP
solutions (Smith 2007; Ross et al. 2008; Bonet and
Geffner 2009; Silver and Veness 2010; Shani, Pineau,
and Kaplow 2013), including a number of point-based
POMDP algorithms (Pineau, Gordon, and Thrun 2003;
Smith and Simmons 2005; Pineau, Gordon, and Thrun 2006;
Kurniawati, Hsu, and Lee 2008; Zhang, Hsu, and Lee 2014).

Most point-based POMDP algorithms use value iteration,
which exploits the fact that the optimal value function must
satisfy the Bellman equation (Bellman 1957). Value itera-
tion algorithms start with an initial policy represented as a
value function V and update values on V by iterating on
the Bellman equation until the iteration converges. The idea
behind point-based algorithms is to sample a representative
set of beliefs from the entire belief space and to compute an
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Figure 1: Trial-based search vs. palm leaf search.

approximately optimal value function by updating α-vectors
(via point-based value backups) over the sampled beliefs.

Several representative point-based algorithms do a trial-
based search in their sampling strategies, where the current
bounds of the optimal value function are used to select
a single path from the initial belief b0 to one leaf belief
during each trial. To our knowledge, few existing (PO)MDP
literature have discussed the implementation techniques and
empirical results of selecting multiple actions and outcomes
in trial-based search. Keller and Helmert (2013) suggested
that this might be an opportunity of future research.

This paper provides a new method called Palm LEAf
SEarch (PLEASE). We use Figure 1 to explain the motiva-
tion behind the method. Although the justification to some
extent is simplistic, it helps us reveal two main characteris-
tics of PLEASE in an easy way. Assume that, for a POMDP,
n child beliefs of a belief at level d−1, denoted bd−1, need to
perform point-based value backups to propagate their bound
improvements to the initial belief b0 to guarantee to find a
near optimal policy at b0. For each trial, trial-based algo-
rithms need to forward search one of bd−1’s n child beliefs
so as to propagate its improvement to b0. Since each trial
length is d + 1, totally, there are n × (d + 1) beliefs that
need to perform backups. The PLEASE method allows the
selection of more than one outcome during its forward ex-
ploration phase when their potential impacts are close to the
highest one. Instead of repeatedly performing backups on
bi, where i = 0, · · · , d − 1, n times, PLEASE can perform
them once. As a result, there are only n + d beliefs that
need to perform backups in PLEASE. When d or n becomes
larger, d(n−1)

n+d

(
= n(d+1)−(n+d)

n+d

)
increases. This suggests

that PLEASE is more attractive when tackling a POMDP
with large observation size (probably large n) and that needs
to search deeply (large d) to find a near optimal solution.

In the challenging POMDP case with large observation
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space, it often happens that potential impacts of a few child
beliefs are close to the highest one. A difficult problem is
how to use the heuristics of beliefs to select a promising
belief subset from them to make PLEASE perform best. We
provide a novel heuristic threshold function, which depends
on specific beliefs and is changeable over time, aiming to
address the problem. Prior knowledge of POMDP model
parameters is exploited in the function. Experimentally,
PLEASE outperforms SARSOP by orders of magnitude on
some difficult robotic tasks with large observation spaces.

Preliminaries
The POMDP framework is a rich mathematical model for
single agent’s sequential decision making to maximize its
total reward in a partially observable and stochastic envi-
ronment. It can be defined by a tuple (S,A,Z, T,Ω, R, γ),
where S, A and Z are the finite and discrete state space,
action space and observation space, respectively, and γ ∈
(0, 1) is the discount factor. At each time step, the agent
takes some action a ∈ A and moves from a start state
s to an end state s′. The end state s′ is given by a state-
transition function T (s, a, s′) : S × A × S → [0, 1], where
T (s, a, s′) = Pr(s′|s, a). The agent then perceives an ob-
servation. The outcome of observing z ∈ Z is given by an
observation function Ω(a, s′, z) : A×S×Z → [0, 1], where
Ω(a, s′, z) = Pr(z|a, s′). The reward function R(s, a) :
S×A→ R gives the agent a real-value reward after it takes
action a in state s.

A belief state (or belief, belief node) b is a sufficient statis-
tic for the history of actions and observations. A belief state
space B is comprised of all possible belief states. When the
agent takes action a at belief b and receives observation z, it
will arrive at a new belief ba,z

(
= τ(b, a, z)

)
:

ba,z(s′) =
Ω(a, s′, z)

∑
s∈S T (s, a, s′)b(s)

Pr(z|b, a)
. (1)

Here Pr(z|b, a) =
∑
s′∈S Ω(a, s′, z)

∑
s∈S T (s, a, s′)b(s).

We denote b0 as the initial belief state, and TR as the be-
lief tree rooted at b0 consisting of beliefs reachable from b0
by following an arbitrary policy. The Average Discounted
Return (ADR) is given by E[

∑∞
t=0 γ

tR(st, at)|b0], where st
and at are the agent’s underlying state and action at time t,
respectively.

