APPEARED IN
Proc. AAAI Conference on Artificial Intelligence, 2010

Structured Parameter Elicitation

Li Ling Ko
Graduate School for Integrative Sciences & Engineering, National University of Singapore
Singapore 117456, Singapore

David Hsu and Wee Sun Lee and Sylvie C. W. Ong
Department of Computer Science, National University of Singapore
Singapore 117417, Singapore

Abstract

The behavior of a complex system often depends on param-
eters whose values are unknown in advance. To operate ef-
fectively, an autonomous agent must actively gather informa-
tion on the parameter values while progressing towards its
goal. We call this problem parameter elicitation. Partially
observable Markov decision processes (POMDPs) provide
a principled framework for such uncertainty planning tasks,
but they suffer from high computational complexity. How-
ever, POMDPs for parameter elicitation often possess special
structural properties, specifically, factorization and symme-
try. This work identifies these properties and exploits them
for efficient solution through a factored belief representa-
tion. The experimental results show that our new POMDP
solvers outperform SARSOP and MOMDP, two of the fastest
general-purpose POMDP solvers available, and can handle
significantly larger problems.

Introduction

Planning with incomplete and imperfect information is an
essential capability for autonomous agents interacting with
the physical world. Often the behavior of a complex phys-
ical system depends on parameters whose values are un-
known in advance. To operative effectively, an autonomous
agent must actively gather information on the parameter val-
ues while progressing towards its goal. We call this problem
parameter elicitation. Consider the examples below:

e An automated telephone booking system needs to deter-
mine a user’s desired flight and issue a ticket (Williams
and Young 2007). The unknown parameters may include
a user’s origin, destinations, and travel dates. The sys-
tem must ask as few questions as possible to get reliable
estimates of the parameter values and issue the ticket.

e A planetary rover explores an area for rocks with scientific
value (Smith and Simmons 2004). It knows the rocks’
locations, but not their value, i.e., the parameters. The
rover needs to find as many valuable rocks as possible and
reach a final destination quickly to report the information.

e An underwater acoustic modem needs to find the best pa-
rameter settings of communication channels to transmit a
data file quickly (Shankar, Chitre, and Jayasuria 2010).

In all these distinct domains, the common difficulty in plan-
ning is to gather enough information on the unknown param-
eters for efficient operation.

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

POMDPs provide a principled framework for such plan-
ning tasks. They allow for optimal trade-off between in-
formation gathering and goal achievement. However, it is
computationally intractable to solve POMDPs exactly. In
a discrete POMDP, the belief space B has dimensional-
ity roughly equal to |S|, the number of states. The size
of B thus grows exponentially with |S|. Despite the dra-
matic progress of point-based approximate POMDP solvers
in recent years (Pineau, Gordon, and Thrun 2003; Smith
and Simmons 2004; Kurniawati, Hsu, and Lee 2008), com-
plex systems with large state spaces still pose significant
challenges. Consider a preference elicitation task such as
the automated booking system described earlier. Adding
some standard preferences (airlines, seating, food restric-
tions, efc.), we easily end up with 10 preference slots, each
having up to 10 values on the average. This results in a
state space with roughly 101 states, a size that no general-
purpose POMDP solvers can handle today.

Parameter elicitation, however, possesses special struc-
tural properties. Despite being unknown, the parameter val-
ues are constant and do not change over time. Furthermore,
although the parameters are interdependent, their dependen-
cies can usually be captured in a relatively sparse graph.
We show that under reasonable assumptions, this leads to
a factored belief space over the parameter values, and the
space remains factored as the state of the system changes
over time. This contrasts with general dynamic Bayesian
networks (DBNs), where the variables—in this case, the
parameters—become coupled over time. We identify the
class of POMDPs that allow a factored belief representation
and exploit this for greater computational efficiency in our
new POMDP solver. Finally, in many parameter elicitation
problems, we are interested in the correct parameter value,
but are not biased towards any particular value a priori. For
example, an automated booking system wants to know the
user’s intended destination, regardless of it being Paris, New
York, or Tokyo. Our solver further improves efficiency by
exploiting such symmetry.

