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1 Introduction

A key trait of an autonomous robot is the ability to plan its own motion in order to accomplish

specified tasks. Often, the objective of motion planning is to change the state of the world by

computing a sequence of admissible motions for the robot. For example, in the path planning

problem, we compute a collision-free path for a robot to go from an initial position to a goal

position among static obstacles. This is the simplest type of motion planning problems; yet it is
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provably hard computationally [64]. Sometimes, instead of changing the state of the world, our

objective is to maintain a set of constraints on the state of the world (e.g., following a target and

keeping it in view), or to achieve a certain state of knowledge about the world (e.g., exploring and

mapping an unknown environment).

Ideally the robot achieves its objectives despite the many possible motion constraints internal

or external to the robot. Traditionally, motion planning emphasizes a single external constraint:

physical obstacles in the environment. This is actually the only constraint considered in path

planning. However, real robots have inherent mechanical limitations, such as the non-holonomic

constraints that prevent wheeled robots from moving sideways. Robots may also be constrained

by sensor limitations, such as obstacles blocking the views of cameras. These internal constraints

are important, but taking them into account further complicates motion planning.

In recent years, random sampling has emerged as a powerful approach for motion planning.

It is computationally efficient and relatively simple to implement. Its development was originally

driven by the need to plan motions for robots with many degrees of freedom (dofs), such as co-

operating manipulator arms. However, we will downplay this aspect in this chapter. Instead, our

main goal is to show how random sampling, combined with geometric and physical insights, can

effectively handle motion constraints resulting from robots’ mechanical and sensor limitations.

We start with an overview of path planning and proceed to the random-sampling approach

to path planning (Section 2). Next, we focus on motion planning under two types of internal

constraints: kinematic, dynamic constraints (Section 3) and visibility constraints (Section 4). We

also briefly touch on the effect of uncertainty on motion planning (Section 5).

2 Path Planning

In path planning, we are given a complete description of the geometry of a robot and a static

environment populated with obstacles. Our goal is to find a collision-free path for the robot to

move from an initial position and orientation to a goal position and orientation.
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Although path planning algorithms differ greatly in details, most of them follow a common

framework (Figure 1). The first step is to map a robot, which may have complex geometric shape,

to a point in a new, abstract space, called the configuration space [53], This mapping transforms

the original problem to that of path planning for a moving point. Next we discretize the continuous

configuration space and construct a graph that represents the connectivity of the space. Finally we

search this graph to find a path for the robot to reach the goal. If no path is found, sometimes we

may repeat the process by refining the discretization and searching for the path again.

An important consideration for path planning algorithms is completeness. A path planning

algorithm is complete, if it finds a path whenever one exists and reports none exists otherwise.

However, achieving completeness is often computationally intractable. In practice, we have to

trade-off some amount of completeness for increased computational efficiency.

In this section, we first present the concept of configuration space (Section 2.1). Next, we

briefly describe some early approaches to path planning (Section 2.2), before focusing on how the

random-sampling approach works in this relatively simple setting (Section 2.3).

2.1 Configuration Space

The configuration of a robot is a set of parameters that uniquely determine the position of every

point in the robot. For example, the configuration of a mobile robot is usually its position (x, y)

and orientation θ for θ ∈ [−π, π). The configuration of an articulated robot manipulator is usually

a list of joint angles (θ1, θ2, . . .).

Suppose that the configuration of a robot consists of d parameters. It can be then regarded as

a point in a d-dimensional space C, called the configuration space. A configuration q is free, if the

robot placed at q does not collide with the obstacles or with itself. We define the free space F to

be the subset of all free configurations in C, and define the obstacle space B to be the complement

of F : B = C\F . See Figure 2b for an illustration.

For a robot that only translates in the plane, we can construct C explicitly by computing the
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Minkowski difference of the robot and the obstacles. Intuitively, we can think of the computation

as “growing” the obstacles by the shape of the robot and shrinking the robot to a point (Figure 2).

In general, a mobile robot not only translates, but also rotates. In this case, we compute slices

of C with the robot in various fixed orientations and then stack and stitch these slices together.

Computing C exactly is also possible, though somewhat more complicated [2].

For high-dimensional configuration spaces, explicitly constructing C is difficult. Instead, we

represent C implicitly by a function CLEARANCE : C �→ R, which maps a configuration q ∈ C to the

distance between a robot at q and the obstacles. If CLEARANCE(q) returns 0, then q is in collision.

An efficient implementation of this function can be achieved with hierarchical collision detection

or distance computation algorithms [51].

Whether represented explicitly or implicitly, the configuration space encodes the key informa-

tion of whether a robot at a particular configuration is in collision with obstacles or not. We can

thus state the path planning problem formally in the configuration space as follows.

Problem 2.1 (path planning) Given an initial configuration qinit and a goal configuration qgoal,

find a path in the free space F between qinit and qgoal.

In essence, the robot becomes a point in C, and the path planning problem for the robot becomes

that of finding a path for a moving point in F . This transformation does not change the problem in

any way, but it is often easier to think about the motion of a point than that of a robot with complex

geometric shape. It also makes the problem formulation cleaner mathematically, especially when

other constraints, in addition to physical obstacles, are considered (see Section 3).

2.2 Early Approaches

Path planning is fundamentally a question about the connectivity of F : is there a path in F that

connects two given configurations qinit and qgoal? To answer this question, a path planning algo-

rithm usually discretizes F and computes a graph that represents its connectivity. It then searches

this graph for a suitable path. The first step, constructing the connectivity graph, is the key and
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is where algorithms differ. The second step, graph search, is accomplished with standard graph-

search techniques, such as the Dijkstra’s algorithm or the A∗ algorithm.

There are three general approaches for path planning: roadmap, cell decomposition, and po-

tential field. They differ in the connectivity graphs constructed and their representations. These

differences were important a decade ago, when computers were much slower and the differences

could affect the computational cost greatly even for path planning in simple 2-D configuration

spaces. With the advances in computer hardware, these differences are much less important today.

All three approaches can solve path planning problems in 2-D configuration spaces in a fraction

of a second on a modern PC. What is relevant today is whether an approach scales up for config-

uration spaces of high dimensions (six or more). Unfortunately none of them really does in their

original forms. In the following, we give selected examples of the three approaches in 2-D config-

uration spaces, for the purpose of comparison with the random-sampling approach to be presented

in the next sub-section. See [42] for a complete survey of these approaches.

Roadmap. The roadmap approach captures the connectivity of F in a network G of 1-D curves,

called the roadmap. Once G is constructed, the robot is restricted to move along the curves in G.

It appears that such a restriction may affect the robot’s ability to find a collision-free path to the

goal. However, a good roadmap has the property that there is a collision-free path in C between

two configurations if and only if there is a collision-free path using only the curves represented in

G. Algorithms that produce such roadmaps are clearly complete.

A classic example of the roadmap approach is the visibility graph algorithm [58], which applies

mainly to 2-D configuration spaces with polygonal obstacles. It captures the connectivity of C in

a visibility graph Gvis (Figure 3). The nodes of Gvis are the vertices of polygonal obstacles in C,

plus qinit and qgoal. There is an edge between two nodes in Gvis if the straight-line path between the

two nodes does not intersect the interior of the obstacles. The visibility graph can be computed in

O(n2 lg n) time using a simple rotational sweep-line algorithm [15], where n is the total number of

vertices in the polygonal obstacles. After constructing Gvis, we can find the shortest path between
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qinit and qgoal by applying the Dijkstra’s algorithm to Gvis. Furthermore, one can prove that the

shortest path in Gvis is also the shortest among all possible paths in F between q init and qgoal.

This is the main strength of the visibility graph algorithm. However, it produces paths that graze

the obstacles and thus bring the robot dangerously close to the obstacles, which is undesirable in

practice.

An alternative is the Voronoi diagram algorithm, which captures the connectivity of F in the

Voronoi diagram of F [59]. By following the curves in the Voronoi diagram, a robot stays as far

away from the obstacles as possible, a clear advantage over the visibility graph algorithm. The

Voronoi diagram can be computed in O(n lg n) time, which is also more efficient.

