TO APPEAR IN

Computational Geometry: Theory and Applications, Special Issue on Virtual Reality

A Hierarchical Method for Real-Time
Distance Computation among Moving Convex
Bodies

Lenoidas J. Guibas !, David Hsu !, Li Zhang '

Department of Computer Science
Stanford University
Stanford, CA 94305, U.5.A

Abstract

This paper presents the Hierarchical Walk, or H-Walk algorithm, which maintains
the distance between two moving convex bodies by exploiting both motion coher-
ence and hierarchical representations. For convex polygons, we prove that H-Walk
improves on the classic Lin-Canny and Dobkin-Kirkpatrick algorithms. We have im-
plemented H-Walk for moving convex polyhedra in three dimensions. Experimental
results indicate that, unlike previous incremental distance computation algorithms,
H-Walk adapts well to variable coherence in the motion and provides consistent
performance.

1 Introduction

Distance computation is an important problem in many applications, for ex-
ample, virtual environment simulation, computer animation, and robot mo-
tion planning. Distance information can be used for collision detection, which
is crucial in creating realistic virtual environments, as collision leads to ei-
ther incorrect behavior or visual artifacts. In motion planning, collision causes
damage to robots. Distance information can also be used to guide sampling in
randomized motion planning algorithms.

1 This research is partially supported by National Science Foundation grant CCR-
9623851, U.S. Army Research Office MURI grant DAAH04-96-1-0007, and a grant
from the U.S.-Israeli Binational Science Foundation. David Hsu is partially sup-
ported by a Microsoft Graduate Fellowship.

Preprint submitted to Elsevier Preprint 9 January 2000

The distance computation problem has been studied extensively in the liter-
ature (see, for examples, [2,4,5,7,8,10,12,14]). In particular, computing the dis-
tance between convex objects has received much attention because it serves
as a fundamental building block in many collision detection packages. Two
techniques are most commonly employed to obtain fast distance computation
between two moving convex objects: hierarchical data structures and incre-
mental distance computation by exploiting the coherence of motion. Previous
work on this problem usually applies one of the two techniques; the former
performs better for complex objects exhibiting low level of coherence, while
the latter performs better for simple objects exhibiting high level of coherence.
However, in real-time collision detection applications, what is required is con-
sistently good performance across different levels of coherence. In this paper,
we show that the two techniques can be effectively combined to achieve this
goal.

Early work on distance computation typically considers the distance between
a pair of static convex objects. Dobkin and Kirkpatrick give a linear-time
algorithm to determine the distance between two convex polyhedra [3]. The
algorithm of Gilbert, Johnson, and Keerthi (GJK), which is well-known in
the robotics community, treats a polyhedron as the convex hull of a set of
points and performs operations on the simplices defined by subsets of these
points [7]. It works well for simple objects.

If there are many distance queries for the same pair of objects, one may wish to
preprocess the objects in order to improve the query time. Edelsbrunner gives
an algorithm that answers distance queries between two convex polygons in
logarithmic time [5]. Dobkin and Kirkpatrick propose an algorithm (Dobkin-
Kirkpatrick) that preprocesses two convex polyhedra in linear time so that for
any translation and rotation of the polyhedra, the distance between them can
be obtained in poly-logarithmic time [4]. The key data structure they use is
a balanced inner hierarchical representation of a convex polyhedron known as
the Dobkin-Kirkpatrick hierarchy.

In practice, the objects that we deal with are often in continuous motion. A
standard way to handle this situation is to discretize time, and at each time
step, compute the distance between the objects according to their current po-
sition and orientation. If the time step is small enough, the closest pair of
features (vertices, edges, or faces) between two polyhedra will not move very
far from one time step to the next. This coherence, together with convexity,
motivates the approach of tracking the closest pair of features instead of com-
puting it from scratch at every time step. Lin and Canny proposed the first
algorithm (Lin-Canny) that exploits coherence [12]. Their algorithm starts
from the closest pair computed in the last time step, and “walks” on the sur-
face of polyhedra until reaching the new closest pair. Convexity guarantees
that we can determine locally whether a pair of features is the closest pair,

and if not, a neighboring pair that is closer. Empirically the query time for
Lin-Canny is nearly constant provided that the coherence is high. Later on,
Cameron proposed an enhanced version of GJK [1], which possesses prop-
erties similar to those of Lin-Canny. More recently, Mirtich formulated the
V-Clip algorithm, which is based on Lin-Canny, but more efficient and robust
in practice [13].

Lin-Canny and the other algorithms that exploit the coherence between suc-
cessive queries are simple to implement and perform very well when coherence
is high. Ideally, if ¢ is the minimum number of features that we need to tra-
verse in order to go from the previous to the current closest pair, one can
hope that Lin-Canny will work in time O(c). However, the performance of
Lin-Canny depends critically on the level of coherence, which in turn depends
on the combinatorial complexity, the shape, and the motion of objects. When
the coherence becomes low, its performance quickly deteriorates. Actually one
can show that in the worst case, if there are a total of n features on the poly-
hedra in question, Lin-Canny may have to walk £(n?) steps before reaching
the closest pair. In contrast to Lin-Canny, Dobkin-Kirkpatrick has guaran-
teed poly-logarithmic bound, but it does not exploit coherence and is likely
to be slower than Lin-Canny when coherence is high. In addition, Dobkin-
Kirkpatrick is more difficult to implement because of the subtle geometric
computation involved.