Preliminaries

A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its total reward. Formally a
discrete POMDP with an infinite horizon is specified as a
tuple (S, A4, O, T, Z, R,~), where S is a set of states, A is a
set of actions, and O is a set of observations.

In each time step, the agent takes an action a € A and

moves from a state s € S to s € S. Due to the uncer-
tainty in action, the end state s’ is specified by a conditional
probability function T'(s, a, s") = p(s’|s, a), which gives the
probability that the agent lies in s’, after taking action a in
state s. The agent then makes an observation on the end state
s’. Due to the uncertainty in observation, the observation re-
sult o € O is again specified by a conditional probability
function Z(s’,a,0) = p(o|s’,a). In each step, the agent
receives a real-valued reward R(s, a) if it takes action a in
state s. The agent’s goal is to maximize its expected total
reward by choosing a suitable sequence of actions. When
the action sequence has infinite length, we typically specify
a discount factor v € (0, 1) so that the total reward is finite
and the problem is well defined. In this case, the expected
total reward is given by E[Y ;" 7' R(s;, a;)], where s; and
a+ denote the agent’s state and action at time ¢.

In POMDP planning, we compute an optimal policy that
maximizes the agent’s expected total reward. A POMDP
policy m: B — A maps a belief b € B—which is a proba-
bility distribution over S—to a prescribed action a € A.

A policy 7 induces a value function V., which specifies
the expected total reward V,; (b) of executing 7 starting from
b. It is well-known that V*, the value function for an opti-
mal policy 7*, can be approximated arbitrarily closely by a
piecewise-linear, convex function. As a result, a value func-
tion V' can be represented as a set I' of vectors, commonly
called a-vectors: V(b) = maxqer(a - b).

More information on POMDPs is available in (Kaelbling,
Littman, and Cassandra 1998).

Factored Parameter Elicitation as a POMDP

Parameter elicitation can be modeled as a POMDP. In addi-
tion to the usual elements, this POMDP contains one more
element ©, which is a set of parameter values. The un-
known parameter value § € © may affect the system dy-
namics. So we need to modify the state-transition func-
tion: T'(s,a,s’,0) = p(s'|s,a,d). We also need actions that
gather information on 6 and observations that provide such
information. We capture this in the observation function:
Z(s',a,0,0) = p(o|s’,a,d). The solution to the POMDP is
an optimal policy that gathers enough information on 6 for
the agent to operate as efficiently as possible.

To solve this POMDP efficiently, we must exploit the
underlying structural properties of the parameter elicitation
problem. Consider a complex system whose behavior de-
pends on many parameters. Often these parameters are not
all interdependent. Instead, they form groups, each of which
affects only one system component, with limited dependen-
cies between parameters from different groups. We can ex-
ploit this to factor the belief on parameters.

In general, we assume that the initial belief on parameters
has the factored form p(0) = [], fi(0;), where 0 is the set
of all parameters and 8; C @ is the subset of parameters
in factor f;. We can think intuitively of 8; as a group of
parameters for a particular system component, but different
parameter groups @; and 6 are not necessarily disjoint.

For the belief p(0) to remain factored the same way over
time, we need additional structural properties. First, con-
sider the state variables. There are no restrictions on de-
pendencies among the state variables. In Figure 1, for ex-
ample, we have edges (z1,x5) and (z2,25). We can also
have (z3,z}) and (x1, x2) if needed. However, all the state

Figure 1. Factored parameter elicitation. The shaded nodes are
fully observable. Only representative dependencies are shown. The
belief over the parameters 61, 02, and 3 remain factored for all ¢:

p(61,02,03) = f1(01,602) - f2(02,0s).

variables must be fully observable. Otherwise, the system
dynamics eventually couples all the parameters over time,
because the state variables depend on the parameters.

Furthermore, if a state variable depends on a subset ¢ of
parameters, then ¢ C 0, for some i. In Figure 1, 2} may
depend on both #; and 605, as 61 and 65 belong to the same
factor f1. No state variable depends on both 67 and 5.