The goal of solving a POMDP planning problem is to
find an optimal policy that maximizes the ADR. A POMDP
policy π : B → A maps a belief b ∈ B to a prescribed
action a ∈ A. A policy π induces a value function V π(b)
that specifies the ADR of executing π starting from b. The
optimal value function V ∗, the value function associated
with the optimal policy π∗, can be approximated arbitrary
well by a piecewise-linear and convex function:

V ∗(b) ≈ maxα∈Γ∗(α · b), (2)

where Γ∗ is the finite set of |S|-dimensional hyperplanes,
called α-vectors, representing the optimal value function
V ∗. With each α-vector an action is associated, which
can be used to obtain the best immediate policy
at the current belief state. We define Q∗(b, a) as

∑
s∈S R(s, a)b(s) +

∑
z∈Z Pr(z|b, a)V ∗(τ(b, a, z)), and

therefore, have V ∗(b) = maxa∈AQ
∗(b, a). The lower and

upper bounds of V ∗ are denoted V L and V U , respectively.
We assume that both V L and V U are uniformly improvable
(Smith 2007) in this paper, meaning that applying a
point-based value backup—α-vector’s update for a selected
belief—brings them everywhere closer to V ∗. Similarly, we
use QL, QU for the corresponding bounds of Q∗.

Trial-based Value Iteration
Asynchronous value iteration for POMDPs allows some be-
lief states to be updated more than others, based on the as-
sumption that the value function accuracy around the initial
belief b0 is more crucial for some beliefs in the reachable
space R(b0) (Shani, Brafman, and Shimony 2007). Trial-
based search is a well-known form of asynchronous value it-
eration. Every trial-based value iteration algorithm executes
a sequence of trials until a stopping criterion is satisfied. One
popular stopping criterion is to stop when the gap between
bounds at b0 is small enough or the algorithm runs out of
computational time. During each trial, a trajectory is created
and only beliefs in the trajectory are performed backups. An
important aspect for the efficiency of trial-based algorithms
is a good heuristic that leads to important beliefs, on which
backups are performed in some order.

RTDP-Bel (Geffner and Bonet 1998; Bonet and Geffner
2009) is the first trial-based algorithm for POMDPs. It
discretizes beliefs and maintains Q-values for the discretized
beliefs only. Trials are executed over the POMDP mapping
the real belief into the closest discretized belief, which is
then used for backups. HSVI2 (Smith and Simmons 2005),
Focused RTDP (Smith 2007), FSVI (Shani, Brafman, and
Shimony 2007), SARSOP (Kurniawati, Hsu, and Lee 2008)
and GapMin (Poupart, Kim, and Kim 2011) all explore the
reachable belief space R(b0) from b0 by repeated trials,
and can be viewed as RTDP (Barto, Bradtke, and Singh
1995) variants in the POMDP field. Distinguishing from
RTDP-Bel, who only uses the upper bound on V ∗, these
five practical algorithms use the lower bound as a heuristic
in searching important beliefs. These algorithms can be
specified in terms of five ingredients: heuristic function,
backup function, action selection, outcome selection, and
trial length. We briefly describe two of them as follows.

HSVI2
Algorithms 1 and 2 describe the details of HSVI2 (Smith
and Simmons 2005). HSVI2 uses α-vectors as lower bounds
and sawtooth representations as upper bounds. The initial-
ized lower bound, denoted V L0 , is obtained by using the
blind policy (Hauskrecht 2000), and the initialized upper
bound, denoted V U0 , is obtained by the Fast Informed Bound
(FIB) method (Hauskrecht 2000). Both the lower and upper
bounds are used in the selection of action and observation
(Lines 4 and 5 in Algorithm 2).

HSVI2 is always action optimistic – it chooses the action
with the highestQU during the search process. The observa-
tion that HSVI2 selects is the one with the highest weighted
excess uncertainty, where the excess function is defined as
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Algorithm 1 π = HSVI2(ε).

1: Initialize the bounds V L and V U ;
2: while V U (b0)− V L(b0) > ε do
3: EXPLORE(b = b0, db = 0, ε);
4: end while
5: return the action corresponding to lower bound V L;

Algorithm 2 EXPLORE(b, db, ε).
1: if excess(b, db, ε) ≤ 0 then
2: return ;
3: end if
4: a∗ = arg maxa∈AQ

