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Abstract. Sign language (SL) recognition modules in human-computer 
interaction systems need to be both fast and reliable. In cases where multiple 
sets of features are extracted from the SL data, the recognition system can speed 
up processing by taking only a subset of extracted features as its input. 
However, this should not be realised at the expense of a drop in recognition 
accuracy. By training different recognizers for different subsets of features, we 
can formulate the problem as the task of planning the sequence of recognizer 
actions to apply to SL data, while accounting for the trade-off between 
recognition speed and accuracy. Partially observable Markov decision processes 
(POMDPs) provide a principled mathematical framework for such planning 
problems. A POMDP explicitly models the probabilities of observing various 
outputs from the individual recognizers and thus maintains a probability 
distribution (or belief) over the set of possible SL input sentences. It then 
computes a policy that maps every belief to an action. This allows the system to 
select actions in real-time during online policy execution, adapting its 
behaviour according to the observations encountered. We illustrate the POMDP 
approach with a simple sentence recognition problem and show in experiments 
the advantages of this approach over “fixed action” systems that do not adapt 
their behaviour in real-time. 

Keywords: Sign language recognition, human-computer interaction, planning 
under uncertainty. 

1   Introduction 

Ensuring that information technology products and services are accessible to the deaf 
requires human-computer interaction systems that perform tasks in response to user 
commands and requests presented in the form of sign language (SL) input. An 
important requirement for such a system to act correctly is reliable recognition of the 
SL input. At the same time, due to the real-time nature of the interactions, the 
recognition process must also be fast. 

In general, SL expression involves the hands, facial expression, head movement 
and body posture. Thus SL recognition systems which extract multiple features from 
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the hands, face and body, and use these features as input to recognizers have been 
built in recent years (for e.g., [1]). While possibly providing better recognition 
accuracy, executing recognizers with multiple input features may be more time-
consuming than executing recognizers with fewer input features. Conversely, not all 
of the features extracted from a SL expression are necessary in all circumstances for 
disambiguating signs. For example, some signs may be easily disambiguated with just 
the features from the dominant hand, without the need for features of the non-
dominant hand and facial expression. Ideally, a SL recognition system operating 
under time constraints would process only as many of the extracted features as are 
necessary to reliably recognize the SL input. We can think of the system as having 
access to a set of recognizers, each recognizer taking a different set of extracted 
features as its input. The system’s task is to sequentially (and selectively) apply the 
available recognizers to the SL input, until it is sufficiently confident of its 
interpretation. At this point it submits its interpretation of the SL input as the final 
recognition result. 

The task of deciding which recognizers to apply in sequence and when to submit 
the final recognition result can be formulated as a planning problem for an intelligent 
agent where the agent’s observations are the output of the available recognizers. Since 
these outputs are generally not a hundred percent accurate, the agent will always have 
a degree of uncertainty about its interpretation of the SL input. At the same time, the 
agent must take into account the trade-off between the computational cost (time) of 
applying the available recognizers and the confidence level of the recognition result it 
finally submits. We propose to formulate this planning problem as a partially 
observable Markov decision process (POMDP) which explicitly models both the 
agent’s uncertainty and the desired trade-off.  

POMDP is a powerful framework for planning under uncertainty [2]. It has a solid 
mathematical foundation, and has been applied to human-computer interaction 
applications such as spoken dialogue systems [3]. The most closely related work to 
ours is [4] where visual operators are (repeatedly) applied to find the color or shape of 
objects in a scene. Our work differs in that SL input data is sequential and dynamic in 
nature – we cannot repeatedly acquire data and apply the same recognizer to the same 
sentence utterance, unlike in [4], where a visual operator can repeatedly acquire data 
from the same static scene. In our input data, signs appear sequentially in a sentence, 
hence any information we have about the sentence model can be advantageously used 
when determining the final recognition result. 

In the next section we give a short background on POMDPs, followed by a 
presentation of our proposed model in Section 3.  