The dependencies of observation variables on parameters
are subject to the same requirements as those of state vari-
ables. However, there are no restrictions on the dependen-
cies of observation variables on state variables.

These conditions are formally stated below and illustrated
in Figure 1.

Proposition 1 Factored parameter elicitation (FPE) can be
modeled as a POMDP with a set 0 of unknown parameters.
It satisfies the following conditions:

1. The initial belief p(0) at time t = 0 has the factored form

p(0) =11, fi(6:).

2. All state variables are fully observable.

3. If a state variable or an observation variable depends on

a subset p of parameters, then p C 8; for some i.

Under these conditions, the belief on 0 retains the same fac-
tored form p(0) = [1, f:(0;) for all time t."

Consider again the examples in the introduction. In the
automated booking system, the parameter set 8 contains the
user’s various preferences, initially unknown to the system.
Some preferences are dependent. For example, travel dates
often restrict the available flights. The system asks questions
about the user’s preferences. The user’s answers are the
observations, which are noisy due to limitations in speech
recognition technology. Each question and answer deal with
only a single preference. In other words, each observation
depends on a single parameter. Even if a question asks for
multiple preferences, we can usually decompose the answer
into components, each addressing one preference only. The
automated booking systems belongs to a type of preference
elicitation tasks called slot-filling dialog (SFD), in which
each slot contains a user preference and the agent’s goal is
to fill in the values of all slots (Williams and Young 2007).

"The proofs of all propositions appear in the appendix.

The planetary rover domain is commonly known as Rock
Sample (Smith and Simmons 2004). The parameters are bi-
nary variables, each indicating whether a particular rock is
valuable. There is one state variable specifying the rover’s
position. There is another set of state variables, each speci-
fying whether a rock has been sampled. All state variables
are fully observable. The rover can take noisy long-range
sensor readings to gather information on the rocks. It can
also sample a rock in the immediate vicinity to determine
its scientific value. Both long-range sensing and sampling
occur on one rock at a time.

In Rock Sample, the state variables for the rover and the
rocks do not depend on any unknown parameters. Consider
a variant, in which unknown ground conditions, e.g., fric-
tion, affect the rover’s motion. Since the rover’s position
is fully observable, the information can be used to infer the
unknown parameter value that characterizes ground condi-
tions, in order to improve the rover’s motion control. So this
more realistic variant can also be modeled as FPE.

Slot-filling dialog appears completely unrelated to the
robot exploration task in Rock Sample; however, they can
both be modeled as FPE.

Algorithm

Recent point-based POMDP solvers typically represent the
value function V' as a set of a-vectors. In FPE, beliefs are
factored, but a-vectors cannot be similarly factored, even
when the reward function is additive (Koller and Parr 1999).

Another way of representing V' is to compute and store the
values of V' at a set of sampled beliefs. We then approximate
V(b) at a belief b by interpolating the values of V' at sampled
beliefs close to b under a suitable distance metric (Bonet,
Caracas, and Geffner 2009). However, a key difficulty re-
mains for FPE. Computing the distance naively, by expand-
ing the factored beliefs, is expensive and scales poorly with
the number of parameters. It is essential to compute the dis-
tance between beliefs entirely in the factored representation.

In FPE, a belief b € B is represented as a pair (s, be),
where s is the state, which is fully observable, and b, is the
belief over parameters. For interpolation, only beliefs with
the same s values are useful. To simplify the presentation,
we assume here that the factored belief bg, can be represented
as a tree 7. A node ¢ of T represents a parameter ; in
the FPE model and has an associated conditional probability
distribution p(6;|0,(;)), where p(i) denotes the parent of a
node ¢ in 7. For general factored beliefs, we can use junction
trees (Lauritzen and Spiegelhalter 1988).

We now introduce the tree distance d between beliefs:

Definition 1 Suppose that two beliefs be (0) = []; p(0:10,(:))
and by, (0) = T1,p'(0:0,¢:)) have the same factored form

represented as a tree T. The tree distance dr between bg

and b’ s

w-g
voUiUp(i)

The next proposition shows that the L; distance between
two tree-structured beliefs is upper bounded by dr.