U (b, a);
5: z∗ = arg maxz∈Z [Pr(z|b, a∗) ·excess(τ(b, a∗, z), db+

1, ε)];
6: EXPLORE(τ(b, a∗, z∗), db + 1, ε);
7: add(V L, backup(b, V L));
8: add(ΥU , backup(b, V U ));

excess(b, db, ε) = V U (b) − V L(b) − ε/γdb , and db is the
depth of b in the reachable belief tree TR rooted from b0.
Thus, HSVI2 prefers to visit belief states which have a big-
ger estimated gap between lower and upper bounds of V ∗
and have higher probabilities to be visited from b0. The trial
length is controlled by the stopping criterion that the gap be-
tween bounds of V ∗ at b is smaller than ε/γdb . After finding
a trajectory, HSVI2 performs backups on both bounds of V ∗
at beliefs (via backup(b, V L) and backup(b, V U ) in Lines 7
and 8 of Algorithm 2) along the trajectory to b0 reversely
(or in round-trip order). In Line 8 of Algorithm 2, ΥU is a
finite set of belief/value points (b, V U (b)). HSVI2 period-
ically prunes dominated elements in both the lower bound
vector set and the upper bound point set.

SARSOP
Contrary to HSVI2, SARSOP uses a termination condition
that allows selective deep sampling. It exploits the insight
that, on some POMDP problems, some belief nodes with
high returns lie deep in the tree TR. An efficient algorithm
must allow the sampling path to go deep enough in order
to reach them to achieve satisfiable performance. SARSOP
uses a simple learning technique to predict the optimal value
V ∗(b) for some belief nodes whose gaps between bounds are
smaller than ε/γdb . It gives preference to lower bound im-
provements and continues down a sampling path beyond the
belief node with a gap of ε/γdb , if it predicts that doing so
likely leads to an improvement in the lower bound at the root
belief b0 (Kurniawati, Hsu, and Lee 2008). In comparison to
the α-vector pruning strategy in HSVI2, the pruning step in
SARSOP is more aggressive to improve computational effi-
ciency of backup operations. The called δ-dominance prun-
ing strategy tries to prune an α-vector if it is dominated by
other α-vectors over the optimally reachable belief space
R∗(b0), rather than the entire belief space B. Using these
more effective sampling and pruning strategies, Kurniawati,
Hsu, and Lee (2008) showed that SARSOP yields better per-
formance than HSVI2 on several benchmark problems.

Algorithm 3 EXPLORE(b, db, ε) in PLEASE.
1: if b’s gap termination condition == true then
2: return ;
3: end if
4: a∗ = arg maxa∈AQ

U (b, a);
5: z∗ = arg maxz∈Z [Pr(z|b, a∗) ·excess(τ(b, a∗, z), db+

1, ε)];
6: for z ∈ Z do
7: if Pr(z|b, a∗) · excess(τ(b, a∗, z), db + 1, ε) ≥ ζ ·
Pr(z∗|b, a∗) · excess(τ(b, a∗, z∗), db + 1, ε) then

8: EXPLORE(τ(b, a∗, z), db + 1, ε);
9: end if

10: end for
11: add(V L, backup(b, V L));
12: add(ΥU , backup(b, V U ));

Palm Leaf Search
In this section, we describe the PLEASE algorithm and
its variant, PLEASE-Z. We use SARSOP as an example
to explain how to modify it into the PLEASE method.
Compared with Algorithm 2, Algorithm 3 adds a for loop
in Lines 6∼10 1. This allows Algorithm 3 to search towards
more than one outcome in its forward exploration phase
when their potential impacts are close to the highest one.

The remaining question is which outcomes should be
selected using heuristics to make PLEASE do best? An
intuitive answer is that the closer one outcome’s weighted
excess uncertainty to the highest one, the more it deserves
to be visited. We control the palm leaf search at beliefs by
setting ζ online (Line 7 in Algorithm 3). For a POMDP, the
optimal value of ζ for the best performance is unknown,
however, we know it depends on specific belief b and
probably changes over time. So, it is not good to set ζ as a
constant. We define it as a function of b and θ, called ζ(b, θ),
where θ is changeable over time and independent of b. This
threshold function is an important part of our method.

Suppose that users have prior knowledge on time bound
spent in tackling a POMDP and its observation space size. It
is reasonable that these factors determine the users’ prefer-
ence in doing palm leaf search. For example, too aggressive
palm leaf search in handling POMDPs with small obser-
vation spaces in limited time is often unwise. To make
PLEASE work well in all POMDP cases, we give users an
input constant C (≥ 0) in exploiting the knowledge. The
constant C is defined as the desired ratio of #PLEASE -
#SARSOP to #SARSOP, where #PLEASE is the total num-
ber of backups in the PLEASE approach, and #SARSOP
is the total number of backups on the paths selected by
SARSOP’s action and outcome selection strategies and its
belief’s gap termination condition. In contrast to SARSOP,
C > 0 reduces the number of backups to propagate the
bound improvements of selected leaf nodes to the root node.

We let PLEASE control θ online so that it obtains an ideal
value of θ over time to make the actual ratio of #PLEASE to

1The complete SARSOP algorithm is sophisticated. Algorithm
3 ignores some technique details for the convenience of discussion.
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Figure 2: An example to explain dis(b, p∗), the distance from
b to p∗.