In 2-D polygonal configuration spaces, both the visibility graph and the Voronoi diagram cap-

ture the connectivity of the space exactly: there is a collision-free path in C between two given

configurations if and only if there is such a path in the corresponding graphs. So both algorithms

are complete for 2-D polygonal configuration spaces.

Cell decomposition. The cell decomposition approach first divides a robot’s free space into

simple, canonical regions called cells. Cells are usually convex so that it takes constant time to

compute a path between any two configurations within a cell. We then construct a graph Gcell to

capture the connectivity of F , just as the roadmap algorithms do. The nodes of Gcell are the cells.

There is an edge between two nodes if the corresponding cells are adjacent to each other.

The simplest cell decomposition is a grid with a fixed resolution (Figure 4a). To find a path

between qinit and qgoal, we locate the two cells containing qinit and qgoal, respectively, and search for

a path in Gcell between the two corresponding nodes. The result is a sequence of adjacent free cells

that form a channel of free space between qinit and qgoal. A main advantage of this algorithm is

the ease of implementation, giving rise to its great popularity in motion planning of mobile robots.

However, its guarantee of completeness is weaker: it finds a path when one exists, only if the

resolution of the grid is fine enough. Thus we say that the algorithm is only resolution-complete.

A more severe disadvantage of this algorithm is the grid size. If each dimension of a d-
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dimensional configuration space is discretized into n intervals, we end up with O(nd) cells in

total. This becomes prohibitively expensive to store and process, as d grows. To reduce the total

number of cells, one possibility is to start with a coarse grid and refine the grid locally when nec-

essary. This leads to a data structure similar to quad-tree or oct-tree (see [42] for more details).

Another possibility is to analyze the input data carefully and use critical geometric features—such

as the vertices or edges of polygonal obstacles—as a basis for discretizing the space, in order to

avoid creating unnecessarily small cells. As an example, consider the triangulation algorithm [15],

which divides the free space into triangles using the vertices of polygonal obstacles (Figure 4b).

When there are a small number of simple obstacles, a triangulation contains much fewer cells than

a grid with a reasonable resolution.

Potential field. The potential field approach [37] appears of a somewhat different nature from

the previous two. It does not build a connectivity graph explicitly. Instead, it constructs an artificial

potential function over F to guide a robot towards the goal. The potential function U(q), which

depends on the current configuration q of the robot, consists of an attractive component and a

repulsive component: U(q) = U a(q)+U r(q). The attractive potential U a(q) pulls the robot towards

the goal. The repulsive potential U r(q) pushes the robot away from obstacles. The robot moves

towards the goal, which is usually the global minimum of U(q), by following the negated gradient

of U(q). One important advantage of this approach is that it computes not just a single path, but

a feedback control strategy. The potential function U(q) specifies the motion of the robot at any

arbitrary configuration q ∈ C. So the approach is more robust against control and sensing errors.

It is also quite efficient. However, the potential field approach, which is based on steepest-descent

optimization, suffers from the local minima problem: the robot may be trapped in a local minimum

of U(q) without reaching the global minimum, i.e., the goal. The problem cannot be eliminated in

general, but can be alleviated by constructing better potential functions with few local minima or

executing random moves to help the robot escape from the local minima [42].

In some implementations, the potential function is represented on a grid. Such a potential field
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algorithm is closely related to cell decomposition with a fixed-resolution grid. We can think of the

potential function as a heuristic function for graph search on a grid.

2.3 Random Sampling

Even for a mobile robot, the dimensionality of its configuration space, dim(C), sometimes becomes

quite high. The position and orientation of a mobile robot operating in the plane can typically

be specified by three parameters (x, y, θ), but many mobile robots are wheeled differential-drive

systems subject to non-holonomic or dynamic constraints. To represent these constraints, we may

need to consider the velocities (ẋ, ẏ, θ̇) in addition to (x, y, θ), resulting in a 6-D space. If there

are multiple robots cooperating in the same environment, dim(C) becomes even higher. As one

expects, path planning becomes increasingly difficult as dim(C) grows.

During the past decade, random sampling has emerged as a powerful tool for path planning

in high-dimensional configuration spaces. Algorithms based on random sampling, e.g., the prob-

abilistic roadmap (PRM) planners, are both efficient and simple to implement. They have solved

path planning problems for multiple robots with dozens of dofs [65]. Although these algorithms

are originally intended for robot manipulators with many dofs, the configuration space framework

allows us to use them for mobile robots equally well.

As the name suggests, a PRM planner uses the roadmap approach. It tries to build a network of

1-D curves that captures the connectivity of F . Compared with the classic roadmap algorithms pre-

sented in the previous sub-section, the main difference is that the nodes of a probabilistic roadmap

are free configurations, sampled randomly according to a suitable probability distribution.

There are two main classes of random-sampling algorithms. The first class pre-computes a

roadmap so that multiple planning queries in the same static environment can then be processed

quickly. The second class performs no pre-computation and builds a small roadmap on the fly

in order to process a single query as fast as possible. The latter scenario occurs if environments

change frequently and pre-computation is not feasible. We refer to the first class as multi-query
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planning, and the second class as single-query planning.

Multi-query planning. In multi-query planning, we proceed in two stages. The first stage is

pre-computation, whose objective is to compute a roadmap G that captures the connectivity of F
as accurately as possible in a reasonable amount of time. We sample C at random according to a

suitable probability distribution π and retain the free configurations, called milestones, as nodes in

G. Let LINK(q, q′) denote a function that returns true if two milestones q and q ′ can be connected

by a collision-free, straight-line path. We insert an edge in G between two milestones q and q ′ if

LINK(q, q′) returns true. Algorithm 1 below shows the main steps of this stage. The second stage is

query processing. Each query asks for a collision-free path connecting qinit and qgoal. We first find

two milestones q ′init and q′goal in G such that qinit (qgoal, respectively) and q′init (q′goal, respectively)

can be connected by a collision-free path. We then search for a path in G between q′init and q′goal.

Algorithm 1 Roadmap construction for multi-query PRM planning.

1: loop
2: Pick q from C at random with probability π(q).
3: if CLEARANCE(q) > 0 then
4: Insert q into the roadmap G as a milestone.
5: for every milestone q′ ∈ G such that q′ �= q do
6: if LINK(q, q′) returns TRUE then
7: Insert an edge into G between q and q′.

The key issue in constructing probabilistic roadmaps is the sampling distribution for generating

milestones. The first PRM planner uses a straightforward uniform distribution, followed by an

enhancement step to increase sampling density in critical regions [36]. See Figure 5 for an example.

The success of the first PRM planner led to intensive research. Many different sampling strategies

for PRM planning have been proposed [1, 8, 22, 26, 27, 28, 50, 70, 77]. See [11, Chapter 7] for a

survey. Most of them try to increase the sampling density inside narrow passages, which are small

regions critical for capturing the connectivity of F well.

Another important issue for PRM planners is the representation of C. The configuration space

C is generally represented implicitly in PRM planning. In Algorithm 1, CLEARANCE(q) determines
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whether q is collision-free, and LINK(q, q ′) determines whether there is a collision-free, straight-

line path between q and q′. Both can be implemented efficiently using hierarchical bounding

volume representation [51, 66].

Single-query planning. In contrast to multi-query planning, there is no pre-computation in the

single-query setting. Instead, we construct a small roadmap on the fly to answer a single query.

We sample only the connected components of F that contain either qinit or qgoal [30, 46]. The

reason is that although F may contain several connected components, at most two of them, which

contain qinit or qgoal, are relevant to the query being processed. It is clearly undesirable to construct

a roadmap for the entire space. The roadmap for the single-query setting typically consists of two

trees rooted at qinit and qgoal respectively (Figure 6). We expand the two trees by sampling new

milestones at random from C and inserting them into the trees as milestones, until the two trees

“meet”, i.e., a milestone in one tree is connected to a milestone in the other.

The two trees are expanded in an identical way. To add a new milestone to a tree T , we pick at

random an existing milestone q in T with probability πT (q) and sample a new free configuration

q′ at random from the neighborhood of q with probability πq(q
′). If there is a straight-line path

between q and q′, then q′ is inserted into T as a milestone along with an edge between q and q ′.