Proposition 2 Given two beliefs by and b, with the same
factored form represented as a tree T, we have

(AT Z [be ((0)] < dr(be,bl,).

P(0il0,pciy) — P’ (0:10,i))]-

The FPE algorithm uses dr for interpolating the value
function V' in a factored belief space. In this work, the pa-
rameters are assumed to be discrete. To search for nearby
beliefs efficiently, we represent each (discrete) conditional
probability distribution in a tree 17" as a table. We dis-
cretize and hash the table entries into regular cells, allowing
constant-time lookup of nearby beliefs. By Proposition 2,
beliefs in the same cell have similar values of V. Our al-
gorithm thus assumes that they have the same value (Bonet,
Caracas, and Geffner 2009).

Following the recent point-based POMDP planning ap-
proach (Smith and Simmons 2004; Kurniawati, Hsu, and
Lee 2008), the FPE algorithm computes a policy by sam-
pling beliefs from the reachable belief space R C B, the set
of points reachable from a given initial belief by € B un-
der arbitrary sequences of actions and observations. At each
sampled belief, the algorithm maintains upper and lower
bounds on V. The sampled beliefs form a search tree T,
where each node represents a sampled belief (s,bs) in R
and the root is the initial belief by. To sample new be-
liefs, we start from the root of T and traverse a single
path down. At a node (s,be) along the path, we choose
action a with the highest upper bound, as well as state s’
and observation o that make the largest contribution to the
gap between the upper and lower bounds at the root of
Tr. We then compute a new belief b, over 0: b, (6) =
nZ(s',a,0,0)T(s,a,s’,0)bs(8), where n is a normalization
constant. The new node (', b) is inserted into T’ as a child
of (s,be). The sampling path terminates when it reaches a
sufficient depth to improve the bounds at the root of T,. We
then go back up this path to the root and perform lower and
upper bound backup at each node along the way. Backup
uses the standard Bellman update, which is an iteration of
dynamic programming that improves the value at a belief by
looking ahead one step further. See, e.g., (Kurniawati, Hsu,
and Lee 2008) for details.

To construct the initial bounds at a belief, we may use gen-
eral techniques. By assuming that all parameters are fully
observable, we obtain a Markov decision process (MDP) so-
lution, which provides an upper bound. To obtain a lower
bound, we can use any arbitrary policy. Alternatively, we
may construct specific bounds for a given problem. This is
further described in the section on experimental results.

To execute a policy, we use the lower bound on V' together
with one-step look-ahead search.

FPE with Symmetries

Symmetry is common in certain classes of parameter elicita-
tion problems, such as slot-filling dialog systems. Here, we
show how to exploit symmetry within FPE.

Symmetry allows us to identify the same POMDPs by
renaming states, actions and observations. Specifically, let
k: S — S be a permutation on the states, g: A — A be a
permutation on the actions, and h: O — O be a permuta-
tion on the observations. If the following conditions hold

T(Sa a, 5/) = T(k(s)vg(a)v k(sl))
R(s,a) = R(k(s),g(a))
Z(s',a,0) = Z(k(s), g(a), h(0)),

then the optimal value function V* is symmetric, in the
sense that V*(b) = V*(V') when V' is obtained from the

belief vector b by permuting the elements of b according to
k (Kim 2008).

In a multiple-slot dialog system, each slot has a set of pos-
sible values (for example, Paris, New York and Tokyo are
possible destinations in an automated booking system), and
the states are combinations of user preferences for the val-
ues of each slot. User preferences are assumed to be static,
so the first condition above holds. Typical actions include
querying the value of a slot and confirming it. It is reason-
able to assume that the cost of such actions is independent of
the value of a slot or even of the slot identity, satisfying the
second condition. Furthermore, we can reasonably assume
that the observation errors due to confirmation actions are
independent of the slot values, satisfying the third condition
for such actions. For query actions, if we permute the values
within a slot, we can permute the values of observations to
satisfy the third condition as well. Under these assumptions,
it follows that the optimal value function is symmetric with
respect to permuting the values within a slot.