#SARSOP close to C+ 1. Specifically, we define θ by using
the following rule:

θ =

{
min{θ + ∆, 1} if #PLEASE

#SARSOP ≥ C + 1,

max{θ −∆, θl} otherwise.
(3)

Here, θ is set to θ0 = 1 in the beginning of PLEASE, θl =
0.8, and ∆ = 0.01 in this paper. PLEASE adjusts the value
of θ in the beginning of each forward exploration phase from
the initial belief b0 in the PLEASE method.

Now, we define the function ζ(b, θ) as dis(b,p∗)+1
√
θ by

using θ and b’s heuristic information. As suggested in the
introduction section, PLEASE may be more efficient when
it gives more time to do palm leaf search in promising beliefs
with deep levels. PLEASE achieves this goal by doing more
aggressive palm leaf search around the current best path
p∗ in each forward exploration phase starting at b0. Here,
p∗ represents the path generated by SARSOP’s action and
outcome selection strategies and its belief’s gap termination
condition (Figure 2). Specifically, we define the distance
from b to p∗, denoted dis(b, p∗), as the number of beliefs
that b needs to go through to arrive in p∗. For example, in
Figure 2, dis(bi, p∗) = 0 for i = 0, 1, · · · , bd, dis(b′, p∗) =
dis(b′′′, p∗) = 1 and dis(b′′, p∗) = 2. Thus, in this criterion,
PLEASE uses more time to explore promising belief nodes
in deep levels only if their distances to the current best path
p∗ are small.

Variant: PLEASE-Z
We describe a variant of PLEASE with a different defini-
tion of C, called PLEASE-Z. The constant C in PLEASE-Z
is defined as the desired ratio of #PLEASE - #MAXAZ to
#MAXAZ, where #MAXAZ is the total number of backups
on sampled beliefs that can be represented as τ(·, a∗, z∗).
In other words, #MAXAZ stores the number of sampled
beliefs induced from the one-step best action and observa-
tion selection. We use Figure 3 to distinguish PLEASE-Z
from PLEASE. Assume that the belief tree is sampled by
PLEASE or PLEASE-Z. Thus, #PLEASE=12. The num-
ber of beliefs in p∗ (#SARSOP), denoted by the solid black
nodes, is 4. However, the number of beliefs that can be rep-
resented as τ(·, a∗, z∗), denoted by both solid black and
gray nodes, is 8. The white nodes represent the sampled
beliefs that cannot be represented as τ(·, a∗, z∗). Gener-
ally, #MAXAZ≥#SARSOP, which results in the good C in
PLEASE-Z appears to be (much) smaller than the good C in
PLEASE empirically.

b0
a*
z*z

a*

a*a*a*a*

z*

z*z*z*z*

zz z*
a*

z

Figure 3: Example belief tree to distinguish PLEASE-Z
from PLEASE.

Theoretical Analysis
Essentially, palm leaf search can be viewed as a kind of
complete anytime best-first beam search (Zhang 1998) in
POMDPs. Similar techniques of tree-trials have been used
in Monte-Carlo tree search, such as df-UCT by Yoshizoe et
al. (2011). At each step, the complexity of each PLEASE
exploration step is at least the time and space complexity
of each SARSOP step. However, its conservative theoretical
time bound of finding an ε-optimal policy is verifiable to be
not worse than the original trial-based algorithm by using
HSVI2 style proof technique (Smith 2007).

In this section, we give proofs of the PLEASE method and
its variant PLEASE-Z’s convergence. We use HSVI2 style
proof techniques to prove PLEASE’s convergence. Based on
it, a relatively tighter convergence bound can be found for
the PLEASE-Z method.

PLEASE’s Convergence
Proposition 1. Let ε > 0 and the threshold function
ζ > 0. Assume that the initialized upper and lower
bounds, V U0 and V L0 , are uniformly improvable. Then
PLEASE(ε) is guaranteed to terminate after performing
at most dmax

(|A||Z|)dmax+1−1
|A||Z|−1 point-based value backups,

where dmax = dlogγ
ε

||V U
0 −V L

0 ||∞
e.

Proof. Recall that in PLEASE, sampled beliefs in each
forward exploration process from b0 is composed of a
tree rooted at b0, compared with a single path from b0
in trial-based algorithms. The path length from b0 to
each leaf node in the tree is no longer than dmax. At
the beginning of executing PLEASE, there are totally
(|A||Z|)dmax+1−1

|A||Z|−1 unfinished beliefs. Here, a finished belief
satisfies excess(b, db, ε) < 0 or its ancestor beliefs are fin-
ished. Thus, we only need to prove the following statement:
when PLEASE explores towards beliefs under an observa-
tion branch, at least one unfinished belief under the branch
will switch to the finished status after the exploration phase.