This paper presents the Hierarchical Walk, or H-Walk, algorithm, which ap-
plies Lin-Canny type of walking on hierarchically represented polyhedra to
improve on the classic Lin-Canny and Dobkin-Kirkpatrick algorithms. Lin-
Canny always walks on the surface of polyhedra and therefore may walk a
long distance before reaching the closest pair. The problem can be fixed by
allowing the walk to go inside the polyhedra and take shortcuts to achieve
better performance. To be able to do so, we need to introduce new features,
in addition to those already on the surface. The inner hierarchy defined by
Dobkin and Kirkpatrick provides a good set of features for our purpose. We
can think of the new algorithm as walking in the Dobkin-Kirkpatrick hierar-
chy instead of on the surfaces of a polyhedron. Intuitively, this new walking
strategy should be more efficient, especially when objects are complex and the
coherence is low. Our experimental results indicate that it is indeed the case.
In fact, we can prove that in two dimensions, H-Walk runs in O(logc) time,
an improvement over Lin-Canny’s O(c) and Dobkin-Kirkpatrick’s O(logn),
but we are unable to prove the same theoretical bound in three dimensions.
Furthermore H- Walk offers consistent performance across different levels of co-
herence, a desirable property in many real-time applications. Like Lin-Canny,
H-Walk is very simple to implement. After building the Dobkin-Kirkpatrick
hierarchy, the only primitive operation that it performs is to walk from one
feature to an adjacent feature.

The rest of the paper is organized as follows. Section 2 describes the basic
ideas for incremental distance computation and data structures needed for
implementing H-Walk. Section 3 presents our algorithms in two dimensions.
Section 4 presents our algorithms in three dimensions and experimental re-
sults. Finally Section 5 summarizes the results and points out direction for
future research.

2 Preliminaries

2.1 Definitions and notations

Let P be a convex polyhedron in R? for d = 2 or 3. A feature of P is a vertex,
an edge, or a face (if d = 3) on the boundary of P. We assume that edges and
faces are closed sets. A closest pair of features between two convex polyhedra
P and @) is a pair of features that contain a closest pair of points, i.e. a pair
of points that achieve the minimum Euclidean distance between P and Q).
Notice that the closest pairs may not be unique. The strategy adopted by
most distance computation algorithms is to locate the closest pair of features.

Since edges and faces are assumed closed, features may thus overlap with one
another. Two features are adjacent if they have nonempty intersection. Two
adjacent features are also called neighbors. A sequence of features 1, Fa, ..., Fi
forms a path between Fy and Fy, if F; and F;; are adjacent for: =1,2,... k—
1. The traversal distance between two features F and F', denoted by 7(F, F'),
is the minimum length of all paths between F and F'.

Let F and F' be two features on a convex polygon, and |C'(F,F’)| be the
number of features on C'(F,F’), the counterclockwise polygonal chain be-
tween F and F'. The traversal distance between F and F' is then 7(F,F') =
min (|C(F, F)|,|C(F',F)|). For convex polyhedra in R*, the traversal dis-
tance can be computed by searching for the shortest path between two fea-
tures in the graph induced by the features of a polyhedron. The notion of
traversal distance is essential for analyzing feature-based distance computa-
tion algorithms, such as those that we are going to discuss.

2.2 Feature-based incremental algorithms

There are several ways to verify that a pair of features forms the closest pair.
One possibility is to use the notion of Voronoi regions. The Voronoi region of a
feature F on a polyhedron P, denoted by vor(F), is the set of points outside

Fig. 1. A bad case for choosing the last closest pair for (Fo,Go). The initial pair
(Fo,Go) and the current closest pair (F,G) are located on opposite sides of spheres.

P that is closer to F than to any other feature on P. Now we can characterize
the closest pair of features as follows [12,13].

Theorem 1 Let (F,G) be a pair of features from two disjoint convex polyhe-
dra, and v € F and y € G be the closest pair of points belween F and G. If
x € VOrR(G) and y € vor(F), then (x,y) is a globally closest pair of points
between the polyhedra, and (F,G) is a closest pair of features.

Both Lin-Canny and V-Clip, an improvement over the former, are based on
searching for a pair of features that satisfy the conditions of Theorem 1. The
search starts with a pre-selected pair of features (Fo, Go). At each step, it tests
whether the current pair of features satisfies the conditions, and if not, one of
the features is updated to its neighbor to shorten their distance?. It can be
shown that the search always terminates with the closest pair (j:, @), unless
it is stuck in a local minimum, which is handled as a special case (see [13] for
details).

Clearly a lower bound of the running time of the above algorithm is d =
7(Fo, j:) +7(Go, @), the sum of the traversal distance between Fy and F and
that between Gg and G. If d is small, the algorithm may terminate after a few
updates; otherwise, it can take a long time to converge. Hence the choice of
(Fo,Go) has a significant impact on the performance of the algorithm. In the
worst case, the algorithm may take ©(n?) time to locate the closest pair.

If two objects move continuously and the distance between them is computed
at each time step, a good heuristic is to set (Fo,Go) to be the closest pair
from the previous time step. This strategy works very well if the coherence is
high, that is, the closest pairs of features between successive invocations are
close to each other. In fact, high level of coherence is a critical condition for
the empirically observed nearly constant-time performance of most feature-
based distance computation algorithms. Of course, there are situations where
the condition does not hold, either because objects have high complexity or
because they move very fast. Consider, for example, two spheres displaced at
a fixed distance from each other and rotating at constant speed. If between

2 In this paper, the distance between two features F and G is understood to be the
shortest Euclidean distance between all points in F and all points in G.