2   POMDPs 

A POMDP models an agent taking a sequence of actions under uncertainty to achieve 
a goal. Formally a POMDP is specified as a tuple (S, A, O, T, Z, R), where S is a set of 
states, A is a set of actions, and O is a set of observations. In each time step, the agent 
lies in some state s in S; it takes some action a in A and moves from s to a new state 
s’. Due to the uncertainty in action, the end state s’ is modeled as a conditional 



probability function T(s, a, s’) = p(s’ | s, a), which gives the probability that the agent 
transits to s’, after taking action a from state s. The agent then makes an observation 
to gather information on its state. Due to the uncertainty in observation, the 
observation result o in O is also modeled as a conditional probability function Z(s, a, 
o) = p(o | s, a). In each step, the agent receives a real-value reward R(s,a), if it takes 
action a from state s, and the agent’s goal is to maximize its expected total reward by 
choosing a suitable sequence of actions. We control the agent’s behavior by defining 
a suitable reward function. 

For a POMDP, planning means computing an optimal policy that maximizes the 
expected total reward. Since the agent’s state is partially observable and not known 
exactly, we rely on the concept of a belief b, which is a probability distribution over S. 
A POMDP policy π maps a belief b to a prescribed action a in A. Policy computation 
is usually performed offline. 

Given a policy, the control of the agent’s actions (i.e., policy execution) is 
performed online in real time. It consists of two steps executed repeatedly. The first 
step is action selection based on the policy π. The second step is belief estimation. 
After the agent takes an action a and receives an observation o, its new belief b’ is 
given by 

 
b’(s’) = k Z(s’, a, o) ΣsT(s, a, s’) b(s),  

where k is a normalizing constant. The process then repeats.  

3   Problem Formulation 

As an illustration of how SL recognition in human-computer interaction systems can 
be formulated as a POMDP, we present a problem where the SL input consists of 2-
word sentences made up of signs from a vocabulary of 3 signs: {sign-0,  sign-1, sign-
2}. We denote the word1 positions in each sentence as position-a (first word) and 
position-b (second word). The sentences have been explicitly segmented into 
individual words (for example, by using the approach in [5]), and the features of the 
dominant and non-dominant hands have been extracted2. The system has available to 
it a single-hand recognizer which takes features from the dominant hand as its input; 
and a double-hand recognizer which takes features from both the dominant and non-
dominant hands as its input. The recognizers are assumed to have been previously 
trained on representative data such that when presented with new (previously unseen) 
data, each recognizer will output one of the signs in the vocabulary as its recognition 
result. 

The recognizer actions available to the system are:  
1) apply_ag: apply the single-hand recognizer to the the word at position-a,  
2) apply_ad: apply the double-hand recognizer to the the word at position-a,  
                                                           

1 We use the terms word and sign interchangeably in this paper. 
2 Our focus is on planning the steps for applying existing recognizers to input data, and not on 

designing/training the individual recognizers. Hence, we abstract over details about the 
method of data acquisition, and feature extraction/selection. 



3) apply_bg: apply the single-hand recognizer to the the word at position-b,  
4) apply_bd: apply the double-hand recognizer to the the word at position-b. 
The system submits its final recognition result by executing actions:  
1) submit_a0: submit sign-0 as the recognized sign at position-a;  
2) submit_a1: submit sign-1 as the recognized sign at position-a;  
3) submit_a2: submit sign-2 as the recognized sign at position-a;  
4) submit_b0: submit sign-0 as the recognized sign at position-b;  
5) submit_b1: submit sign-1 as the recognized sign at position-b;  
6) submit_b2: submit sign-2 as the recognized sign at position-b. 

Once the sign id at both word positions have been submitted, the system is considered 
to have submitted its final recognition result for the SL input. 

Below we describe the parameters in the POMDP tuple, (S, A, O, T, Z, R), for 
modeling the problem above.  
• S : Ss × Sag × Sad × Sbg × Sbd × Sat × Sbt , the set of states, is a cross product of  seven 

subspaces. The overall state s can be denoted as ss sag sad sbg sbd sat sbt. 
 