In contrast to Algorithm 1, a new configuration is inserted into T only if it can be connected to

some existing milestone in T . So by construction, there is a path between the root of T and every

milestone in T . The pseudocode in Algorithm 2 sketches out the algorithm for building a tree

rooted at a given configuration.

Algorithm 2 Building a tree T rooted at configuration q0.

1: Insert q0 into T .
2: loop
3: Pick an existing milestone q from T with probability πT (q).
4: Sample a new configuration q′ at random from the neighborhood of q with probability πq(q

′).
5: if CLEARANCE(q) > 0 and LINK(q, q′) returns TRUE then
6: Insert q into T along with an edge between q and q ′.

In Algorithm 2, we must avoid oversampling any region of F , especially around q init and qgoal.
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Ideally we would like the milestones to eventually distribute rather uniformly over the connected

components containing qinit or qgoal. Two common ways to achieve this are the expansive space tree

(EST) [30] and the rapidly-exploring random tree (RRT) [46]. EST assigns every milestone q in T

a weight that measures how densely the neighborhood of q has already been sampled. We then pick

an existing milestone q with a suitable distribution πT (q) (line 3) so that low-density neighborhoods

are more likely to be sampled. RRT uses a target distribution, e.g., the uniform distribution, and

pick q so that the final distribution of milestones are close to the target distribution.

Another interesting idea for single-query planning is to delay executing LINK, an expensive

operation, until it becomes necessary [7, 65].

Probabilistic completeness. In general, path planning algorithms based on random sampling

cannot detect that no path exists. We must explicitly set the maximum number of milestones to be

sampled. We may also try to estimate how well C has been sampled and terminate the algorithm

if C has been sampled adequately and no path has been found. Because of this, these algorithms

are not complete. Instead they can only guarantee probabilistic completeness: a path planning

algorithm is probabilistically complete if it finds a path with high probability when one exists.

Probabilistic completeness provides a guarantee of performance only if a solution path exists.

No assurance is implied, if there is no path. It can be shown that under reasonable geometric

assumptions on the configuration space, both the multi-query and the single-query algorithms with

suitable sampling distributions are probabilistically complete with exponentially fast convergence

rate [30, 35, 39, 73].

Advantages of random sampling. The success of random sampling in path planning results

from several factors.

• It can handle high-dimensional configuration spaces efficiently.

• It is easy to implement, partly due to the availability of good programming libraries for

collision checking and pseudo-random number generation.
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• It benefits from a probabilistic framework, which provides powerful tools for designing new

sampling strategies and analysis techniques.

• It is difficult for an adversary to construct worst-case input, because of the random decisions

made by the algorithm, thus improving the robustness of the algorithm on the average.

3 Motion Planning under Kinematic and Dynamic Constraints

Path planning is a purely geometric problem. It ignores some key aspects of real robots: inherent

limits on mechanical systems restrict the range of possible motion. For example, a car cannot

move sidewise. These limits cause certain configurations to be invalid, even if a robot does not

collide with obstacles at those configurations. In this section, we consider two important classes

of constraints, kinematic constraints and dynamic constraints, together referred to as kinodynamic

constraints. Unlike the physical obstacles, kinodynamic constraints cannot always be represented

in the configuration space. They involve not only the configuration, but also the velocity and

possibly the acceleration of the robot.

To address this issue, we use state space, a straightforward generalization of configuration

space. Every point in the state space contains information on both the configuration and the ve-

locity of a robot. Our objective is to find, in the state space, an admissible path that is both

collision-free and satisfies kinodynamic constraints. This class of problems is called kinodynamic

motion planning [16].

3.1 Kinematic and Dynamic Constraints

Kinematic constraints impose a relationship between the configuration q of a robot and its velocity

q̇. They can be written mathematically as

F (q, q̇) = 0. (1)
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Kinematic constraints can be further classified into holonomic and non-holonomic ones.

Holonomic constraints do not involve the velocity of a robot; they have the special form F (q) =

0. A set of holonomic constraints can be used to eliminate some of the configuration parameters

and reduce the dimensionality of C. By choosing a suitable parameterization of C, we may be

able to convert a problem with holonomic constraints into one with no constraints and apply the

algorithms from Section 2.

Non-holonomic constraints are fundamentally different. They are not integrable, meaning that

we cannot eliminate q̇ via integration and convert them to the form F (q) = 0. A classic example is

the constraints on the motion of car-like mobile robots (Figure 7). Let (x, y) be the position of the

midpoint R between the rear wheels of the robot and θ be the orientation of the rear wheels with

respect to the x-axis. Assuming that the wheels do not skid, the robot cannot move sidewise. This

constraint can be written as tan θ = ẏ/ẋ, which clearly has the form F (q, q̇) = 0. What is less

obvious is that the constraint is not integrable. We will not get into the details here. It suffices to

say that the mathematical conditions for integrability is known, but for a given set of constraints,

checking these conditions is a non-trivial task. See [42, pages 403–451] for details.

Although most of the work on non-holonomic motion planning focuses on car-like or tractor-

trailer robots, many results are applicable to other problems, including object pushing [54] and

dextrous manipulation [31].

Dynamic constraints are closely related to non-holonomic constraints, but they involve not only

the configuration and the velocity of a robot, but also the acceleration. Consider the Lagrange’s

equations of motion, which have the form G(q, q̇, q̈) = 0, where q, q̇, and q̈ are the robot’s config-

uration, velocity, and acceleration. Defining s = (q, q̇), we can rewrite the equation as F (s, ṡ) = 0

which is the same as (1).

The motion of a robot may also be constrained by inequalities of the form F (q, q̇) ≤ 0 or

G(q, q̇, q̈) ≤ 0. Such constraints restrict the set of admissible states to a subset of the state space.

The presence of kinodynamic constraints implies that not all collision-free path are admissible,
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because they may violate the constraints. For some robots, we can represent motion constraints

explicitly by constructing a class Γ of admissible path segments. Ideally Γ has the property that if

there is an admissible path between two states, then one can construct another admissible path as

a sequence of segments from Γ. This property is necessary for algorithms using Γ to be complete.

Examples of such path segments include jump curves [33] or Reeds and Shepp curves [63] for

car-like robots. In general, one can prove such a class of path segments can be constructed for any

locally controllable system using tools from non-linear control theory [4, 44, 49]. Unfortunately,

the path segments generated by the proof are often inefficient in practice, because they may contain

many unnecessary maneuvers.

An alternative representation of motion constraints is a control system

ṡ = f(s, u), (2)

which constitutes the robot’s equations of motion under suitable control. In the above equation,

s ∈ S is the robot’s state, which encodes the robot’s configuration and optionally velocity as well;

ṡ is the derivative of s with respect to time; u ∈ Ω is the control input. The set S and Ω are called

the state space and control space, respectively. We assume that S and Ω are bounded manifolds of

dimensions n and m, with m ≤ n. By defining appropriate charts on these manifolds, we can treat

S as a subset of Rn and Ω, a subset of Rm.

Eq. (2) can represent both kinematic and dynamic constraints described earlier. Suppose that

we have � kinodynamic constraints Gi(s, ṡ) = 0 for i = 1, 2, . . . , �. We can solve these � equations

for ṡ. In general, if � is less than n, the solution is not unique, but we can parameterize the set of

solutions by u ∈ Rn−� and write them down, at least formally, as ṡ = f(s, u) for some suitable

function f . More precisely, it can be shown that under suitable conditions, the set of constraints

Gi(s, ṡ) = 0 for i = 1, 2, . . . , � is equivalent to (2), in which u is a point in Rm = Rn−� [4].

To deal with inequality constraints of the form G(s, ṡ) ≤ 0, we typically restrict the state space

S and control space Ω to suitable subsets of Rn and Rm, respectively.
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Let us now look at an example to illustrate the above notions.

Example 3.1 (simplified non-holonomic car navigation) Consider the car example in Figure 7.