(a) (b)

Fig. 2. In and out pointers in the Dobkin-Kirkpatrick hierarchy of a convex polygon.
Only representative pointers are shown. (a) In pointers. (b) Out pointers.

two successive time steps, each of them turns 180 degrees, the new closest
feature pair will now be located at exactly the opposite side of the spheres
(Figure 1). A classic feature-based algorithm has to traverse all the way from
one side to the other side of a sphere in order to get the correct answer,
which can take a long time if the spheres are densely tessellated. A possible
cure for this problem is to build hierarchical representations of objects, and
tunnel through the inside of the objects by traversing in hierarchies instead of
creeping on their surfaces.

2.3 Dobkin-Kirkpatrick hierarchy

The Dobkin-Kirkpatrick hierarchy for a convex polyhedron P is a sequence of
convex polyhedra Py = P, P, P,, ..., P, where P, is contained in P;, and P;
is a simplex (triangle in ®? and tetrahedron in R*). We refer to Py, P, ..., P
as layers. Computing the Dobkin-Kirkpatrick hierarchy for a convex polygon
P is straightforward. Suppose that P has n vertices uy,us,...,u,. Choose
every other vertices uy,us, us,... and form a new convex polygon. Continue
this process until a triangle is left. We thus end up with a sequence of polygons
Po, P1,..., Py, where k = O(log n). For a convex polyhedron, each layer P4
is obtained from F; by removing an independent set of vertices of P; of low
degree, together with their adjacent features, and retriangulating the holes
thus created. A combinatorial lemma shows that in each FP;, we can always
find a constant fraction of independent low-degree vertices to remove, and so
the hierarchy has again O(logn) layers [4].

The Dobkin-Kirkpatrick hierarchy is used in [4] to compute the distance be-
tween two convex polygons in O(logn) time and the distance between two
convex polyhedra in O(log”n) time. We also use this hierarchy to facilitate
the distance computation, but in a different way. With each feature F of P,
for 1 <1 < k — 1, we store an in pointer F;,, and an out pointer F,,; to
connect F to features of adjacent layers in the hierarchy (Figure 2). A feature
of the outermost layer F, has only the in pointer. A feature of the innermost
layer Py has only the out pointer. Specifically, if F is a vertex in P, \ Py,

Feature-based incremental method

H-Walk

Fig. 3. A comparison of three methods. The closed curves are schematic drawings
of polyhedra (at different levels of a hierarchy). The thick lines indicate the paths
taken by each method.

then set F;, to be any vertex on the boundary of the hole created by removing
F and its neighbors. Otherwise, there are two cases. If F is in both F; and
Py, set F;, to its own copy in Piyq. If F is adjacent to a feature of P,yq, set
Fin to a feature of P,y adjacent to F. The out pointers have these same two
cases. We set up F,,; similarly. The in and out pointers link all layers of the
hierarchy together while preserving, to some extent, the local neighborhood
information. They allow us to walk conveniently up and down the hierarchy
inside a polyhedron.

2./ Quverview of H-Walk

The two methods described above exploits two different aspects of the prob-
lem to gain efficiency. The feature-based method takes advantage of the co-
herence of motion; the Dobkin-Kirkpatrick algorithm takes shortcuts by going
through the interior of polytopes in order to reach the solution more quickly.
We propose a new approach that combines the advantages of both. Our algo-
rithm builds a Dobkin-Kirkpatrick hierarchy for each polyhedron and walks
in the hierarchies. At each step, the algorithm may either walk to a nearby
feature at the same level of the hierarchy as a feature-based method does, or
move an adjacent level of the hierarchy as the Dobkin-Kirkpatrick algorithm.
Figure 3 shows schematic drawings that compare the three approaches. A
feature-based incremental method always walks on the boundaries of polyhe-

r .

P S—
bobod obo

Fig. 4. A skip list representation of the Dobkin-Kirkpatrick hierarchy of a convex
polygon. (Although the coarsest level of Dobkin-Kirkpatrick hierarchy has three
nodes, this schematic drawing shows levels with one and two nodes to avoid a
cluttered picture.)

dra. Dobkin-Kirkpatrick always starts from the innermost layers of hierarchies
and tracks the closest feature-pair from layer to layer. In contrast, H-Walk
starts on the boundaries of polyhedra, walks on the same layers for a few
steps, and then drops to inner layers in order to take shortcuts. After locating
a closest feature-pair at some level, H-Walk tracks it until returning to the
outermost layers of the hierarchies. Intuitively when the coherence is high, a
few steps of update at the same levels of the hierarchies will quickly bring us
to the solution; however, when the coherence is low, we need to dive deeper
into the hierarchies to take shortcuts through the interior of polyhedra.

3 Convex polygons

In two dimensions, we can treat the Dobkin-Kirkpatrick hierarchy as a tree
whose parent and child pointers correspond to the in and out pointers of
the hierarchy respectively. The features on the same level of a hierarchy are
linked into a circular list. The resulting data structure resembles a skip list
(Figure 4), where each layer of the hierarchy corresponds to a level in the skip
list. Links connecting nodes in the same level correspond to polygon edges.
Links connecting nodes between two adjacent levels correspond to in and out
pointers. In a skip list, there is an O(log ¢) path between any two bottom level
nodes whose indices differ by ¢, just as in the case of a finger tree [9]. This
is basically the reason why H-Walk takes time logarithmic in the traversal
distance between an initial and a closest pair of features by walking in the
Dobkin-Kirkpatrick hierarchy. In the next two subsections, we first prove the
result for the simple case of computing the distance between a point and
a convex polygon, and then treat the more complicated case of two convex

polygons.

3.1 Computing distance between a point and a convexr polygon

The algorithm for computing the distance between a point ¢ and convex poly-
gon P is based on the following well-known fact.