To exploit the symmetry, we permute beliefs into a canon-
ical representation, then discretize and hash the canonical
belief using the approach described in the previous sec-
tion. Here, we restrict ourselves to permuting values of sin-
gle parameters independently. This retains the form of the
factored belief. Let each parameter variable be 6; € 6,
and denote ©; as the space of parameter values for 6;.
Let k;, : ©; — ©; be a permutation on the parame-
ter values of #;. Without loss of generality, assume that
there are n variables. We then have V*(b) = V*(V/) if
b(61, 92, ce ,Qn) = b/(kl (91), k‘g(@g), LN kn(Qn)), for all
possible permutations k; on the parameter values of each 6;.

Ideally, every belief should be permuted into its canonical
form. Unfortunately, even for two variable beliefs, this prob-
lem is as hard as graph isomorphism, a problem for which
no polynomial time solution is known. Thus, we settle for a
simple but fast algorithm that maps many, but not all, sym-
metric beliefs into the same representation.

As before, we work with tree structured beliefs where the
factor associated with parameter variable 6; has the form
p(0|0,0;)), with 6,(;) denoting the parent of ¢;. For each
pair of parent-child, we sort the elements of the factor asso-
ciated with the parent first. Then given the new ordering of
the parent’s values, we sort the elements of the factor asso-
ciated with the child.

Specifically, for each 6;, the factor p(0;]0,¢;)) is repre-
sented as a 2-D table where the columns are indexed by the
values of 0,,(;) and the rows are indexed by the values of 0;.
The factor at the root p(6p) is an exception, it is a 1-D list of
elements and is sorted in ascending order. Now, assume that
0,(i)’s values have already been sorted. The rows of the table
(values of 6;) are then sorted in lexicographic order. Assum-
ing that there are no ties in sorting any of the tables, this
method will map any belief into its unique canonical repre-
sentation. For tied values, we make a best effort at sorting by
using the conditional distribution of the child. We first sort
the elements of each tied column within the column itself.
We then sort the resulting tied columns lexicographically.

Experimental Results

Slot-Filling Dialog. To test our algorithms, we con-
structed four abstract SFD problems (Figure 2) with the fac-

2 7 5 5

SFD1 SFD2 SFD3 SFD4

Figure 2. Four slot-filling dialog problems. Each node of a tree
represents a preference slot, i.e., parameter. The tree structure en-
codes the dependencies between the parameters — each parent-child
pair in a tree belong to a factor in the belief. All slots have the same
number of possible values, indicated by the number next to the tree.

torization and symmetry properties described earlier. The
agent needs to determine the values of all slots. In each time
step, it asks the user a question. A “what” question queries
the user for the value of a slot. A confirmation question ver-
ifies the value of a slot with the user. Each question incurs a
cost. The agent may submit the result at any time. If the sub-
mission contains the correct values for all the slots, the agent
receives a large reward. Otherwise, it incurs a large penalty.
The agent may also choose to give up and call for human
assistance. In this case, it receives a small penalty. To get
high total reward, the agent must determine the correct slot
values and ask as few questions as possible.

We implemented and tested the FPE and FPES algorithms
on these four problems. For the initial lower bound, we com-
pare the value of immediate submission with that of asking a
single question before submission, and use the better value.
For the initial upper bound, we simply use the MDP solu-
tion.

For performance comparison, we ran SARSOP (Kur-
niawati, Hsu, and Lee 2008), one of the fastest existing
POMDP solvers, using the APPL v0.3 package. All the al-
gorithms were implemented in C++. The tests were con-
ducted on a 2.66GHz computer with 2GB of memory.

First we ran SARSOP until it converged or ran out of
memory. We then ran our algorithms for FPE and FPES to
reach or exceed the reward level that SARSOP achieved. On
problems where SARSOP was unable to load, we ran FPE
and FPES to their maximum reward levels. The results are
shown in Table 1. For each problem, |©| is the total number
of different parameter value combinations over all the slots,
and | S|, |A|, and | O] are the number of states, actions, and
observations, respectively. They give a rough indication of
the problem size. Column 2 of the table shows the expected
total reward (ETR) for the policies that the three algorithms
computed, and column 3 shows the corresponding times for
policy computation. We estimated ETR by performing a
large number of simulations. The data clearly shows that
FPE outperformed SARSOP by several times. The speedup
of FPES was even more dramatic. In particular, SARSOP
could not even load the largest problem, SFD4, which has
about 10 million parameter value combinations. In contrast,
FPES computed a reasonable policy in about 2 minutes.