The state of the car is specified by (x, y, θ) ∈ R3. The non-holonomic constraint tan θ = ẏ/ẋ is

equivalent to the system

ẋ = v cos θ

ẏ = v sin θ

θ̇ = (v/L) tanφ.

This reformulation corresponds to defining the car’s state to be its configuration (x, y, θ) and choos-

ing the control input to be the vector (v, φ), where v and φ are the car’s speed and steering angle,

respectively. Bounds on (x, y, θ) and (v, φ) can be used to restrict S and Ω to subsets of R3 and

R2, respectively. For instance, if the maximum speed of the car is 1, we require |v| ≤ 1.

3.2 General Approaches

Sometimes the path planning approaches described in Section 2 can be applied to kinodynamic

motion planning after some modifications. To construct a roadmap for car-like robots, we may

discretize the boundaries of polygonal obstacles and connect pairs of points on the boundaries with

jump curves composed of circular and straight-line segments [33]. To apply this idea to other robots

would require a suitable class of admissible path segments to be constructed. Alternatively, we may

consider the cell decomposition approach by placing a regular grid over the state space [4, 16].

We represent the motion constraints as a control system and search for an admissible path in the

discretized state space. As we have mentioned before, the cell-decomposition approach works only

for robot with few dofs, because the grid size increases exponentially with dim(C). We may also

use the potential field approach by projecting the potential forces onto the surface defined by the

motion constraints and applying the projected forces on the robot.
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One approach unique to kinodynamic motion planning is path transformation. It proceeds in

three steps [43]. First we generate a collision-free path γ that disregards the motion constraints.

We then discretize γ into a sequence of short path segments and replace each segment with one

from a class Γ of admissible path segments, thus transforming γ into an admissible path γ ′. Finally

we smooth γ ′ to remove the unnecessary maneuvers and obtain a more efficient admissible path.

This algorithm can be extended in various ways, which are all based on the idea of successive path

transformation, but differ in what transformations to use and how to perform the transformations [6,

21, 68]. A natural question to ask about these path-transformation algorithms is whether it is

always possible to transform a collision-free path into an admissible path that obeys the motion

constraints. In theory, the answer is yes, if the robot is locally controllable [43], e.g., car-like robots.

However, the approach is only practical for robots for which a class Γ of efficient admissible path

segments can be easily constructed. It is not applicable to robots that are not locally controllable,

e.g., car-like robots that can only go forward.

3.3 Random Sampling

Random sampling has also been successful for kinodynamic motion planning, including robots

that are not locally controllable. In this section, we give two representative examples.

The first one follows the multi-query approach [73], described in Section 2.3. It applies to

car-like robots and assumes the existence of a class Γ of admissible path segments. It proceeds in

almost the same way as Algorithm 1, with one major difference. When connecting two milestones

in the roadmap, the algorithm uses path segments from Γ instead of straight-line paths. Thus every

path in the roadmap is not only collision-free, but also admissible.

The second example follows the single-query approach. It represents the motion constraints

as a control system. The main steps of the algorithm are similar to Algorithm 2. The difference

occurs in lines 3 and 5. In Algorithm 2, we sample a new configuration and connect it to an

existing milestone with a straight-line path. However, straight-line paths often violate the motion
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constraints. So instead, we choose a random control function and integrate the robot’s equations

of motion forward under this control function for a small period of time. The motion constraints

are enforced automatically during the integration. If the resulting path is admissible, we then insert

the endpoint of the path into the tree being constructed as a new milestone. Intuitively, we map a

random sample in the control space Ω to a random sample in the state space S by integrating the

equations of motion. Of course, we must still avoid oversampling. We can use the same methods

described in Section 2.3, but they work less effectively here, because the motion constraints skew

the density estimate and the target distribution.

It may appear somewhat surprising that, in the random-sampling approach, algorithms for path

planning and kinodynamic motion planning are very similar. This is in fact one major advantage

of the approach: it applies to a wide class of problems with relatively small, local changes related

to the specifics of robots. This greatly eases implementation.

3.4 Case Studies on Real Robotic Systems

Having seen a number of motion planning algorithms, we now look into some important practical

issues in the context of two real robotic systems.

Motion planning of trailer-trucks for transporting Airbus A380 components [41]. Airbus

A380 is the largest commercial aircraft that has ever been built. The main components—wings,

fuselage sections, and the tail plane—are produced in different European cities and transported

by trailer-trucks to a central location for assembly. The transport itinerary must go through small

towns and villages with sometimes very narrow roads. The enormous size of the cargo, the length

of the itinerary, and the narrow roads along the way pose unique challenges. It is highly desirable

to have an automated system to help validate the itinerary in advance and guide the truck driver.

Trailer-trucks have been studied extensively in non-holonomic motion planning. In this case,

a path transformation algorithm is used for motion planning [40]. An initial admissible path is

computed and then iteratively improved to make it more efficient. Obstacle avoidance is achieved
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with a potential field method.

The automated system is used to validate the itinerary for the trailer-trucks and determine

which parts of the itinerary must be adapted to fit the vehicle size. The system also optimizes

the trajectories to maximize the distance between the truck and the surrounding obstacles, such as

buildings and trees. The validated trajectory is then fed into a computer-aided driving system to

help the driver follow the trajectory.

A space robotics test-bed [29]. A variant of the single-query random-sampling planner de-

scribed in Section 3.3 has been implemented on a real robot in an environment with moving obsta-

cles. The robot system was developed in the Stanford Aerospace Robotics Laboratory for testing

space robotics technology. The air-cushioned robot moves frictionlessly on a flat granite table

(Figure 9). It has eight air thrusters providing omni-directional motion capability, but the force is

small compared to the robot’s mass, resulting in tight acceleration limits.

We model the robot as a disc in the plane for planning purposes. To deal with moving obstacles,

the planner augments the state space with a time axis and computes a trajectory for the robot in the

state-time space instead of the usual state space. An overhead vision system estimates the motion

of moving obstacles in the environment and sends the information to the planner, which runs on an

off-board computer. The planner is then allocated a short, pre-defined amount of time to compute

a trajectory, as required by the real-time nature of the system,

The success of random sampling for motion planning in real-time system indicates its effective-

ness despite many adversarial conditions, including (i) severe dynamic constraints on the robot’s

motion, (ii) moving obstacles, and (iii) various time delays and uncertainties inherent to an inte-

grated system operating in a physical (as opposed to a simulated) environment.
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4 Motion Planning under Visibility Constraints

Often, we picture robots as intelligent machines maneuvering autonomously through a cluttered

environment, transporting parts or assembling products. These tasks fall strictly within the domain

of classic motion planning. However, acquiring information about environments through sensing

is another important task: surveillance and mapping unknown environments are all examples of

tasks in which observing the world is the main objective. It may not be immediately obvious, but

motion planning plays a key role in these problems.

The goal of sensing is to extract an understanding of the world from sensor data. The basic act

of sensing is passive. It becomes active when an algorithm directs the robot to move in order to

make sensing more effective. The motion may help the robot keep a target within the sensor range

or gain new information about an unknown environment. More generally, motion is executed to

maintain a set of constraints on the state of the world or achieve a certain state of knowledge about

the world. Here, the term “state” reflects not only the robot’s physical configuration, as in the

previous sections, but also the robot’s observations and knowledge. The admissible paths for the

robot are constrained not only by the robot’s geometry and mechanics, but also by a set of visibility

constraints due to the robot’s sensors.

To understand the role of visibility constraints, consider the example of a robot following a

target. Suppose that at its initial location, the robot has the target in view. As the target moves, it

may get out of the robot’s sensor range. The robot must move to a new location to keep the target

in view. The path that the robot takes must, of course, be collision-free. In addition, at every point

along the path, the robot must maintain target visibility. The visibility constraints reduce the set

of admissible paths available to the robot, just as the kinodynamic constraints do. To deal with

visibility constraints effectively, we must now leave the realm of classic motion planning and enter

the realm of motion planning under visibility constraints.