Lemma 2 For any point ¢ & P and any two vertices u,v of P, we can decide
in O(1) time whether the closest feature in P to q is on the polygonal chain
C(u,v).

To locate j'—, the closest feature to ¢, we perform a two-stage binary search that
resembles locating an element in a sorted list. In the first stage, we start from
some initial feature Fy and check features with traversal distance 1,2,4,8, ...
away from Fy in the counter-clockwise (CCW) direction, until we reach a fea-
ture G such that F € C(Fo,G). In the second stage, we do a binary search
on the chain C(Fy,G) to locate F. Clearly the two-stage binary search takes
O(log |C(Fo, F)|) checks, and each check takes constant time according to
Lemma 2. To obtain an overall O(log |C'(.7:o,j:)|) bound, we just need to ac-
cess features whose traversal distance to any given feature form a geometric
progression roughly. The set of edges provided by Dobkin-Kirkpatrick hierar-
chy offers one possibility to make such accesses: the traversal distance between
any two adjacent vertices on layer i is approximately 2°, and we can move be-
tween layers by following in and out pointers in the hierarchy.

By definition, the traversal distance T(}—o,j:) is the minimum of |C(Fo,ﬁ)|
and |C(F, Fo)|). We therefore need to decide whether to walk in the CCW
or CW direction in stage one of the algorithm. A simple way to get around
the problem is to run the algorithm simultaneously in both directions, and
stop as soon as F is found. Hence the algorithm takes time logarithmic in the
traversal distance between Fy and F.

Theorem 3 Given any fealure Fo in a convex polygon P as a starting point,
we can compute the closest feature FinP to any point g & P in O(log 7(Fo, f))
lime.

The binary search procedure described above easily provides a logarithmic
bound in terms of the traversal distance, but cannot be generalized to three
dimensions, since there is no linear ordering in three dimensions. We now
describe a similar, but slightly different technique which can be extended to
handle the three-dimensional case. Instead of performing a binary search, we
can “walk” in the Dobkin-Kirkpatrick hierarchy. The new technique maintains
a feature F together with P, the layer that F is on, and update F until the
closest feature F is found. Starting from a given initial feature F on P, it
checks if F is the closest feature on Pr to g while counting the number of
updates performed on that layer. If F is not the closest feature, we walk to the
counter-clockwise (CCW) neighbor of F and continue until either the number
of updates exceed a prescribed constant s or the closest feature on that layer
is found. In the former case, we follow F,,, the in pointer of F to descend
to an inner layer of P. In the latter case, we start to ascend in the hierarchy.
During the ascension, we always walk on the same layer in the direction in
which the distance to ¢ decreases until the closest feature to ¢ on that layer is

reached. We then follow the out pointer F,,; to move to an outer layer, and
continue until we return to the outermost layer Fy = P and obtain the closest
feature on P to ¢. Again the procedure has to be performed simultaneously
in both the CW and CCW direction. A nice property of the new procedure is
that all the operations are local, which makes it possible to generalize to three
dimensions.

3.2 Compuling distance between two convex polygons

Computing the distance between two convex polygons P and () is a little bit
more complex but the underlying idea is the same. Our algorithm makes use
of a key lemma due to Edelsbrunner [5].

Lemma 4 Let C(uy,uz) be a polygonal chain on P, and C(v1,v3) be polygonal
chain on Q. If C(ui,uz) and C(vi,v) contain the closest pair of features
between P and Q, then for any vertex u € C(uy,uz) and v € C(vy,vy), we can
decide in O(1) time to discard at least one of four chains C(uy,u), C(u,us),
C(v1,v), and C(v,vq) so that the closest pair of features is contained in the
remaining chains.

If a subchain of a chain (' is discarded, we say that C' is refined.

Our algorithm tries to maintain two chains that contain the closest pair and
refine them until the closest pair is located. In each step, we choose an ap-
propriate vertex, called a pivot, on each chain and refine the two chains with
respect to the pivots according to Lemma 4. If we always choose the middle
vertex of a chain as a pivot, we will obtain an O(logn) time algorithm, as
in [5]. To achieve a bound logarithmic in the traversal distance between an
initial and a closest pair of features, we follow a strategy similar to the one
in the previous section. We first identify two chains, one on each polygon,
that contain a closest pair of feature and then apply binary search to them to
localize the closest pair.

Define the antipodal vertex u of a vertex u € P to be the vertex in P such the
number of features between u and u in the CCW direction is || P|/2], that is,
|C(u,)| = [|P]/2]. Let us assume, for now, that the closest pair of features
is contained in C'(ug, tp) and C(vg, V) for some initial pair of vertices ug € P
and vy €). The refinement strategy consists of two stages and is exactly the
same for C(ug,tp) and C(vo,vp). Without loss of generality, we describe it
for C(ug, tp) only. In stage one, we successively choose vertices with distance
s,28,4s,... away from ug in the CCW direction as the pivot u, where s is
some constant, and refine the current chain. If C'(u, 1) is discarded instead of
C(ug, u), we know that the closest feature is contained in the chain C(ug,u)
and enter stage two. In stage two, the algorithm always picks the middle vertex

10

of the current chain as the pivot, and continue refining until we get a chain of
length one and find the closest feature on P. Note that the algorithm chooses
the pivots independently for P and (), depending on which stages P or () is in.
Furthermore Lemma 4 guarantees that pivots always exist and the refinement
process can proceed until we end up with two chains of length one.

The procedure described above is essentially a binary search. As we have
seen in Section 3.1, binary search on a convex polygon is very similar to
walking in the Dobkin-Kirkpatrick hierarchy. We have chosen to describe the
algorithm as binary search because it simplifies the presentation of analysis,
but as before, walking in the Dobkin-Kirkpatrick hierarchy extends more easily
to three dimensions.