Ss : {sxy; x in {0,1,2}, y in {0,1,2}} represents the sign ids in the sentence, where 
sxy denotes sign-x in position-a and sign-y in position-b. In general, given a 
vocabulary of size Nv and sentences of length Ns, not all (Nv)Ns combinations of 
sign sequences are valid sentences in the language. The POMDP model should 
reflect this by having |Ss| < 32. The set Ss of valid sentences constitutes the sentence 
model for the SL recognition task. 
 
Sag : {fag, tag}, Sad : {fad, tad}, Sbg : {fbg, tbg}, Sbd : {fbd, tbd} are indicators which 
represent whether the agent has applied the available recognizers to the words in 
the sentence. sag  = fag (i.e. false) indicates that the single-hand recognizer has not 
been applied to the word at position-a. sag = tag (i.e. true) indicates that it has. 
Similarly, sad =  fad/tad indicates whether the double-hand recognizer has been 
applied at position-a. sbg =  fbg/tbg and sbd = fbd/tbd , respectively, indicate whether the 
single and double-hand recognizers have been applied to the word at position-b.  
 
Sat : {fat, tat}, Sbt : {fbt, tbt} are indicators which represent whether the agent has 
submitted the sign ids in the sentence. sat = fat/tat indicates whether the agent has 
submitted the sign id at position-a. sbt = fbt/tbt indicates whether the agent has 
submitted the sign id at position-b. 
 

• A : {submit_a0, submit_a1, submit_a2, submit_b0, submit_b1, submit_b2, 
apply_ag, apply_ad, apply_bg, apply_bd} is the set of actions. Executing any of 
the three submit_a actions leads to sat being set to tat. Executing any of the three 
submit_b actions leads to sbt being set to tbt. Action apply_ag leads to  sag  being set 
to tag

 . Similarly for  apply_ad and sad. Actions  apply_bg and apply_bd have 
analogous effects on sbg  and sbd, respectively. 

 
• O : {o0, o1, o2} is the set of observations, i.e. the outputs of the recognizers. 
 
• T : S × A × S → [0, 1] is the state transition function. This function reflects the fact 

that all of the actions have no effect on the state ss of the subspace Ss since the sign 



ids in a sentence do not change as a result of the agent’s actions. The indicator 
states, sag , sad , sbg , sbd , sat and sbt, are set to true when the corresponding actions 
are taken, as described above. Once set to true, an indicator remains as true. 

 
• Z : S × A × O → [0, 1]  is the observation function. For actions apply_ag, apply_ad, 

apply_bg and apply_bd, the function reflects the accuracy of the single-hand and 
double-hand recognizers (refer to Section 4.1 for details). For submit actions, the 
observation function is set to a uniform distribution. 

 
• R : S × A → real-valued rewards.  

The goal of the overall recognition system is to correctly recognize the words in 
the sentence. Hence, the reward function assigns a positive (negative) reward to the 
agent when it submits the right (wrong) sign ids. However, the agent is not allowed 
to submit the sign id at the same word position more than once. To enforce this, a 
very large penalty is set in the reward function for repeat submissions. The exact 
value of the penalty is not critical – setting it a few magnitudes bigger than the 
reward given for correct/incorrect sign id submission is quite sufficient. The 
reward function for submit_a0 is shown below, the functions for submit_a1, 
submit_a2, submit_b0, submit_b1 and submit_b2 are analogous.  
 

R(s, submit_a0) = +/-10α ; for all s where sat is fat 
R(s, submit_a0) = -10000 ; for all s where sat is tat 

 

 
For actions that apply recognizers to words in the sentence, the reward values 
reflect the computational cost (time) of the recognizers. Here, we make a 
simplifying assumption by setting the cost of applying the double-hand recognizer 
to twice that of the single-hand recognizer. This is a reasonable assumption when 
there are twice as many features to process in the double-hand recognizer. 

 
R(s, apply_ag) = -1 ; for all s where  sag is fag 
R(s, apply_bg)  = -1 ; for all s where  sbg is fbg 
R(s, apply_ad) = -2 ; for all s where  sad is fad 
R(s, apply_bd)  = -2 ; for all s where  sbd is fbd 

 

 
Applying a recognizer multiple times to the same word position violates the 
POMDP assumption that observations are independent. (The features from the 
word remain the same in each application, hence the recognizer outputs would be 
identical). To prevent a recognizer from being applied more than once to each 
word position, a very large penalty is set in the reward function.  
 