This section presents three motion planning problems under visibility constraints: sensor place-

ment (Section 4.1), indoor exploration (Section 4.2), and target tracking (Section 4.3). In the first
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problem, we compute a set of robot sensing locations to build a model of an environment effec-

tively. This is the simplest scenario, because we ignore the cost of robot motion. The second

problem, often called the next best view, is an extension of the first, when the environment is not

known in advance. Motion planning becomes important, because the robot may inadvertently col-

lide with unknown obstacles in the environment. The last problem is that of computing the motion

of a robot observer following a target. This is probably the most complex problem of the three,

because it involves both visibility and kinodynamic constraints. Moreover, the robot is sometimes

expected to track an unpredictable target in real time.

4.1 Sensor Placement

Nowadays robots equipped with laser range sensors are often used to build 3-D models of the

environment [12, 55, 61, 76]. Acquiring high-quality 3-D information is a costly operation, and it

is desirable to minimize the number of sensing operations. To do this, we use an initial 2-D map

of the environment and compute a set of locations from which a range sensor (e.g., laser) scans the

environment. We call this problem sensor placement.

Sensor placement is related to the classic art-gallery problem [69], which asks for the minimum

number of guards whose joint visibility region covers the interior of an art gallery. In its simplest

form, the problem considers the art gallery to be a polygonal environment. It also assumes a simple

line-of-sight visibility model, where two points are visible to each other if the line segment between

them is unobstructed. The problem seems deceptively simple, but finding the minimum number of

guards is actually NP-hard. In robotics, the visibility model is rarely as clean as that assumed in

the art-gallery problem. So the art-gallery results are usually not directly applicable.

To derive a practical sensor placement algorithm, the visibility model must take into account

the limitations of laser range sensors. The visibility definition below lists three constraints, which,

we believe, are most relevant (Figure 10).

Definition 4.1 (constrained visibility) Let the bounded and open set W ⊂ R2 denote the robot’s
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free space, and ∂W denote the boundary of W . A point w ∈ ∂W is visible from a point q ∈ W if

the following conditions hold:

• Line-of-sight constraint: The open segment S(q, w) joining q and w does not intersect ∂W .

• Range constraint: dmin ≤ d(q, w) ≤ dmax, where d(q, w) is the Euclidean distance between

q and w, and dmin ≥ 0 and dmax > dmin are constants.

• Incidence constraint: � (n, v) ≤ τ , where n is the vector perpendicular to ∂W at w, v is the

vector oriented from w to q, and τ ∈ [0, π/2] is a constant.

We are interested in finding a minimal set of sensor locations that cover ∂W:

Problem 4.1 (sensor placement) Given a bounded, open set W ⊂ R2, compute the minimal set

of sensor locations G in W , such that every point w ∈ ∂W is visible from at least one point in G
under the visibility model given in Definition 4.1.

Like the art-gallery problem, Problem 4.1 is NP-Hard, and we have to settle for an approximate

solution, one that covers most of, but not the entire boundary ∂W . We use random sampling to

transform the sensor placement problem into a set cover problem [23].

Sampling. Sample at random a set of m points from W . Denote the set by Gsam. For every edge

e ∈ ∂W , compute the fraction seen by each point in Gsam. The arrangement of all covered fractions

decomposes each edge into cells such that all points within the same cell are visible to the same

subset of Gsam (see Figure 11a for an example). Now enumerate all the cells in the decomposition

of ∂W and group them under the ground set X = {1, 2, . . . , l}, where l is the number of cells.

This ground set represents the decomposition of ∂W .

Let Ri be the subset of X that is visible to a sample point gi ∈ Gsam. The set family R =

{R1, R2, . . . , Rm} is thus a collection of subsets of X . The set system Σ = (X,R) can be regarded

as an encoding of the sampled or discretized version of Problem 4.1, and the original problem is
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reduced to that of computing the optimal set cover of the set system Σ: find the smallest sub-

collection R̂ ⊆ R, such that the union of all the Ri’s in R̂ equals X .

The sampled problem is clearly not the same as the original. Finding the optimal set cover

of Σ may not lead to an optimal set of sensor locations: Gsam may contain incorrectly distributed

points, or W admits no finite solution due to its geometry. Sampling, however, often produces

a satisfactory solution at a small cost, because the probability that Gsam contains the optimal set

of guards quickly approaches 1 in most practical scenarios. Even when no finite solution exists,

sampling produces reasonable solutions, as Σ encodes a “portion” of the original problem that

actually admits a finite solution for realistic sensor models.

Near-optimal set covers After sampling, we ask the question: has the problem become easier?

Unfortunately the set cover problem is also NP-hard. However, finding optimal set covers is a

well-studied problem, and efficient algorithms that produce near-optimal solutions are available.

More interestingly, the set cover problem has a dual, the hitting set problem.

Every set system has a dual. Consider Σ = (X,R). Its dual Σ′ = (X ′,R′) is defined by

X ′ = R and R′ = {Rx|x ∈ X}, where Rx consists of all the sets R ∈ R that contain x.

Figure 11b illustrates the dual set system for our sensor placement problem. Note that the set

of candidate sensor locations now becomes the ground set X ′. A hitting set for Σ′ = (X ′,R′)

is a subset H ′ ⊆ X ′ such that H ′ ∩ R′ �= ∅ for every set R′ in R′. In other words, the hitting

set H ′ contains members from all the sets in R′. The problem of finding the smallest set cover

for Σ is equivalent to that of finding the smallest hitting set for Σ ′. For a set system with finite

VC-dimensions1, an efficient algorithm exists for finding near-optimal hitting sets [9].

Assume that W is represented as a polygon with holes caused by obstacles. The VC-dimension

of the set system for the sampled version of Problem 4.1 is then bounded by O(log(n + h)), where

n is the number of vertices describing ∂W and h is the number of holes [23]. Using the algorithm

in [9], we can find a set of sensor locations that is within a factor O(log(n + h) · log(c log(n + h)))

1VC-dimension stands for the Vapnik-Červonenkis dimension. It is a measure of the complexity of a set system.
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of the optimal size c. In other words, we can compute a near-optimal set of sensor locations within

a logarithmic factor of the optimal.

Sensor placement is a set cover problem in nature, and the same is true for art-gallery problems

in general. A key development in recent years is to transform such problems into set systems, which

may have finite VC-dimensions and lead to efficient approximation algorithms. For example, it has

been shown that for a polygon with h holes, the VC-dimension of the set system for the classic art-

gallery problem is O(h) [75] under the simple line-of-sight visibility model. This fact is exploited

to produce a polynomial-time algorithm that finds a solution within a factor O(log(h) · log(c log(h)))

of the optimal size c [18].

Extensions A straightforward extension of the sensor placement problem is to generate routes

instead of locations for sensing tasks involving mobile robots. If the cost of sensing is very expen-

sive compared to that of motion, then motion costs can be ignored. The problem remains the same

as that defined in Problem 4.1. If the converse is true, then the cost of sensing can be ignored, and

motion incurs the dominant cost. The problem becomes the watchman route problem [69]: find the

shortest closed path from which the entire environment is visible. Developing sampling techniques

to compute watchman routes is an interesting topic for future research.

A more difficult problem requires both the cost of sensing and the cost of motion to be consid-

ered. This topic remains largely unexplored, but some limited work exists [14, 20].

4.2 Indoor Exploration

Automatic map building is an important problem in robotics. Research in this area has traditionally

focused on developing techniques to extract environmental features, such as edges and corners,

from sensor data and integrating these features into a consistent map. The former is a computer

vision problem, and the latter is the simultaneous localization and mapping (SLAM) problem [74].

SLAM algorithms seek the best way to integrate sensor data acquired by a robot during navi-

gation. It, however, does not answer the following question: Given the map known so far, where
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should the robot move next to observe the unexplored regions? From the point of view of motion

planning, this is the most interesting question in automatic map building. It involves the computa-

tion of successive sensing locations by iteratively solving the next best view (NBV) problem. At

each location, the robot must not only observe large unexplored areas of the environment, but also

a portion of the known environment to allow for image registration [62]. NBV is complementary

to SLAM [74]. A SLAM algorithm builds a map by making the best use of the available sensor

data, whereas an NBV algorithm guides the robot through locations that provide the best possible

sensor data. In addition to robotics and computer vision, NBV arises in computer graphics [13]

and many other areas.