If PLEASE explores towards beliefs under an observation
branch z from b after taking a, then excess(τ(b, a∗, z), db +
1, ε) > 0. Otherwise, the conditional statement in Line
7 of Algorithm 3 cannot be satisfied due to ζ > 0. Let
b′ = τ(b, a∗, z). Now we consider the following two cases:
(1) Its child beliefs τ(b′, a∗, z) for all z ∈ Z are finished,
namely, excess(τ(b′, a∗, z), db + 2, ε) ≤ 0. In this case after
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Figure 4: Results on Tag(55). See text for details.

performing a backup on b′, b′ will be switched to the fin-
ished status. (2) At least one of its child beliefs τ(b′, a∗, z)
is still unfinished. Then, EXPLORE(τ(b′, a∗, z), db + 2, ε)
will switch τ(b′, a∗, z) or one of its offsprings to the finished
status. Thus, we get the final result.

PLEASE-Z’s Convergence
Although PLEASE-Z seems less intuitive than PLEASE,
we figure out that it has better theoretical guarantee. While
PLEASE can only guarantee to find an ε-optimal solution
after performing at most umax = dmax

(|A||Z|)dmax+1−1
|A||Z|−1 −

#PLEASE point-based value backups, when it has
performed point-based value backups #PLEASE times,
PLEASE-Z can reduce umax to dmax

(
(|A||Z|)dmax+1−1

|A||Z|−1 −
(#PLEASE−#MAXAZ)

)
−#SARSOP theoretically.

Proposition 2. Let ε > 0 and the threshold function
ζ > 0. Assume that the initialized upper and lower
bounds, V U0 and V L0 , are uniformly improvable. Then
PLEASE-Z(ε) is guaranteed to terminate after performing at

most dmax

(
(|A||Z|)dmax+1−1

|A||Z|−1 −(#PLEASE−#MAXAZ)
)
−

#SARSOP point-based value backups, where dmax =
dlogγ

ε
||V U

0 −V L
0 ||∞

e, when it has performed point-based
value backups #PLEASE times, including #MAXAZ times of
backups on beliefs that can be represented as τ(·, a∗, z∗)
and #SARSOP times of backups on beliefs on the paths
selected by SARSOP’s action and outcome selection
strategies and its belief’s gap termination condition.

Proof. Assume that the PLEASE-Z algorithm has called
the EXPLORE(b = b0, db = 0, ε) function #EXPLORE
times after performing backups #PLEASE times. During
executing each EXPLORE(b = b0, db = 0, ε), one current
best path p∗ is always generated. Performing backups on
beliefs on p∗ can switch one unfinished belief to the finished
status. We denote the number of beliefs on p∗ during the
ith invocation of EXPLORE(b = b0, db = 0, ε) as Li(p∗).
Thus, Li(p∗) ≤ dmax and

#SARSOP =

#EXPLORE∑
i=1

Li(p
∗) ≤ #EXPLORE · dmax.

For each sampled belief that cannot be represented as
τ(·, a∗, z∗), there always exists such a unique trajectory that
all successive beliefs are reached by applying the best action
and observation selection strategies, namely, all successive
beliefs along the trajectory can be represented as τ(·, a∗, z∗).
Performing backups on beliefs on each trajectory like this
can switch at least one unfinished node to the finished
node. The number of trajectories like this is #PLEASE −
#MAXAZ after performing backups #PLEASE times.
Thus, after performing backups #PLEASE times, at least

#F = (#PLEASE−#MAXAZ) + #EXPLORE
unfinished nodes switch to the finished status.

Since there are at most (|A||Z|)dmax+1−1
|A||Z|−1 unfinished nodes

in the beginning of calling the PLEASE-Z algorithm, we
figure out that at most

(|A||Z|)dmax+1 − 1

|A||Z| − 1
−#F

unfinished nodes exist after performing backups #PLEASE
times. So at most

dmax

( (|A||Z|)dmax+1 − 1

|A||Z| − 1
− (#PLEASE−#MAXAZ)

)
−dmax ·#EXPLORE

≤ dmax

( (|A||Z|)dmax+1 − 1

|A||Z| − 1
− (#PLEASE−

#MAXAZ)
)
−#SARSOP

backups are required to find an ε-optimal solution in the
worst case.

Experiments
In this section, we mainly compare and analyze PLEASE
and SARSOP’s empirical performance on the two POMDP
problems with large observation spaces: Tag(55) (|S| =
3, 080, |A| = 5, |Z| = 56) and Two-Robot Tag (|S| =
14, 400, |A| = 25, |Z| = 625) (Ong et al. 2010). Our
experimental platform is a 16-core linux machine with
4GB memory, and each core is at 2.40GHz. PLEASE
and SARSOP are implemented based on the APPL-0.95
software package2.

2http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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Figure 5: Tag(55) configuration. The “R” indicates the robot
position, and the “O” indicates the opponent position.