The running time of the algorithm is proportional to the total number of refine-
ments required to locate the closest pair (j:, @) between the two polygons P
and Q). First let us consider the refinements for P. In stage one, every time we
pick a new pivot u, the distance from u to ug doubles. After O(log |C(ug, .7A:)|)
steps, stage one ends with a pivot £ such that the chain C(uo, £) is guaranteed
to contain F. The number of refinements in stage two is clearly bounded by
O(log |C(uo, &)|) because we perform a binary search on C'(ug, £). Combining
the results for both stage one and two, we conclude that the number of refine-

ment steps for P is bounded by by O(log |C (ug, F)|). The same analysis applies
to @. So the total number of refinements is O(log |C'(u, F)| 4 log |C(v,G)|).

So far, we have assumed that C'(ug, tg) and C(vg, 0g) contains the closest pair
of features, because we always move in the CCW direction starting from ug and
vg. Just as in Section 3.1, we can move in either CCW or CW direction at both
ug and vg. By running the algorithm simultaneously for all four possibilities,
we obtain the following result.

Theorem 5 Let P and Q) be two convex polygons. Given a pair of feature
Fo € P and Gy € Q) as a starting point, we can compute the closest pair of

features (j—“,@) between P and @ in time O(log T(}—o,j:) + log T(gg,@)) time.

4 Convex polyhedra
4.1 Algorithm

Our algorithm in three dimensions employs the same basic idea of walking
in hierarchically represented polyhedra. Suppose that we have pre-computed

the Dobkin-Kirkpatrick hierarchies Py = P, Py,..., P, and Qo = Q,Q1,...,Q,;

for two convex polyhedra P and (). The algorithm starts with an initial pair

11

features (Fo,Go), and again proceeds in two stages. In stage one, it walks a
constant number s of steps at each level of the hierarchies until it reaches the
bottom level. In each step, the algorithm checks to see whether the current
pair of features is a closest pair for the current layers. If it fails to find the
closest pair after s steps, it then follows the in pointers of the current feature-
pair to descend one level in the two hierarchies simultaneously, if possible,
and continue until a closest pair of features is found between two polyhedra
P; and @);. In stage two, the algorithm walks as many steps on the same level
as needed in order to find the closest pair (.7?2, @i) between polyhedra P; and
@;. It then follows the out pointers of F; and G; to ascend one level in the
hierarchies and continues the walk. When we return the outermost layers Fy
and @, the closest pair between P and () is found. The reader may refer to
Figure 3 for an illustration of the idea.

If the coherence is high, then in stage one, we will be likely to descend only
a small number of levels. In stage two, since P; and (); are approximations
to Pi_y and @Q;_1 respectively, (.7?2,@]) is likely to be near (.7?2'_1,@]‘_1), and
hence we will walk only a small number of steps at each level. By going down
and then going up the hierarchies, we avoid the potentially expensive cost of
walking a long way on the boundaries of Fy and ().

Choosing an initial pair of features (Fo,Go) remains an issue here, since there
are many choices available. During the last invocation of H-Walk, we have
found a sequence of closest pairs between two polyhedra approximating P
and @; any one of them may serve as a candidate for the initial pair.

If we choose (Fo,Go) from the innermost layers P and @, the behavior of
H-Walk is similar to that of Dobkin-Kirkpatrick, since both start with the
innermost layers, move one level at a time towards the outermost layers to
find the closest pair between P and (). However, each step of H-Walk is simple
and efficient: just walk from a pair of features to an adjacent one or follow
the out pointers to ascend one level. Dobkin-Kirkpatrick, on the other hand,
uses a very elaborate scheme every time it has to go up one layer, in order to
guarantee the worst-case bound. As a result, each step of Dobkin-Kirkpatrick
takes much longer to execute, and it is also less robust because of the more
subtle geometric computation involved.

Starting the search from the innermost layers basically ignores the coherence
of motion. To take advantage of coherence, we may, for example, pick the
closest pair between the outmost layers Py and (g, if we expect to descend
and ascend only a small number of levels in the hierarchies before reaching the
closest pair. However, if the coherence is low, we must descend deeply into the
hierarchies and ascend all the way up. Time spent on descending is wasted.
In this case, it is much more efficient to start with the closest pair at some
deeper level and pay only the cost of ascending.

12

As we mentioned previously, there are actually a sequence of closest pairs at
different levels of the hierarchies from the last invocation of H-Walk to choose
for (Fo,Go). Depending on the level of coherence, one of them might be better
than the others, We will look at the impact of these choices on the behavior
of the resulting algorithm in the experiments.

4.2 FErperiments

We use a pair of identical objects in our experiments. Since only the relative
motion of the two objects matters, one of them is fixed at the origin, and the
other orbits around it and rotates about some axis according to the pseudo-
code below. This test scheme is due to Mirtich [13].

Procedure 1

Input: angular velocity w, and constant A chosen to avoid penetration of
object 1 and 2
Fix object 1 at the origin.
for : =1 to 10 do
v ¢ a vector sampled uniformly at random from the unit sphere.
for j =1 to 100 do
0 +— jw.
z + (Acosf, Asinf, Acosf).
p < rotation by # about axis v.
Set object 2 at x with orientation p.
Compute distance between object 1 and object 2.

© 0N Tt W

For every test, we ran the algorithm once for each method of picking the initial
feature pair of features. In particular, we pick the closest pair at layer 0, 4,
8, 16, and the innermost layer (labeled “h-walk 07, “h-walk 4”7, “h-walk 8",
“h-walk 16”7, and “h-walk oco” in Figures 5-7) to initialize H-Walk. If an object
is too simple to have enough number of layers, we simply skip those layers. We
also ran V-Clip, a very efficient implementation of Lin-Canny, for comparison.