NBV is an on-line version of the sensor placement problem, where the 2-D map of the envi-

ronment is unknown initially and only revealed incrementally as new sensor data are acquired.

Constraints on the next best view. In mobile robotics, two important constraints must be con-

sidered by NBV algorithms. First, a mapping robot must not collide with obstacles, whether they

are known or unknown in advance. The second constraint results from imperfect robot localiza-

tion. Due to errors in inertial navigation (e.g., wheel slippage), a mobile robot must constantly

re-localize itself as the map is built. New laser scan images must be aligned with the current

map, a problem called image registration. Image registration requires an overlap between each

new image and previously seen portions of the environment. An NBV algorithm must take this

requirement into account.

NBV can thus be viewed as an optimization problem where the best sensing position is com-

puted subject to safe-navigation and image-registration constraints. As is often the case in opti-

mization, the problem can be solved more effectively if the search domain is characterized explic-

itly. In motion planning terms, the next best view is a position in the free space, where the free

space is collision-free with respect to both the known and unknown obstacles. Is it possible to

characterize this free space explicitly?

It seems odd to define a free space that depends on obstacles yet to be discovered, for if they
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are not discovered, how can we use them to build the free space? The key is to view free space

from the sensor’s perspective, and not from the environment’s perspective. That is, construct the

largest region guaranteed to be free of obstacles, mapped or not, given the history of sensor data.

Such a region is called the safe region to distinguish it from the usual notion of free space.

Safe regions. Consider a 2-D range sensor that obeys the visibility model in Definition 4.1,

with dmin = 0. Figure 12a shows a sample sensor reading. Here, the sensor detects the obstacle

contour shown in bold black. From this reading, we want to construct a closed region that is

obstacle-free. One possibility is to join the detected contour to the range limit of the sensor using

radial line segments. This region is shown in light color in Figure 12b. Unfortunately, such a

region is guaranteed to be free of obstacles only in the absence of incidence constraints. Consider

Figure 12c, which shows the actual environment. Notice how the region from Figure 12b overlaps

with walls oriented at a grazing angle (roughly 70 degrees) with respect to the sensor position. In

contrast, the region in Figure 12d, which takes into account the incidence constraint, is indeed safe.

Assume that the sensor output is an ordered list Π of piecewise continuous curves. The local

safe region sl(q) is the largest closed region guaranteed to be free of obstacles given an observation

Π(q) made at location q. Such a region is bounded by the curves in Π(q), representing the visible

sections of the free space boundary ∂W , plus additional curves joining the disjoint visible sections

and calculated from the information in Π(q) [24] (see Figure 12d for an example). The safe region

sl(q) is topologically equivalent to a classic visibility region. In fact, when the visibility constraints

in Definition 4.1 are relaxed, the safe region becomes exactly the visibility region. Several proper-

ties and algorithms that apply to visibility regions also apply to safe regions. For example, s l(q) is

a star-shaped set, a set that is entirely visible from at least one interior point.

A global safe region is constructed iteratively from local safe regions. First, a local safe region

sl(q0) is constructed from the sensor reading Π(q0) made at the robot’s initial position q0. The

global safe region Sg(q0) is initially equal to sl(q0). Next, the robot moves to a position q1 and gets

a new sensor reading Π(q1), yielding a new local safe region sl(q1). Now, Sg(q1) = Sg(q0)∪sl(q1).

25



The robot again moves, now to q2. A new reading Π(q2) is made, yielding sl(q2), and Sg(q2) =

Sg(q1) ∪ sl(q2), and so on. The region Sg(qt) represents both a map of the environment at time t

and the search domain for computing the next best view for t + 1.

Image registration. Robots cannot localize with perfect precision. An algorithm ALIGN is used

to compute the transform T that aligns sl(qt+1) with Sg(qt) before the union operation. Image

registration has been studied widely, and many techniques exist [61]. The details of ALIGN are

inconsequential to the NBV computation, but it is important to note that most image registration

algorithms are based on feature matching. It is thus essential that the next best view for t + 1

ensures a minimum overlap between the current Sg(qt) and the anticipated sl(qt+1).

Evaluating next views. Suppose that at time t, the robot is positioned at qt and the global safe

region is Sg(qt). The goal is to compute the future position of the robot, given Sg(qt). The unex-

plored areas of the environment can only be revealed through the free boundary of Sg(qt), i.e., the

portions of Sg(qt) not blocked by obstacles. Therefore, a potential candidate q is good, if it sees

large unexplored areas outside of Sg(qt) through the free boundary of Sg(qt). We say that such q

has high potential visibility gain, measured by a function Vg(q, t).

Several definitions of Vg(q, t) are possible. One way is to first compute the visibility region

from q assuming that the free boundary is transparent, and intersect this region with the comple-

ment of Sg(qt) [24]. The gain Vg(q, t) is the area of the resulting intersection. This definition works

well for office environments, even in cluttered conditions. As an alternative, the next view can be

chosen to maximize entropy reduction, and the gain Vg(q, t) becomes a measure of the expected

entropy reduction at position q [78].

The computation of the next best view must also factor in the cost of motion, which is weighed

against the potential visibility gain. Again, this can be done in several ways. One way is to define

the overall merit of q, factoring in both visibility gain and motion cost, as

g(q, t) = Vg(q, t) exp(−λL(q, t)), (3)
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where L(q, t) is the length of the collision-free path computed by a path planner between position

q and the current robot position at time t. The constant λ ≥ 0 is used to weigh the cost of motion

against the visibility gain. A small λ gives priority to the gain of information. Conversely, a large

λ gives priority to motion economy, favoring locations near qt that potentially produce marginal

information gain.

Computing the next best view. At this point, the only remaining issue is to search for the next

best view. This is simple, as the global safe region Sg(qt) completely characterizes the search

domain. Following a random-sampling approach akin to those described in Section 2.3, a set N of

NBV candidate positions is generated along the free boundary of Sg(qt). This set is processed in

three steps. First, for each q ∈ N , we determine the extent to which sl(q) and Sg(qt) overlap. The

overlap ζ(q) is measured by the length of the visible part of Sg(qt)’s boundary abutting obstacles.

If ζ(q) is smaller than a threshold imposed by ALIGN, then q is removed from N . Second, a path

planner computes a collision-free path between qt and each remaining candidate q in N . Those

candidates that yield no feasible paths are removed from N . Finally, the merit of each remaining

candidate in N is evaluated according to (3), and the best candidate is selected.

Figure 13 shows a sample map constructed using the NBV algorithm in [24]. The figure shows

the partial map of a wing of the Computer Science Building at Stanford University after 14 itera-

tions. Note the final mismatch after the robot completed a circuit around the lab (about 40 meters).

The discrepancy appears, because every image alignment transform was computed locally. To

reduce the discrepancy, the NBV algorithm should be combined with a SLAM algorithm.

Extensions. We have so far ignored any error-recovery capabilities in the NBV computation.

Any serious errors in sensing or image registration lead to unacceptable maps. An experimental

system must be designed conservatively to avoid this, perhaps forcing the robot to take more mea-

surements or travel longer paths to produce the final map. A better solution is to combine the NBV

computation with SLAM algorithms and exploit their complementary strengths.

Another extension is to have multiple robots building a map cooperatively. Centralized ap-
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proaches are acceptable, if the relative positions of all the robots are known. A single map can be

generated from all the sensor readings, and a centralized NBV algorithm then computes the ag-

gregate next best view for the entire team. The problem becomes far more difficult, if the relative

positions of the robots are not known. In this case, the robots act independently, perhaps commu-

nicating their positions and findings only sporadically. A distributed approach is then needed.

4.3 Target Tracking

Tracking in the sense of detecting targets in images is studied widely in computer vision. In con-

trast, target tracking in motion planning is concerned with computing the motion of a robotized

camera in order to keep a target in view [5]. Variations of this problem arise in different appli-

cations, e.g., visual servoing [32, 60] and computer assisted surgery [47]. Target tracking is also

called target following to distinguish it from the tracking problem in computer vision.