  R(s, apply_ag) = -10000 ; for all s where  sag is tag 
  R(s, apply_bg)  = -10000 ; for all s where  sbg is tbg 
R(s, apply_ad) = -10000; for all s where  sad is tad 

 R(s, apply_bd)  = -10000 ; for all s where  sbd is tbd 

 

 



The parameter α in the reward function for submit actions allows a trade-off 
between the computational cost of applying recognizers and the confidence level 
when submitting the sign ids. 

4   Experimental Setup and Results 

In this section, we describe the experiment setup and results on the POMDP model. 
The sentence model and observation function for the POMDP are defined in Section 
4.1. Sentence recognition results and some example sequences of agent actions during 
policy execution are presented in the following sections. 

4.1   POMDP Parameters 

The experiments below are a preliminary investigation into the feasibility of using 
POMDPs for SL input recognition. As such, the experiments are simulations of how 
such a POMDP would perform with real-world data. Below we describe how the 
sentence model and observation function were defined for the simulation experiments, 
as well as how they could be learned from data when applied to real-world tasks.  

 
Sentence Model. For a particular recognition task, the set of states of the subspace Ss 
should be defined to be the set of valid sentences that can occur with the given 
vocabulary.  For the experiments below, we randomly chose 5 sentences from a total 
of 9 possible combinations of 2-word sentences : {s00, s10, s21, s02, s12}. 
(Admittedly, 2-word sentences consisting of the same sign repeated twice (as in s00) 
are rare, however this does occur in longer sentences, hence we didn’t constrain the 
sentences to exclude repeated signs.) 
 
Observation Function. For a particular recognition task, the observation function 
should reflect the accuracy of the available recognizers. This can be obtained from 
supervised training by presenting multiple instances of each sign in the vocabulary to 
each recognizer and estimating the probability of its outputs. For the experiments 
below, we set some reasonable values for the accuracy of the single-hand and double-
hand recognizers, as shown in Table 1. We assumed that sign-0 and sign-1 are signs 
made with the dominant hand only while sign-2 is made with both hands. Hence  
when the sign is sign-0 or sign-1, the single-hand recognizer outputs the correct result 
with a higher probability as compared to the double-hand recognizer. The opposite is 
true for sign-2.  

Table 1.  Sign accuracy of single-hand and double-hand recognizers.  

Probability of single-hand recognizer output Actual sign 
sign-0 sign-1 sign-2 

sign-0 0.818 0.091 0.091 
sign-1 0.091 0.818 0.091 
sign-2 0.1 0.1 0.8 



Probability of double-hand recognizer output Actual sign 
sign-0 sign-1 sign-2 

sign-0 0.727 0.182 0.091 
sign-1 0.182 0.727 0.091 
sign-2 0.091 0.091 0.818 
 
The observation functions for the POMDP were set according to the values in 

Table 1. For example,  
 
Z(ss= s02, a = apply_ag, o = (sign-0,sign-0,sign-2)) = 
p(o = (sign-0,sign-1,sign-2) | ss= s02, a = apply_ag)  = (0.818, 0.091, 0.091).  

 
Note that the recognizer accuracy is not affected by which word position it is 

applied at, hence, 
 
Z(ss= s10, a = apply_bg, o = (sign-0,sign-0,sign-2)) = 

    p(o = (sign-0,sign-1,sign-2) | ss= s10, a = apply_bg)  = (0.818, 0.091, 0.091).  

4.2   Results 

Experiments were performed on a PC with a 2.66GHz Intel processor and 2GB 
memory. A POMDP model was specified as described in Section 3 and Section 4.1, 
and with the parameter α in the reward function set to 10. We first ran the APPL  
solver [6] which implements SARSOP [7], a leading POMDP algorithm, on the 
model. We then ran a total of 5 ×106  simulation trials, to measure the performance of 
the solver’s output policy. In each trial, the actual sentence is simulated with equal 
probability for each of the sentences in the set Ss. The outputs from the single-hand 
and double-hand recognizers are simulated with probabilities in accordance with 
Table 1. The actual sentence is not known to the agent executing the policy, only the 
recognizer outputs are observed. 