The parameter s, the number of steps to walk on each level, was set to be 4
for all the results shown here, but according to our experiments, the choice
of s does not affect the performance of the algorithm significantly. A small
constant usually works well.

Coherence is a key factor that determines the efficiency of feature-based in-
cremental distance computation algorithms, including H-Walk. 1t is difficult
to define coherence precisely, but usually high coherence means that objects
have low combinatorial complexity, regular geometric shape, and low velocity

13

(a) Sphere, 8 vertices. (b) Sphere, 400 vertices.

16 T T T T T % T T T T
a—=4 v=clip a—4 v=clip
+——+ h-walk 0 gok [+—+ h-walkO0
1ro— h-walke h-walk 4
- —- h-waks
701 h-walk e
60
))
a a
2 2
B Bsol
k-] k-]
1] 1]
=} Q40
£ [A 5-0-0~6-0-0-4
S S
5 5
30r
200 -
100
o o
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
relative movement w (degrees) relative movement w (degrees)
(c) Sphere, 800 vertices. (d) Sphere, 1600 vertices.
120 T T T T T T T T 180 T T T T T T T T
&——4A v—clip)
+—+ h-walk0 160 |2 v-clip
h-walk 4 +—+ h-wak0
WOF |~~~ h-walk8] h-walk 4
66— h-walk o 140 | —— - h-walk8 q
--- h-walk 16
h-walk oo
80F 1201
))
Q Q
2 2
> B 1001
2 eop 2
@ @
=} Q 80
£ £
H H
g A g
40r 6o0r
401 g
200
201
o o
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
relative movement w (degrees) relative movement w (degrees)
(e) Sphere, 3200 vertices. (f) Sphere, 8000 vertices.
200 T T T T T T T 400 T T T T T T T T
. a&——a v—clip
180F |[&—2 vclip 1 +——+ h-walk 0
+——+ Level 0 o h-walk 4
wf | e 1 - - h-waks
evel a0k | —— - h-walk16 J
- Level 16 h-walk e
1401 Level o
) @ 250}
S0t & *
@ @
© 100 © 200
@ @
£ £
5 eof 2 150
of) o e~ T T T
L N 1001
P 0 e A o L e
sl E o660 TITHHTTO0
20p A
o o
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
relative movement w (degrees) relative movement w (degrees)

Fig. 5. Operation counts for spheres tessellated at various densities.

of motion. Thus, in the above test scheme, the greater the angular velocity w,
the lower the coherence is.

Figures 5-7 plot the average number of steps walked per invocation to reach
the closest pair versus the coherence parameter w.

The first set of tests consists of pairs of spheres tessellated at various densities.
Figure 5(a) shows the results for a pair of spheres tessellated with eight ver-
tices. Since the objects are extremely simple, hierarchical data structures do
not help much. All algorithms have similar performance and do not differ by

14

(a) Ellipsoid, 240 vertices. (b) Ellipsoid, 600 vertices.

250

a&—A y—clip a&—A y—clip
0F |+—+ h-walk0 +—+ h-walk0
h-walk 4 h-walk 4
sl | — h-walk 8 2001 h-walk 8
66— h-walk ©

66— h-walk o

number of steps
number of steps

.
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
relative movement w (degrees) relative movement w (degrees)

Fig. 6. Operation counts for ellipsoids with two different shapes and tessellation
densities.

more than a few steps. Figure 5(b) plots the result for spheres tessellated with
400 vertices. The graph shows that when the coherence is high (w is small),
initializing with the closest feature-pair near the outermost layer gives better
performance, because coherence helps us to avoid the cost of descending to the
bottom level. As coherence gets lower and lower, initializing with the closest
feature-pair on the innermost layer eventually becomes the best choice. Fig-
ures 5(c)-(e) show the plots for spheres tessellated with 800, 1,600, and 3,200
vertices respectively. The results are similar to the previous one except that the
trend is now much clearer. In the four cases shown in Figures 5(b)-(e), when
the coherence is high (w < 20), the performance of V-Clip is comparable with
that of H-Walk initialized with the closest feature-pair near the outermost lay-
ers, and is better than H-Walk initialized with the closest feature-pair near the
innermost layers. However, V-Clip’s performance quickly deteriorates as coher-
ence gets lower. When w > 30, H-Walk shows better performance than V-Clip
regardless of the method of initialization. The computational cost of V-Clip
grows almost linearly with respect to w, the coherence parameter; the growth
of H-Walk is much smaller. Notice also that when the combinatorial size of
spheres quadruples (compare, for example, Figure 5(b) and Figure 5(d)), V-
Clip almost doubles the amount of computation time needed, while H-Walk
shows only moderate increase of computation time. Finally Figure 5(f) gives
an extreme example that contains a pair of spheres tessellated with 8,000
vertices. H-Walk is significantly more efficient than V-Clip in this case.

The second set of tests uses more elongated shapes. Figure 6(a) shows the
result for a pair of ellipsoids, which contain 240 vertices each and have axes
of length 1, 0.1, and 0.1. Figure 6(b) shows the result for another pair of
ellipsoids, which contain 600 vertices each and have axes of length 1, 0.04,
and 0.04. Again initializing with the closest feature-pair near the top level is
advantageous if the coherence is high, though this turns to be a good choice for
a larger range of coherence levels here. V-Clip has a slight edge at high level of
coherence for the simpler ellipsoids (Figure 6(a)), but H- Walk performs better

15

generally for the more complex and elongated ellipsoids (Figure 6(b)). Notice
that the elongated shape of the objects makes the performance curves more
erratic than those for the spheres, especially for V-Clip. As one would expect,
this phenomenon is accentuated (Figure 7) if we move the two ellipsoids closer
together, that is, to reduce the size of input parameter A in Procedure 1. The
performance curve of V-Clip contains sharp “spikes” when the closest pair
jumps a long way from one place to another. In contrast, the performance of
H-Walk is much more consistent.