Target tracking is a motion planning problem that combines visibility constraints with kino-

dynamic constraints. It takes into account the actions of an external agent—the target—acting as

a potential opponent. Thus target tracking can be treated as a problem in game theory [45]. The

game-theoretic view provides a clean mathematical formulation of the problem.

State transition equations. Suppose that both the robot observer and the target are rigid bodies

moving in the plane. The free configuration space for the observer is a subset of R2 and denoted

by F o, while that for the target is denoted by F t. Define so(t) as the observer’s state at time t.

Suppose that the state transition equation for the observer is given by ṡo = f o(so, u), where u(t) is

the action selected from an action set U at time t. The function f o models the observer’s dynamics

and may encode non-holonomic constraints or other types of kinodynamic constraints. Similarly,

the transition equation for the target is given by ṡt = f t(st, θ), with the action θ(t) selected from a

target action set Θ. The state of the observer-target system is given by s = (so, st). Let X be the

joint state space, which is the Cartesian product of the individual state spaces of both the observer

and the target. A state may encode both the configuration of a robot and its velocity. So, in general,
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X is not equal to F o × F t, the Cartesian product of individual configuration spaces.

Visibility constraints. The distinction between state space and configuration space is important.

The state space, along with the associated transition equation, focuses on the kinodynamic con-

straints. The configuration space, on the other hand, focuses on where the robot observer can see

the target. Now let us identify those configurations where the target is visible.

Let V(qo) be the visibility region at the observer position qo, i.e., the set of all locations from

which the target is visible to an observer located at qo. Usually, the target is said to be visible if

the line of sight to the observer is unobstructed, but this model can be extended. For example, the

field of view can be restricted to some fixed visibility cone or limited by lower- and upper-bounds

on the distance range. Incidence constraints such as those in Definition 4.1 can also be added.

Tracking algorithms usually compute the visibility region from a synthetic model or reconstruct

it from sensor data. In the former case, a sweep-line algorithm can be used [15]. In the latter case,

laser range sensors or similar sensors are installed on the robot observer (see Figure 14a), but

some sensors cannot provide reliable measurements, thus complicating the reconstruction of the

visibility region. For example, stereo vision systems often produce unreliable range measurements

if the object surface is textureless.

An important concept in target tracking is that of the visibility sweeping line �(t), defined as the

line passing through the target position at time t and a reflex vertex of the free space (Figure 15).

At any time t, the observer must stay on the side of �(t) which allows it to see the the target. The

observer’s path is influenced by the behavior of these sweeping lines, and some tracking algorithms

exploit them explicitly [17, 25].

Tracking strategies. Target tracking consists of computing a function u(t), called a strategy, so

that the target remains in view for all t ∈ [0, T ], where T is the target’s stopping time, also known

as the horizon of the problem. It may also be important to optimize secondary criteria such as

the total distance traversed by the observer and the final distance to the target. Various tracking

strategies are known, and they can be compared from different angles:
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Predictable vs. unpredictable targets. The target is predictable if the target action θ(t) ∈ Θ

is known in advance for all t ≤ T . Thus the location of the target is known for all t, and its

state transition equation simplifies to ṡt = f t(st). The target is unpredictable if its actions

are not known in advance, though the action set Θ may be known.

Off-line vs. on-line. Off-line tracking strategies have access to future states, while on-line

strategies do not. In other words, on-line algorithms are causal, whereas off-line ones are

non-causal. Causality is a characteristic of the algorithm, not a logical requirement of tar-

get predictability. Obviously, an off-line strategy that relies on the target’s future positions

implies that the target is predictable, but an algorithm can be non-causal for other reasons.

Also note that on-line strategies may or may not run in closed loop (see below).

Critical vs. average tracking. Sometimes it is impossible to track the target for all t ≤ T .

Thus some strategies maximize the target’s escape time tesc, the time when the observer

first loses the target. An alternative is to maximize the exposure, the total time that the target

remains visible. The former choice, critical tracking, implies that losing the target effectively

ends the task, whereas the latter choice, average tracking, implies that the observer can

possibly re-acquire the target after losing it.

Expected vs. worst-case analysis. A tracking strategy may maximize either worst-case or

expected performance. In the first case, a tracking strategy maximizes the minimum escape

time given all the adversarial choices for θ(t) ∈ Θ during the problem’s horizon. This

approach is suitable for tracking antagonistic targets. In the second case, the expected escape

time is maximized given a probability distribution over the target’s actions. In both cases,

the problem is intractable, and we have to settle for approximate solutions. A typical one is

to solve the problem for a time horizon much smaller than the target’s stopping time T .

Open vs. closed loop. A strategy operates in closed loop, if the strategy u is computed

as a function of the state s(t). Otherwise, the strategy runs in open loop, and u depends
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explicitly on t. Closed-loop strategies are preferred over open-loop ones even when the

target is predictable, unless it is guaranteed that the state transition models and observations

are exact, e.g., the case in [48]. Open-loop strategies are often used in theoretical studies,

but they rarely work well in practice.

Backchaining and dynamic programming. One way to compute an observer trajectory for

a predictable target is through pre-image backchaining. Suppose that both the observer and the

target are modeled as points in the plane. Let V̄(qt) ⊂ F o be the set of observer configurations

from which a target at qt is visible. Let A(t) ⊂ F o be the set of all configurations at time t from

which the observer could move into V̄(qt(t + 1)) at time t + 1. Since the observer must see the

target at time t and move to a configuration that sees the target at t + 1, its configuration at t must

be contained in V̄(qt(t)) ∩ A(t), which can often be computed easily for the 2-D case. Thus, the

observer’s trajectory can be obtained by backchaining from the final stage, guaranteeing visibility

at each step, until a set of possible initial states is obtained or the problem is shown to have no

solution.

Backchaining can be generalized into higher dimensions using dynamic programming (DP) [45].

Kinodynamic constraints and secondary optimization criteria can also be added. However, DP is

computationally intensive. A brute-force implementation of DP leads to a grid whose size grows

exponentially with the dimensionality of the state space. Random sampling may ease the compu-

tational burden, but to achieve real-time performance, approximate local strategies are needed.

Escape-time approximations. The time horizon is often reduced in practice to handle unpre-

dictable targets. In the extreme case, only one step into the future is considered. If there are no

kinodynamic constraints, maximizing the minimum escape time is equivalent to maximizing the

shortest distance to escape. The observer’s action for the next step can be selected to maximize this

distance. This is sometimes achieved through randomized techniques [56]. The shortest distance

to escape is easy to compute, but it could be a poor approximation of the escape time for longer

time horizons or under kinodynamic constraints.
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Alternatively, the escape time can be approximated with a quantity called the escape risk [25].

The negative gradient of the escape risk is composed of a reactive component and a look-ahead

component. The reactive component drives the observer to swing around corners as a target is

about to be occluded, while the look-ahead component drives the observer towards a corner in

order to make future tracking easier. The algorithm relies on an escape-path tree, a data structure

encoding all the locally worst-case paths that a target may use to escape the observer’s visibility

region (Figure 16). This data structure can be computed in O(n) time for 2-D environments, where

n is the number of polygon vertices describing the observer’s visibility region.

Robot localization. If a tracking strategy uses a global map of the environment to determine

the observer’s actions, tracking is tied to robot localization. This connection potentially leads to

a conflict between the goals of tracking and localization. Suppose, for example, that the observer

re-localizes whenever a ceiling landmark is visible. The target may force an observer trajectory

without any landmarks, resulting in the localization error becoming so large that tracking fails.

A simple solution of this problem is to increase the number of landmarks, or to use more

robust localization techniques based on (hopefully) abundant natural features. A better solution is

to explicitly add the re-localization constraint into the tracking problem. For example, the observer

actions maximize the sum of two utility functions: one based on the probability of observing the

target and the other based on localization precision [19].

An entirely different approach is to abandon the global map and avoid the localization problem

altogether. For example, the observer’s actions could depend only on the gradient of the escape

risk, which can be computed from purely local sensor information [25].