Column 4 reports the number of beliefs explored dur-
ing policy computation. It provides some understanding of
how the speedup was achieved. First compare SARSOP and
FPE. To achieve a comparable reward level, SARSOP used
fewer beliefs than FPE. SARSOP uses a-vectors as a value
function representation, which generalizes better. Thus it
does not need many beliefs. At the same time, maintaining

Table 1. Performance comparison on SFD problems.

Reward Time (s) |B| (10°)
SFD1 (jo|=1024, |S|=2, |A|=1054, |O|=23)

SARSOP 32.2+0.5 2,275 1.0
FPE 324+0.3 126 2.0
FPES 32.7+£0.3 66 0.7

SKFD2 (je|=2401, |S|=2, |A|=2433, |O|=31)

SARSOP 11.3+£0.7 7,549 0.3
FPE 25.8+0.4 1,870 1.0
FPES 27.5+£0.4 2 0.04

SFD3 (jo|=3125, |S|=2, |A|=3155, |0|=28)
SARSOP —-0.2+0.8 12,236 0.3

FPE 594+04 898 2.0

FPES 1.7£0.3 51 0.2
SFD4 (jo|=51~1.0x107, |S|=2, |A|~1.0x107, |O|=53)

SARSOP — — —

FPE 0.8+04 8,364 2.0

FPES 6.7+04 132 0.1

Reward
=
o

O SARSOP
30 @ FPE
25 M FPES
20
10
5
0

_5 SFD1 SFD2 SFD3 SFD4
Figure 3. Highest expected total reward achieved.

a-vectors is computationally expensive. FPE uses nearest
neighbor interpolation for value function representation. It
does not generalize as well. However, without a-vectors,
FPE can explore the belief space much faster. The trade-off
seems beneficial to FPE in this case. By exploiting sym-
metries, FPES recognizes that many beliefs are “equivalent”
and avoids exploring such beliefs repeatedly, thus achieving
further gain in efficiency. During the exploration, the addi-
tion of a crucial belief can sometimes result in a dramatically
improved policy with a resultant discontinuous jump in the
reward level. In SFD2 and SFD3, the ETRs reported for FPE
and FPES are at the point of such discontinuities.

We also ran all three algorithms sufficiently long to deter-
mine the highest ETR that they can achieve in a maximum
of 4 hours of computation time. The results, shown in Fig-
ure 3 are consistent with those in Table 1. In the smallest
problem, SFD1, the three algorithms achieved similar ETR.
On the larger problems, FPE and FPES were much better.

Rock Sample. Following the same protocol as that for
SFD, we further compared the algorithms on the standard
Rock Sample problem with a 5 x 5 grid map and NV rocks,
denoted as RS[5,N]. Unlike SFD, the parameters in Rock
Sample are independent. There is also no symmetry in Rock
Sample. On the other hand, the presence of fully observ-
able state variables makes the problem a mixed observability
Markov decision process (MOMDP) (Ong et al. 2009). Like
SARSOP, the MOMDP algorithm uses a-vectors to repre-
sent the value function. However, it speeds up computation
by exploiting the fully observable state variables to represent
the belief space as a union of lower-dimensional subspaces
and calculating the value function in these subspaces only.
We compared FPE with both SARSOP and MOMDP.

Table 2. Performance comparison on Rock Sample problems.