The average sign accuracy obtained from the trials is 88% and average sentence 
accuracy 80% (Table 2). The average cost of applying the recognizers in each trial  is 
4.53. 

Table 2.  Overall sign and sentence recognition accuracy.  

 POMDP model Single-hand-
recognizer-only 

Double-hand- 
recognizer-only 

Av. sign accuracy  88% 87% 83% 
Av.sent. accuracy 80% 75% 68% 
Cost of applying 
recognizers 

4.53 2 4 

 
As a baseline comparison, we estimated (based on the probability values from 

Table 1) the overall sign and sentence accuracy for a system which uses only one of 
the two available recognizers. For a system which uses the single-hand recognizer 
only and assumes that its output is always correct, it would, for example, correctly 



recognize the sentence s02, 65.4% of the time (0.654 =  0.818 × 0.80 =  p(o = sign-0 | 
ss= s02, a = apply_ag)  × p(o = sign-2 | ss= s02, a = apply_bg) ). 

We made adjustments to the probability values from Table 1 by taking into account 
the sentence model (this increases the calculated recognition rate since the model 
restricts the possible sequences of signs that could appear) and obtained the 
(estimated) overall accuracy rates for a single-hand-recognizer-only system. Similar 
calculations were made to estimate overall accuracy rates for a double-hand-
recognizer-only system, as shown in Table 2. 

The average cost (4.53) of applying recognizers in the POMDP model indicates 
that the policy selectively applies the available recognizers in the recognition task. It 
does not blindly apply both recognizers to each of the word positions in the sentence 
(which would entail a cost of 6), nor does it apply either only the single-hand or the 
double-hand recognizers. It achieves a higher recognition rate than both the single-
hand-recognizer-only and the double-hand-recognizer-only systems with a slightly 
higher cost than both systems. 

Note that we did not make a comparison with the recognition accuracy of a system 
that always uses both the available recognizers. Evidently, such a system would give a 
higher recognition accuracy. However, our goal is to ellicit a system that acts 
intelligently in applying recognizers when there is insufficient time to apply all the 
available recognizers at every word position, for every SL input. In the next section, 
we examine some examples of policy execution in the simulation trials to see how the 
POMDP selectively applies recognizers. 

4.3 Examples of Policy Execution 

Tables 3 and 4 show two examples of policy execution during the simulation trials. In 
terms of time steps, the tables should be read from left to right and from top to 
bottom. 

Table 3.  Policy execution example 1: actual sentence is s02, sentence recognized successfully. 

Time Belief over Ss Action Obs. 
0 (0.2, 0.2, 0.2, 0.2, 0.2)  apply_bg o2 
1 (0.049, 0.049, 0.049, 0.427, 0.427) apply_bd o2 
2 (0.006, 0.006, 0.006, 0.491, 0.491) submit_b2 - 
3 (0.006, 0.006, 0.006, 0.491, 0.491) apply_ag o0 
4 (0.011, 0.001, 0.001, 0.888, 0.099) submit_a0 - 

 
In example 1 (Table 3), the system starts with equiprobable belief over the set of 

possible sentences, Ss : {s00, s10, s21, s02, s12}.  The agent executes the first action 
apply_bg, applying the single-hand recognizer to the word at position-b. It receives 
observation o2 and updates its belief over Ss. It subsequently executes action 
apply_bd, which applies the double-hand recognizer to the same word, receives 
another observation and updates its belief again. At this point, its belief indicates that 
the sentence is most likely to be s02 or s12, both of which have sign-2 in position-b. It 
thus submits sign-2 as the recognized sign at position-b. Its next action is to execute 



apply_ag which results in observing o0. This resolves the sentence as s02 and the 
system submits sign-0 as the recognized sign at position-a. 

 

Table 4.  Policy execution example 2: actual sentence is s21, sentence recognized successfully.  