Tag(55) Problem
The Tag problem was first described in the work of PBVI
(Pineau, Gordon, and Thrun 2003). The environment has
been used more recently in other POMDP planning work
(Smith and Simmons 2005; Ong et al. 2010). The Tag(55)
problem scales the configuration of the original Tag problem
from 29 grids to 55 grids (Figure 5). In this environment, a
mobile robot moves in a grid map with the goal of tagging an
opponent that intentionally moves away. Both the robot and
the opponent are located initially in independently selected
random positions. The robot can choose either to move into
one of four adjacent positions by actions {North, South,
East, West} or to tag the opponent by a “Catch” action. The
effect of the robot’s action is deterministic. The robot can
know its current position exactly, but the opponent’s position
is not observable for the robot unless they are in the same
position. The robot tries to catch the opponent, i.e. arrive
in the same position as that of the opponent, as quickly as
possible to receive a good ADR since each move for the
robot is expensive.

We use the problem to study the effects of varying the
tuning parameter C and the heuristic function ζ(b, θ).

Figure 4(a) shows the evolution of the gaps between
upper and lower bounds of the optimal value at b0 in
SARSOP and PLEASE for varying C on Tag(55). “Gap
between bounds” on the y-axis means V U (b0)−V L(b0). For
every algorithm, we ran it 10,000 seconds. PLEASE(C=4)
achieves the gap 5.21 in only 1,527 seconds and the smallest
gap 4.62 in 9,946 seconds, while SARSOP achieves the
gap 5.21 in 10,000 seconds. PLEASE with C = 1 is less
efficient than the corresponding ones with higher values of
C. It suggests that the target ratio, C = 1, is still too small
to result in significant time-saving. When setting C to be
a value bigger than 4, PLEASE appears not to be as good
as PLEASE(C=4). It implies that it becomes more difficult
to select promising beliefs from very deep levels of the
search tree (since the nodes increases exponentially) as θ in
Equation 3 decreases.

Figure 4(b) shows the evolution of the actual ratio of
#PLEASE to #SARSOP. As expected, #PLEASE

#SARSOP quickly
approaches to C + 1, the desired ratio, as time goes on.

We tested two other heuristic ways of defining ζ(b, θ),
i.e., setting it to be θ and db+1

√
θ, and empirical results with

fixed C(=4) show that the two ways are less efficient (Figure

R

R

T

Figure 6: The configuration of the Two-Robot Tag problem.
Stripped regions indicate obstacles.
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Figure 7: Results of SARSOP and PLEASE varying C on
the Two-Robot Tag problem.

4(c)) in terms of the evolution of the gaps between bounds
at b0. The issue in setting ζ(b, θ) = θ is that b’s heuristic
is disused. The issue in setting ζ(b, θ) = db+1

√
θ is that the

depth information is not well exploited to reduce the time of
propagating bound improvements in deep levels to the root
belief node.

Setting θl an arbitrary value in (0, 0.9] should not affect
the results we report here. It is because θ is always in
[0.95, 1.00] for PLEASE(C=4), and ranges from 0.90 to 1.00
for PLEASE(C=10) on Tag(55). It implies that the potential
impacts of lots of outcomes are very close to the highest one.

Two-Robot Tag Problem
This problem is a variation of Tag, and was introduced in
(Ong et al. 2010). In this task, two robots (labeled “R”) and
a target (labeled “T”) operate in a 7×5 grid environment, in
which 11 grids are filled in the obstacles (Figure 6). Two
robots attempt to catch the target that is always moving
away from the closer robot, as quickly as possible to get a
high ADR. Centralized planning and execution are assumed
in the problem. The two robots maintain a communication
link and share their knowledge of action and observation in
decision making. This task is usually used to test the abilities
of POMDP algorithms in handling more than one robot.

We use the larger robotic task to further study the
effects of varying the input constant C. Figure 7 shows
the evolution of the gaps between bounds of V ∗ at b0
in SARSOP and PLEASE varying C on the Two-Robot
Tag problem in 100,000 seconds. SARSOP needs 100,000
seconds to achieve the gap 6.56, while PLEASE(C=10) only
needs 4,174 seconds and achieves the gap 4.65 in 100,000
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Table 1: Performance comparison of SARSOP, PLEASE
with C = 3.22 log10 |Z| and PLEASE-Z with C =
0.13 log10 |Z| on six other test problems.