Reward Time(s) |B]|(10°)
RS[5,5] (jo|=32, |S|=26, |A|=10, |O|= 2)
SARSOP 18.7+04 0.20
MOMDP 18.7+0.4 0.2 0.35
FPE 18.7+0.4 1 0.03
RS[5,9] (jo|=512, |S|=26, |A|=14, |O|=2)
SARSOP 24.5+0.5 66 0.8
MOMDP 24.5+0.4 6 2.1
FPE 24.5+0.5 11 39
RS[5,12] (jo|=4096, | 5|=26, | A|=17, |O|=2)
SARSOP 25.1+04 1307 1
MOMDP 25.24+0.5 810 16
FPE 25.2+0.5 201 544
26.1 £ 0.5 601 1636
RS[5,16] (jo|=65,536, |S|=26, |A|=21, |O|=2)
SARSOP — — —
MOMDP — — —
FPE 28.4+0.5 601 1000

In FPE, the initial lower bound is obtained from an open-
loop policy that greedily samples the rock that currently
looks the best in terms of distance and likelihood of being
valuable. The initial upper bound is obtained by a further
relaxation of the MDP solution to single-rock problems. For
each rock, we compute an MDP solution to the correspond-
ing single-rock problem RS[5,1] and then sum up the value
functions for all the MDP solutions to derive an upper bound
for the original problem RS[5,NT].

Table 2 shows that FPE again outperformed SARSOP
substantially. MOMDP performed better than FPE on the
two smaller problems, RS[5,5] and RS[5,9], but it could not
match FPE on the larger problems. In fact, SARSOP and
MOMDP could not even load the largest problem, RS[5,16],
which has 65, 536 parameter value combinations. When the
algorithms were run long enough, they achieved roughly the
same highest ETR on RS[5,5] and RS[5,9]. On RS[5,12]
however, FPE achieved an ETR level of 26.1 & 0.5, while
SARSOP and MOMDP could not reach this level before
running out of memory.

The experiments on SFD and Rock Sample show a clear
advantage of FPE and FPES on large problems, where
the overhead of maintaining «-vectors in SARSOP and
MOMDP significantly slows down belief space exploration.

Related Works

Parameter elicitation is closely related to preference elici-
tation (Boutilier 2002) and Bayesian reinforcement learn-
ing (Poupart et al. 2006). Here we focus on discrete param-
eter values only, but allow dependencies among parameters.

Factored POMDPs (Boutilier and Poole 1996) refer to
POMDPs with structured transition function representa-
tions. In general, they do not factor beliefs, but exploit
the structure in transition functions using representations
such as algebraic decision diagrams. In contrast, we iden-
tify structural properties that allow beliefs to be factored.
Factored-belief POMDPs have been studied in an online
search setting (Paquet, Tobin, and Chaib-draa 2005), but we
show how to approximate the value function in an offline
setting.

Earlier work has exploited symmetry to accelerate
POMDP solution, but is only applicable to “flat” beliefs

(Doshi and Roy 2008; Kim 2008). Our algorithm works on
factored beliefs, with dependencies among parameters.

Conclusion

This paper introduces structured parameter elicitation. Ap-
parently unrelated domains such as slot-filling dialog and
Rock Sample are both parameter elicitation in essence. We
model parameter elicitation as a POMDP and show how to
solve it efficiently by exploiting the underlying structural
properties, specifically, factorization and symmetry. Exper-
iments show that the resulting POMDP solvers outperform
SARSOP and MOMDP, two of the fastest general-purpose
POMDP solvers, and can handle large domains that are im-
possible for general-purpose solvers to even load.

We plan to extend our algorithm for FPE to handle the
more general case of beliefs that are approximately factored.
Although the beliefs in a factored POMDP (Boutilier and
Poole 1996) do not factor in general, we can approximate
them by projection onto a factored belief space (McAllester
and Singh 1999). An application of approximate factor-
ization is the acoustic-modem file transmission domain de-
scribed at the beginning of the paper.

Acknowledgements. This work is supported in part by
MOoE AcRF grant R-252-000-327-112 and MDA Singapore-
MIT GAMBIT Game Lab grant R-252-000-398-490.