Other results and extensions. We often ignore the kinodynamic constraints on the observer and

the target in order to simplify the tracking problem. However, it is important to assume bounded

target velocity; otherwise, the target’s escape time may become zero. The effect of velocity bounds

on tracking has been studied [57]. Assuming bounded target velocity, an optimal strategy can be

computed efficiently for polygonal environments and predictable targets [17].
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An interesting extension of the tracking problem is that of stealth tracking: the observer tracks

the target while remaining hidden from it. The work in [3] extends the linear-time algorithm in [25]

to account for the additional stealth constraint. This involves computing the subset of the target’s

visibility region contained inside the observer’s visibility region. The computation can be done

efficiently so that the total cost of the strategy remains linear per step.

A more difficult problem is to track multiple targets with multiple observers. If a centralized

strategy is used, the problem is not fundamentally different from tracking a single target with a

single observer. However, the dimensionality of the state space gets higher, and visibility regions

may become disconnected [56]. Distributed strategies, on the other hand, require a coordination

scheme among observers.

5 Other Important Issues

Uncertainty is animportant issue in motion planning, but we will only touch on it very briefly here.

See Chapter 13 for more details. Except for Sections 3.4 and 4.2, we have mostly assumed that a

planning algorithm knows exactly the geometry of the robot, the shapes and locations of obstacles

in the environment, and when and how the environment changes. We have also assumed that the

robot can exactly execute the path computed by a planning algorithm. These assumptions are

satisfied to various degrees in real robotic systems.

Depending on the degree of uncertainty present and the amount of prior knowledge available,

there are different ways to deal with uncertainty. If the uncertainties are small, we can largely ig-

nore them during planning and use closed-loop control during path execution to reduce its effects

(e.g., the air-cushioned robot in Section 3.4). If uncertainty is bounded or modeled by a prob-

ability distribution, we can incorporate it into planning using methods such as pre-image back-

chaining [52] or partially observable Markov decision processes (POMDP) [34]. In this case, path

planning and execution together form a closed-loop process. However, the computational cost of

incorporating uncertainty into planning is often high and sometimes intractable. Also, uncertainty
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is difficult to model effectively for lack of prior knowledge, and we must rely on a worst-case

analysis of various possible scenarios (e.g., in the target tracking problem of Section 4.3). In the

extreme case, no prior knowledge of the environment is available. Planning is then of little use,

and the robot must rely on sensor-based reaction.

Another important topic is multi-robot motion planning. Conceptually, we can take the cross

product of the state spaces of all the robots involved and plan in this composite space. This is

called centralized planning, which is computationally expensive due to the high dimensionality of

the composite space. Alternatively, we may plan the motion for each individual robot separately

and then coordinate their motion afterwards. This is called distributed planning, which is compu-

tationally more efficient, but sacrifices completeness and optimality. Chapter 11 provides a more

in-depth discussion of this topic.

In recent years, bi-pedal humanoid robots become more prevalent, e.g., Honda’s ASIMO and

Sony’s QRIO. A bipedal robot has the ability to navigate on uneven surfaces and step over obstacles

along its path, but efficient footstep planning algorithms that take into account the robot’s dynamics

are needed to realize this potential [38]. Motion planning for humanoid robots is an important area

of research, but is outside the scope of this chapter.

6 Conclusion

Motion planning has moved far beyond its original form of computing a collision-free path for a

mobile robot to move from an initial to a final goal position. We have seen in this chapter how kin-

odynamic constraints and visibility constraints come into play. Nowadays motion planners com-

pute footsteps for humanoid robots [38], paths for inserting a probe into an airplane engine with

hundred of parts [10], and motion trajectories for minimal-invasive procedures in robot-assisted

surgery [67]. Motion planning also continues to grow into unexpected domains, e.g., exploring

molecular energy landscapes [71, 72]. In all these disparate problems, our objective remains the

same: find a sequence of admissible motions, to transform the world from an initial to a final state
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or to maintain a set of constraints on the state. The notion of what constitutes a state has cer-

tainly expanded to cover an increasing number of applications; yet, motion remains the crux of the

problem.

In recent years, we have also witnessed a trend towards the unification of principles. In essence,

motion planning is a collection of common principles for analyzing motion combinatorially. “Mo-

tion” refers to the continuous process of state changes, and “combinatorial” refers to the partition

of the continuous process into discrete elements. Motion planning studies those problems where

the rearrangement of these elements is the result of motion—problems that cannot be reduced

to pure instances of computational geometry or control theory. As we have seen in this chapter,

random sampling plays a critical role in solving these problems and has shown great success.
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[45] S.M. LaValle, H.H. González-Baños, C. Becker, and J.C. Latombe. Motion strategies for maintaining

visibility of a moving target. In Proc. IEEE Int. Conf. on Robotics & Automation, pages 731–736,

1997.

[46] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int. Conf. on

Robotics & Automation, pages 473–479, 1999.

[47] S. M. Lavallée, J. Troccaz, L. Gaborit, A. L. Benabid P. Cinquin, and D. Hoffmann. Image guided

operating robot: A clinical application in stereotactic neurosurgery. In R.H.Taylor et al., editors,

Computer Integrated Surgery: Technology and Clinical Applications, pages 342–351. The MIT Press,

1995.

[48] T.Y. Li, J.M. Lien, S.Y. Chiu, and T.H. Yu. Automatically generating virtual guided tours. In Proc.

Computer Animation, pages 99–106, 1999.

39



[49] Z. Li, J.F. Canny, and G. Heinzinger. Robot motion planning with nonholonomic constraints. In

H. Miura et al., editors, Robotics Research: The Fifth International Symposium, pages 309–316. The

MIT Press, Cambridge, MA, 1989.

[50] J.-M. Lien, S.L. Thomas, and N.M. Amato. A general framework for sampling on the medial axis of

the free space. In Proc. IEEE Int. Conf. on Robotics & Automation, pages 4439–4444, 2003.

[51] M. Lin and D. Manocha. Collision and proximity queries. In J.E. Goodman and J. O’Rourke, editors,

Handbook of Discrete and Computational Geometry, chapter 35. CRC Press, 2004.
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Figure 1. A common framework for path planning.
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Figure 2. A robot translating in the plane. (a) The triangular robot moves in an environment with a single
rectangular obstacle. (b) The configuration space of the robot. The configuration of the robot is represented
by the position (x, y) of a reference point in the robot.
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Figure 3. The visibility graph of a configuration space.
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Figure 4. Cell decomposition with (a) a fixed-resolution grid and (b) a triangulation.

Figure 5. A probabilistic roadmap generated by the uniform sampling strategy for multi-query planning in
a 2-D configuration space.
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Figure 6. A roadmap for single-query planning in a 2-D configuration space. The two circles mark qinit and
qgoal.
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Figure 7. A simplified model for a car-like robot.
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Figure 8. A trailer-truck carrying aircraft components on a narrow road with many obstacles nearby.

Figure 9. An air-cushioned robot among moving obstacles.
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Figure 10. The incidence constraint of laser range sensors: wall sections are seen reliably, only if | θ |≤ τ .
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Figure 11. Sensor placement seen as a set system. (a) Each boundary edge is decomposed into cells. All
points within the same cell are visible to the same subset of Gsam. Each cell is then labeled with an integer
and grouped under X. A subset Ri ⊆ X is the set of cells visible from the sample point gi. (b) In the dual
representation, candidate sensor locations are grouped and labeled under X′. Each set R′

i ∈ R′ is the set of
locations covering cell i in the boundary decomposition.

(a) (b) (c) (d)

Figure 12. The effect of incidence constraints on safe regions.
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Figure 13. A partial map of a wing of the Computer Science Building at Stanford University. The total length
of the circuit is approximately 40 meters. The circled region corresponds to the last local measurement.

(a) (b)

Figure 14. Measuring the visibility region with a laser range sensor.

locations of the target

target

C

l(ti)
l(ti+2)

l(ti+4)

Figure 15. The visibility sweeping line �(t) going through the target position at time t and the reflex vertex
C . In this example, the observer must remain above �(t) to keep the target visible.
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observer

target

Figure 16. An example of the escape-path tree. The area in gray is the observer’s visibility region, with
obstacle boundaries shown in bold. The squares indicate the nodes of the tree.

50