Ellipsoid, 600 vertices.
180 T T T T

&—A y—clip
160 | ——+ h-walk0
h-walk 4
--—- h-walk8
140F | 6—= h-walk

number of steps

60

.
0 20 40 60 80 100 120 140 160 180
relative movement w (degrees)

Fig. 7. Operation counts for two ellipsoids placed in close proximity.

These controlled experiments demonstrate that when the coherence is high,
both V-Clip and H-Walk perform well. If the complexity of objects or the ve-
locity of motion increases, V-Clip’s performance starts to deteriorate, because
it has to walk through more and more features. H-Walk also slows down, but
not nearly as much, because the hierarchical data structure keeps the number
of steps that it has to walk in control. Also, irregular shapes causes more prob-
lems for V-Clip than for H-Walk. For two elongated objects, a small change
in the position or orientation of objects may cause the closest pair to jump
from one end of the object to the other. V-Clip has to walk a long way be-
fore reaching the new closest pair. H-Walk can do it much faster by using the
hierarchies.

To test the performance of H-Walk in more realistic scenarios, we built a
simple simulator for rigid-body objects flying in three-dimensional space (see
Figure 8 for an example). In a larger system, a simulator like this one may be
integrated with dynamic simulation or motion planners to generate the motion
of objects. At each time step, our simulator computes the distance between
every pair of convex objects in the scene. Figure 9 plots the algorithms’ per-
formance versus time for a test run in which a number of satellites fly among
moving asteroids. All objects in the test move at about the same speed. Fig-
ure 10 reports the mean and standard deviation of running times for H-Walk

16

Fig. 8. Satellites flying amidst asteroids. The small spheres on the surface of objects
mark the closest features.

1400
a
) 1200 -
—
7]
u— 1000 -
o
@
S 800 -
IS
> 600 -
c
400
80
A~ v—clip
—+— h-walk 0
h-walk 4
— h-walk 8
— - h-walk 12
- h-walk

Fig. 9. Running times for H-Walk and V-Clip.

and V-Clip. Although these results were obtained from a specific set of test
data, it is nevertheless interesting to note that as features at deeper levels of
the hierarchies are used to initialize H-Walk, the mean execution time first
decreases and then starts to rise again, but the standard deviation decreases
monotonically. This is an interesting trade-off in practical applications: after
a certain point, we may achieve more consistent performance, but only by
sacrificing the average running time, or vice versa.

17

90 T T T T T
mean
800 std B -

700Q- |

600

500

400~

number of steps

300~

200

100~ I I
, | | l fn fn fw

v-clip h-walk 0 h-walk 4 h-walk 8 h-walk 12 h-walk co

Fig. 10. The mean and standard deviation of the running times for H-Walk and
V-Clip.

4.3 Discussion

In addition to showing its efficiency, the experimental results demonstrate a
number of other benefits of H-Walk in practical applications.

Time-critical collision detection The performance of H-Walk is much more
consistent than the traditional feature-based incremental methods, which de-
pend heavily on the motion coherence. This consistency allows for more accu-
rate predication of the time for each distance computation, which is important
in the time-critical simulation when the computation resource is allocated for
each time step and not allowed to exceed the given limit [11].

Robustness We have also learned in our experiments that H-Walk is very
robust. It is not a surprise as the only geometric computation involved in the
feature-based incremental algorithms is to check whether two features forms
the closest pair. As described in [13], such computation can be done robustly.
The original Dobkin-Kirkpatrick method use more complex geometric compu-
tation such as computing the separation planes and cutting a polyhedron by
a plane, which are more prone to numerical errors. Furthermore a numerical
error in the computation in H-Walk may only affect the efficiency of the algo-
rithm but not the correctness. However, in Dobkin-Kirkpatrick, a numerical
error more likely results in an incorrect answer.

The experimental results also suggest some possibilities for further improve-

ment of H-Walk.

Adapting to coherence levels The experimental data in the previous sec-
tion show that the best method for choosing (Fo,Go) depends on the level
of coherence. For instance, “h-walk oo”, whose performance characteristic is

18

similar to that of Dobkin-Kirkpatrick, does not take much advantage of the
coherence. Its performance is the best at low levels of coherence, but is the
worst at high levels of coherence. In many applications, the level of coherence
is unknown in advance and changes over time . It is thus desirable for an
algorithm to take into account the level of coherence and operate efficiently
at different levels of coherence. By using a suitable strategy for picking the
initial pair of features (Fo, Go), H-Walk can respond to changes in the level of
coherence. When the coherence is high, we choose for (Fo,Go) the closest pair
from the last time step that is near the outermost layer. When the coherence
is low, we use the closest pair near the innermost layer. Furthermore the be-
havior of H-Walk actually gives a hint on the level of coherence. Note that the
algorithm first descends and then ascends in the hierarchies. If at some point,
the algorithm only ascends from the initial pair, it means that the coherence
might be higher than expected. In the next time step, we may then choose
the initial pair closer to the outermost layer. On the other hand, if the algo-
rithm descends too many levels, then we may want to choose a closest pair at
deeper levels as the starting point. Therefore H-Walk provides an easy way to
estimate the level of coherence and adapts its own behavior correspondingly.