Appendix

Proof. (Proposition 1)

For simplicity, we refer to the observed states as well as
the observations up to the current time as z. We have
p(8|z) = np(0)p(z|@), where 7 is the normalizing constant.
The term p(@) has a factored form [, f;(0;). Let z;, be a
component of z and let p(zx) be the parents of z; that do
not include variables in . Under the assumptions, the con-
ditional distribution of zj has the form p(zx|p(zk), 8;) for
some 6;. The term p(z|@) is formed by the product of func-
tions of the form p(zx|p(zk), 0;); hence, it has the same fac-
tored form as p(@). As both p(€) and p(z|0) have the form
[1, fi(6;), their product also has the same factored form. [J

Proof. (Proposition 2)
We can upperbound the L; distance between beliefs be (6)
and b/, (6) as follows:

> Jbe(8) — bo(0) =
0 0
= >

0

o) = [17 (0:10,0))

o)) — P(0110,(1) [[P'(6:10,)
i=2
+p(6110,01)) [[7' (6il6,1) HP (0:10,i))
=2
> p(0110,1)) Hp(f)il@p(i)) —11#'6:16,0:))
0 =2 =2

+ > |p(0110,(1)) — P (0110,01) | T [2/ (0:10,1))
7

=2

IN

k—1

3

< H p(9i|0p(i)) ‘p(gkwp(k))
k=1 0 i=1
P (Ok|0,1))| H P'(010,0))

j=k+1

<Y Yo

k=1 0k:0 (1)

(00D (Ok10,(x)) — P (Ok10,(1))]-

The last line follows from marginalizing the left and right
hand side of [p(0k|0,k)) —P' (0% |0 ,(x))
structured distributions assuming that k is topologically or-
dered. (O

References

Bonet, B.; Caracas, V.; and Geffner, H. 2009. Solving POMDPs:
RTDP-Bel vs. point-based algorithms. In Proc. Int. Jnt. Conf. on
Artificial Intelligence.

Boutilier, C., and Poole, D. 1996. Computing optimal policies for
partially observable decision processes using compact representa-
tions. In Proc. Nat. Conf. on Artificial Intelligence.

Boutilier, C. 2002. A POMDP formulation of preference elicitation
problems. In Proc. Nat. Conf. on Artificial Intelligence.

Doshi, F., and Roy, N. 2008. The Permutable POMDP: Fast solu-
tions to POMDPs for preference elicitation. In Proc. Int. Conf. on
Autonomous Agents & Multiagent Systems.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence 101(1-2):99-134.

Kim, K. 2008. Exploiting symmetries in POMDPs for point-based
algorithms. In Proc. Nat. Conf. on Artificial Intelligence.

Koller, D., and Parr, R. 1999. Computing factored value functions
for policies in structured MDPs. In Proc. Int. Jnt. Conf. on Artificial
Intelligence.

Kurniawati, H.; Hsu, D.; and Lee, W. 2008. SARSOP: Efficient
point-based POMDP planning by approximating optimally reach-
able belief spaces. In Proc. Robotics: Science and Systems.
Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local computations
with probabilities on graphical structures and their application to
expert systems. J. Roy. Stat. Soc. B 50(2): 157-224.

McAllester, D., and Singh, S. 1999. Approximate planning for
factored POMDPs using belief state simplification. In Proc. Un-
certainty in Artificial Intelligence.

Ong, S.C.W.; Png, S.W.; Hsu, D.; and Lee, W. 2009. POMDPs for
robotic tasks with mixed observability. In Proc. Robotics: Science
and Systems.

Paquet, S.; Tobin, L.; and Chaib-draa, B. 2005. An online POMDP
algorithm for complex multiagent environments. In Proc. Int. Conf.
on Autonomous Agents & Multiagent Systems.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In Proc. Int. Jnt.
Conf. on Artificial Intelligence.

Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An analytic
solution to discrete Bayesian reinforcement learning. In Proc. Int.
Conf. on Machine Learning.

Shankar, S.; Chitre, M.; and Jayasuria, M. 2010. Data driven algo-
rithms to tune physical layer parameters of an underwater commu-
nication link. Submitted to IEEE/MTS Oceans.

Smith, T., and Simmons, R. 2004. Heuristic search value iteration
for POMDPs. In Proc. Uncertainty in Artificial Intelligence.
Williams, J., and Young, S. 2007. Scaling POMDPs for spoken
dialog management. IEEE Trans. on Audio Speech & Language
Processing 15(7):2116-2129.