Algorithm Gap V L(b0) V U (b0) Time
Tag(85) (|S| = 7, 310, |A| = 5, |Z| = 86)
SARSOP 7.02 -12.45 -5.43 9,995
PLEASE(C=6.23) 7.02 -12.18 -5.16 583
PLEASE-Z(C=0.25) 7.01 -12.14 -5.13 339
Tag(102) (|S| = 10, 506, |A| = 5, |Z| = 103)
SARSOP 7.68 -13.56 -5.88 9,993
PLEASE(C=6.48) 7.66 -13.15 -5.49 365
PLEASE-Z(C=0.26) 7.57 -13.27 -5.70 533
Hallway (|S| = 60, |A| = 5, |Z| = 21)
SARSOP 0.18 1.01 1.19 9,995
PLEASE(C=4.26) 0.18 1.00 1.18 115
PLEASE-Z(C=0.17) 0.18 1.00 1.18 89
Hallway2 (|S| = 92, |A| = 5, |Z| = 17)
SARSOP 0.46 0.42 0.88 9,990
PLEASE(C=3.96) 0.46 0.40 0.86 426
PLEASE-Z(C=0.16) 0.46 0.40 0.86 427
FieldVisionRockSample 5 5 (|S| = 801, |A| = 5, |Z| = 32)
SARSOP 0.47 23.27 23.74 9,764
PLEASE(C=4.85) 0.47 23.28 23.75 3,585
PLEASE-Z(C=0.20) 0.45 23.29 23.74 3,755
HomeCare (|S| = 5, 408, |A| = 9, |Z| = 928)
SARSOP 2.98 16.77 19.75 99,686
PLEASE(C=9.56) 2.96 16.77 19.73 3,706
PLEASE-Z(C=0.39) 2.94 16.72 19.66 3,129

seconds. Setting C = 10 is a better choice than setting C =
4 on the larger problem. It implies that more aggressive palm
leaf search is helpful to get better performance on problems
with larger observation space sizes. Later, we will use the
insight to construct a C’s generator and test its performance
on more benchmarks.

More Benchmarks
Now, we study PLEASE’s efficiency on a large number of
classical POMDP benchmarks with medium or large obser-
vation spaces, and PLEASE’s performance degradation if
applied to problems with small observation spaces.

We first compare PLEASE with SARSOP on six bench-
mark problems (Littman, Cassandra, and Kaelbling 1995;
Ross and Chaib-Draa 2007; Hsu, Lee, and Rong 2008;
Kurniawati, Hsu, and Lee 2008) in terms of the gap between
bounds at b0, V L(b0), V U (b0) and running time, as shown in
Table 1. Figure 8 is the configuration of the Tag(N) domain,
whereN = 13×i+4×i, used in Table 1. For each test prob-
lem, we report the gap that SARSOP achieved when 10,000
or 100,000 seconds reached, and the time that PLEASE
needed to achieve the same gap. We use C = m log10 |Z|,
inspired by the fact that C should be larger when |Z| in-
creases, as a simple formula to set the input constant auto-
matically. Here,m = 3.22 is fitted by using the least squares
method, which uses C = 4, |Z| = 56 from the Tag(55)
problem and C = 10, |Z| = 625 from the Two-Robot Tag
problem as the training set. On most of these problems this
table shows that PLEASE with C = 3.22 log10 |Z| is sub-
stantially faster than SARSOP by orders of magnitude.

We next compare PLEASE and SARSOP’s performance

R1 2 3 4 5 6 7 8 9 10 11 12 13

O

…

…

  i

 i

Figure 8: Tag(N) configuration, where N = 13× i+ 4× i.
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Figure 9: Results on RockSample[7,8].

on RockSample[7,8] (|S| = 12, 545, |A| = 13, |Z| = 2)
(Smith and Simmons 2004), a classical benchmark with ex-
tremely small observation size (Figure 9). PLEASE(C=1)
appears to be better than SARSOP after 1,500 seconds in
terms of the gap between bounds at b0. It implies that palm
leaf search is still helpful in the case of very small observa-
tion size, when searching more deeply as time goes on. As
C increases (e.g., C = 4), PLEASE’s performance becomes
slightly worse. It might be because C is overestimated and
not many promising beliefs in terms of potential impacts
exist in the problem. When decreasing θl from 0.8 to 0.1,
PLEASE with C=4’s performance degenerates further since
sampling unpromising beliefs wastes its computational time.

Further Discussion
Some existing works focus on developing efficient planning
algorithms for POMDPs with large observation spaces
(Atrash and Pineau 2006; Hoey and Poupart 2005). In 2006,
Atrash and Pineau proposed to automatically find good low-
dimensional observation spaces by clustering and principal
component analysis. A way of finding a lossless partitioning
of the observation space is discussed in (Hoey and Poupart
2005). Compared with these previous approaches, our
PLEASE method explores promising observation branches
without propagating back the bound improvements to the
root frequently by allowing to select multiple outcomes
adaptively during its forward exploration phase. PLEASE
can be easily combined with several existing efficient
POMDP planning algorithms. We did not compare PLEASE
with these previous methods because their implementation
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Table 2: Performance comparison of HSVI2 and SARSOP.