Theoretical bounds Although the experiments indicate that the computa-
tion time of our algorithm grows slowly as the coherence gets lower, we are
unable to obtain a theoretical bound. There seems to be two aspects of the dif-
ficulty. First, if a feature F has m adjacent features, the information-theoretic
lower bound for finding the closest feature F to a point is Q(log m) even if F
is adjacent to F. Since in a convex polyhedron P, m can be linear in n, the
size of P, a nice theoretical bound is possible only if the graph G induced by
the features of P has bounded degree. Second, in the graph theory setting, our
problem is basically to add a small number of edges to G in order to reduce
the length of the shortest path between any two nodes in G. More specifically,
if the length of the shortest path between two nodes of G is ¢, then we would
like the length of the shortest path in the augmented graph to be logc. The
set of edges provided by Dobkin-Kirkpatrick hierarchy does not seem to have
this property. In addition, even if we can construct such an augmented graph,
we still need a strategy for finding such a shortest path by performing local
search only.

Different hierarchies In the paper, we use the Dobkin-Kirkpatrick hierarchy
as shortcuts to quickly go through the interior of a convex polytope. However,
Dobkin-Kirkpatrick hierarchy is built entirely combinatorially and the geome-
try of object is ignored when building such a hierarchy. There are other types
of hierarchies which also takes the geometric shape into account [6]. In the hi-
erarchies proposed in that paper, not only does the hierarchy enjoy the same
combinatorial property as Dobkin-Kirkpatrick hierarchy, but also the layers
in the hierarchy are “close” to each other as the Hausdorff distance between
adjacent layers is bounded in terms of the diameter of the object. Such hier-

19

archies can help us to obtain an estimate on the distance at the end of stage
one, like what is done in [6]. When we only need to detect collision, we can
safely claim that two objects are disjoint once we know that the distance is
positive. Even if for the distance computation, since two adjacent layers have
similar shapes, we expect that each walking in the second stage will take fewer
steps. We also feel that the use of different hierarchies may be necessary for
establishing a theoretical bound in three dimensions.

5 Conclusion

This paper presents the H-Walk algorithm, which computes the distance be-
tween two moving convex objects by exploiting both the coherence of motion
and hierarchical representation. For convex polygons, we have proven that H-
Walk takes time logarithmic in the traversal distance between an initial pair of
features and a closest pair. For convex polyhedra in three dimensions, experi-
mental results indicate that unlike previous incremental distance computation
algorithms, H-Walk is very efficient at different levels of coherence, and the
performance of the algorithm has a trend similar to that has been proven
in two dimensions. It can also adapt its behavior automatically to adjust to
changes in the level of coherence in order to maintain the best performance.

Proving the theoretical bound for the algorithm in three dimensions remains
an interesting open question. The lack of a linear ordering on the surface of
a polyhedron makes it difficult to obtain such a bound. A more “regular”
hierarchical structure may be needed in order to achieve the goal.

So far, our discussion has focused on the traversal distance, an entirely com-
binatorial parameter. It would be interesting to know whether we can adopt
the approach in [6] to take the geometric shape into account when we build
the hierarchy so as to derive bounds dependent on the parameters of motion
and the sampling rate of time.

Acknowledgment

We would like to thank Brian Mirtich for helpful discussion of the collision
detection problem and for providing us an implementation of the V-Clip al-
gorithm.

20

References

[1] S. Cameron. Enhancing GJK: computing minimum and penetration distances
between convex polyhedra. In Proc. IEEFFE Int. Conf. on Robotics and
Automation, 1997.

[2] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. [-COLLIDE: An
interactive and exact collision detection system for large-scale environments. In
1995 Symposium on Interactive 3D Graphics, pages 189-196, 1995.

[3] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the
separation of convex polyhedra. J. Algorithms, 6:381-392, 1985.

[4] D.P.Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed
polyhedra — A unified approach. In Proc. 17th Internat. Collog. Automata Lang.
Program., volume 443 of Lecture Notes Comput. Sci., pages 400-413. Springer-
Verlag, 1990.

[5] H. Edelsbrunner. Computing the extreme distances between two convex
polygons. J. Algorithms, 6:213-224, 1985.

[6] J. Erickson, L. J. Guibas, J. Stolfi, and L. Zhang. Separation-sensitive convex
collision detection. In Proc. 10th Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 327-336, 1999.

[7] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects. IEFE Journal of Robotics
and Automation, 4(2), 1988.

[8] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBB-Tree: A hierarchical
structure for rapid interference detection. In Computer Grajphics (SIGGRAPH
’96 Proceedings), pages 171-180, 1996.

[9] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new
representation for linear lists. In Proc. ACM Symp. on Theory of Computing,
pages 49-60, 1977.

[10] P. M. Hubbard. Collision detection for interative graphics applications. IEFE
Trans. on Visualization and Computer Graphics, 1(3):218-230, 1995.

[11] P. M. Hubbard. Approximating polyhedra with spheres for time-critical collision
detection. ACM Trans. Graph., 15(3):179-210, July 1996.

[12] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance
calculation. In Proc. IFEFE Int. Conf. on Robotics and Automation, volume 2,
pages 1008-1014, 1991.

[13] B. Mirtich. V-Clip: fast and robust polyhedral collision detection. Technical
Report TR-97-05, Mitsubishi Electrical Research Laboratory, 1997.

[14] Sean Quinlan. Efficient distance computation between non-convex objects. In
Proc. IEFFE Int. Conf. on Robotics and Automation, pages 3324-3329, 1994.

21