Time Belief over Ss Action Obs. 
0 (0.2, 0.2, 0.2, 0.2, 0.2)  apply_bg o1 
1 (0.076, 0.076, 0.682, 0.083, 0.083) apply_ad o2 
2 (0.012, 0.012, 0.951, 0.013, 0.013) submit_a2 - 
3 (0.012, 0.012, 0.951, 0.013, 0.013) submit_b1 - 

 
In example 2 (Table 4), the agent’s first action is again to execute apply_bg which 

applies the single-hand recognizer at position-b. It receives observation o1 and 
updates its belief over Ss. It subsequently executes action apply_ad which applies the 
double-hand recognizer to the word at position-a, receives another observation and 
updates its belief again. At this point, its belief indicates a very high probability for 
the sentence s21 – a sufficient confidence level for the agent to submit the sign ids  at 
both word positions without further recognizer actions. 

The two examples above show that the agent adapts its actions according to the 
observations it receives (and its belief over Ss) during policy execution. Both the 
sequence and number of times it applies the available recognizers vary between trials 
as it adapts its behaviour to the observations it receives.  

5   Conclusions and Future Work 

We have shown how the SL recognition task in human-computer interaction systems 
can be formulated as a POMDP problem and how the solution to the problem allows 
for real-time adaptive behaviour. We illustrated the POMDP approach on a simple 2-
word sentence recognition problem and experimentally showed that the computed 
POMDP policy performs recognizer actions only as many times as is necessary for 
sufficent sign disambiguation, and that it adaptively selects which recognizer to apply 
at each sequential step. 

Admittedly however, the illustrated problem as we have presented it here is 
relatively simple and our experiments so far are just a preliminary investigation into 
the feasibility of using POMDPs in the SL recognition domain. As such there are 
many ways in which this work can be extended. We discuss some of these below and 
give some indications of how to tackle the resultant issues. 

With the current 3-sign vocabulary and 2-word sentence recognition problem, we 
can experiment with different settings of the parameter α in the reward function 
(currently set to 10 in our experiments) and different sentence models, and measure 
the accompanying changes (if any) in the sign and sentence accuracies. So far, all our 
experiments have been done on simulation data. It would be highly informative to 
experiment with learning the sentence model and POMDP observation function from 
training examples of real-world data and executing the computed POMDP policy on 



real-world test data. Such experiments would be a big step in further validating the 
feasibility of the POMDP approach.  

A major assumption that we have made in our problem formulation is the 
availability of individual words which have been explicitly segmented from the SL 
input sentence. Although there have been many previous works on explicit 
segmentation of SL sentences (see [5] for a short review), the approaches generally 
either rely on tuning threshold values or do not generalize well across different sets of 
sentences and/or different signers. One possible approach to doing away with explicit 
segmentation is to use one of the available recognizers to perform implicit 
segmentation on sentences. The segmented results are then used for the other 
recognizers. For example, a hidden Markov model network could be learned from 
training data consisting of features from the dominant hand, and then used to segment 
test sentences by applying the Viterbi algorithm. However, this forces the recognition 
system to always apply the recognizer that performs the segmentation. An ideal 
system would integrate implicit sentence segmentation with selective application of 
recognizers in a unified POMDP model. A promising direction to consider for the 
structure of such a model is hierarchical action and state spaces [8]. 

As we extend the current model to larger vocabularies and longer sentences, there 
are two main issues that need to be considered. Firstly, it will become infeasible to 
enumerate all possible sentences in the sentence model. Instead, a bigram model 
might be used instead. This would require restructuring the subspace |Ss|. Secondly, 
the difficulty of solving the corresponding POMDP model will increase very quickly 
with vocabulary size and sentence length. To get an idea of how quickly, we note that 
the number of subspaces which form part of the cross product that make up the 
overall state space S, increases linearly with vocabulary size and sentence length. The 
number of states, |S|, in turn increases exponentially with the number of subspaces in 
the model. And finally the difficulty of solving a POMDP model increases 
exponentially with |S|. To solve the scalability problem, we might consider 
approaches that compress the state space, such as in [3]. 
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