Algorithm Gap V L(b0) V U (b0) Time (s)
Tag(55)
HSVI2 5.09 -10.14 -5.05 9,998
SARSOP 5.21 -9.89 -4.68 9,836
Two-Robot Tag
HSVI2 8.85 -13.85 -5.00 9,997
SARSOP 7.43 -12.71 -5.28 9,998
HomeCare
HSVI2 10.02 10.10 20.12 10,000
SARSOP 3.43 16.55 19.98 9,987

and experimental results on our test problems are not
available for us yet.

From more detailed data in our experiments, we can ob-
tain the three other observations as below.

First, the performance of HSVI2 on our test problems is
worse than SARSOP in most cases, and GapMin variants are
not efficient in tackling large problems. Table 2 compares
HSVI2 and SARSOP’s performance on the Tag(55), Two-
Robot Tag and HomeCare problems. We ran both HSVI2
and SARSOP on each problem in 10,000 seconds, respec-
tively. HSVI2’s performance is slightly better on the Tag(55)
problem, but much worse on the Two-Robot Tag and Home-
Care problems. GapMin variants failed to load the three
problems in 10,000 seconds.

Second, compared with SARSOP, PLEASE needs much
fewer α-vectors to get the same gaps on test problems.
For example, when the gap is 3.43 on HomeCare, the
number of α-vectors in PLEASE(C=4) is 7,947, while
30,633 in SARSOP. However, the numbers of expanded
beliefs in PLEASE(C=4) and SARSOP are similar, 5,575
and 5,700 respectively. These data provide a good clue
to explain PLEASE’s efficiency. To achieve the same gap,
PLEASE(C=4) sometimes needs to expand beliefs with the
similar numbers. But PLEASE(C=4) needs fewer backups
in finishing this. Since one backup generates an α-vector,
more α-vectors are generated in SARSOP. This results in
additional time cost in the pruning process of SARSOP.
Although the pruning strategy in SARSOP can remove some
unnecessary α-vectors, it still can not prune the α-vectors
that are not δ-dominated by others to find a near optimal
solution. As a result, more vectors have to be stored as lower
bound in SARSOP, and the time-consuming of each backup
increases as time goes on.

Third, when the gaps are the same, SARSOP and
PLEASE’s ADRs appear to be similar with each other.
Specifically, the ADR is −9.73± 0.12 on the Tag(55) prob-
lem when the gap is 5.21, the ADR is −11.58± 0.12 on the
Two-Robot Tag problem when the gap is 7.43, and the ADR
is 17.03 ± 0.14 on the HomeCare problem when the gap
is 3.43. This implies that relatively fewer vectors as lower
bound in PLEASE do not sacrifice its policy quality.

Results of PLEASE-Z
Up to now, our experimental discussion only focuses on
the PLEASE algorithm. Note that we also implemented
PLEASE-Z and obtained its empirical results on all test
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Figure 10: Results of SARSOP and PLEASE-Z varying C
on the Two-Robot Tag problem.

problems. Empirically, PLEASE-Z(C=0.16) achieves the
smallest gap 4.60 in 10,000 seconds on the Tag(55) problem
and PLEASE-Z(C=0.40) achieves the smallest gap 4.54 in
100,000 seconds on the Two-Robot Tag problem (Figure
10). Table 1 shows PLEASE-Z’s empirical results on the
six problems. Similarly to PLEASE, PLEASE-Z in Table
1 sets C = 0.13 log10 |Z|, and the value 0.13 is fitted by
using the least squares method with the training set: C =
0.16, |Z| = 56 from the Tag(55) problem and C = 0.40,
|Z| = 625 from the Two-Robot Tag problem. As expected,
PLEASE-Z requires a relatively smaller C to achieve good
performance. Overall, PLEASE-Z’s empirical performance
is slightly better than PLEASE on test problems.

Conclusion and Future Work
We present a novel approach, called PLEASE, which
allows the selection of more than one outcome when their
potential impacts are close to the highest one. PLEASE
uses a heuristic way to find promising beliefs in deep
levels during the palm leaf search process. Experimentally,
PLEASE(-Z) is faster than SARSOP by orders of magnitude
on challenging POMDP problems with large observation
spaces and robust for problems with extremely small
observation spaces.

One weak point of the current PLEASE method is the
lack of theoretical analysis of its heuristic for observation
selection, although it is intuitive and works quite well
empirically. Another interesting topic is how to use more
heuristic information of beliefs (e.g., the depth information
of beliefs) in defining the threshold function ζ(b, θ) and how
to design a better function for choosing C automatically
by considering |S| and |A| in the model parameters, to
get better performance. We would like to know whether
PLEASE can be further accelerated by allowing to select
multiple actions at each belief state during the forward
exploration phase. Besides offline algorithms we discussed
before, online algorithms, such as POMCP (Silver and
Veness 2010), FHHOP (Zhang and Chen 2012) and
DESPOT (Somani et al. 2013), appear to be very promising
in handling large POMDPs. Comparing them with the
PLEASE method and considering how to use the palm leaf
search idea into them should be a valuable topic for future
exploration.
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