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Current music recommender systems typically act in a greedy manner by recommending songs with the high-
est user ratings. Greedy recommendation, however, is suboptimal over the long term: it does not actively
gather information on user preferences and fails to recommend novel songs that are potentially interesting. A
successful recommender system must balance the needs to explore user preferences and to exploit this infor-
mation for recommendation. This article presents a new approach to music recommendation by formulating
this exploration-exploitation trade-off as a reinforcement learning task. To learn user preferences, it uses a
Bayesian model that accounts for both audio content and the novelty of recommendations. A piecewise-linear
approximation to the model and a variational inference algorithm help to speed up Bayesian inference. One
additional benefit of our approach is a single unified model for both music recommendation and playlist
generation. We demonstrate the strong potential of the proposed approach with simulation results and a
user study.
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1. INTRODUCTION

A music recommendation system recommends songs from a large database by matching
songs with a user’s preferences. An interactive recommender system adapts to the
user’s preferences online by incorporating user feedback into recommendations. Each
recommendation thus serves two objectives: (i) satisfy the user’s current musical need,
and (ii) elicit user feedback in order to improve future recommendations.

Current recommender systems typically focus on the first objective while completely
ignoring the other. They recommend songs with the highest user ratings. Such a greedy
strategy, that does not actively seek user feedback, often results in suboptimal recom-
mendations over the long term. Consider the simple example in Figure 1. The table

This research is supported by the Singapore National Research Foundation under its International Research
Centre at Singapore Funding Initiative and administered by the IDM Programme Office.
Author’s addresses: X. Wang, Department of Computer Science, National University of Singapore, SG,
117417; Y. Wang, Computing Science Department, Institute of High Performance Computing, A*STAR, SG,
138632, Singapore; D. Hsu and Y. Wang (corresponding author), Department of Computer Science, National
University of Singapore, SG, 117417; email: wangye@comp.nus.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1551-6857/2014/08-ART7 $15.00

DOI: http://dx.doi.org/10.1145/2623372

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 1, Article 7, Publication date: August 2014.



7:2 X. Wang et al.

Fig. 1. Uncertainty in recommendation.

contains the ratings for three songs by four users (Figure 1(a)), with 3 being the highest
and 1 being the lowest. For simplicity, let us assume that the recommender chooses
between two songs B and C only. The target user is 4, whose true ratings for B and C
are 1.3 and 1.6, respectively. The true rating is the expected rating of a song by the user.
It is a real number, because a user may give the same song different ratings as a result
of external factors. In this case, a good recommender should choose C. Since the true
user ratings are unknown to the recommender, it may approximate the rating distribu-
tions for B and C as Gaussians, PB and PC (Figure 1(b)), respectively, using the data in
Figure 1(a). The distribution PB has mean 1.2. The distribution PC has mean 1. PB has
much lower variance than PC , because B has more rating data. A greedy recommender
(including the highly successful collaborative filtering (CF) approach) would recom-
mend B, the song with the highest mean rating. In response to this recommendation,
user 4 gives a rating whose expected value is 1.3. The net effect is that the mean of PB
likely shifts towards 1.3 and its variance further reduces (Figure 1(c)). Consequently
the greedy recommender is even more convinced that user 4 favors B and will always
choose B for all future recommendations. It will never choose C and find out its true
rating, resulting in clearly suboptimal performance.

To overcome this difficulty, the recommender must take into account uncertainty
in the mean ratings. If it considers both the mean and the variance of the rating
distribution, the recommendation will change. Consider again Figure 1(b). Although
PC has slightly lower mean than PB, it has very high variance. It may be worthwhile
to recommend C and gather additional user feedback in order to reduce the variance.
User 4’s rating on C has expected value 1.6. Therefore, after one recommendation, the
mean of PC will likely shift towards 1.6 (Figure 1(d)). By recommending C several times
and gathering user feedback, we will then find out user 4’s true preference C.

This example illustrates that a good interactive music recommender system must
explore user preferences actively rather than merely exploiting the rating information
available. Balancing exploration and exploitation is critical, especially when the system
is faced with a cold start, that is, when a new user or a new song appears.

Another crucial issue for music recommendation is playlist generation. People often
listen to a group of related songs together and may repeat the same song multiple times.
This is unique to music recommendation and rarely occurs in other recommendation
domains such as newspaper articles or movies. A playlist is a group of songs arranged
in a suitable order. The songs in a playlist have strong interdependencies. For example,
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they share the same genre [Chen et al. 2012] or have a consistent mood [Logan 2002],
but are diversified at the same time [Zhang et al. 2012]. They may repeat, but are
not repetitive. Existing recommender systems based on CF or audio content analysis
typically recommend one song at a time and do not consider their interdependencies
during the recommendation process. They divide playlist generation into two distinct
steps [Chen et al. 2012]: first, choose a set of favored songs through CF or content
analysis; next, arrange the songs into a suitable order in a process called automatic
playlist generation (APG).

In this work, we formulate interactive, personalized music recommendation as a
reinforcement learning task called the multi-armed bandit [Sutton and Barto 1998]
and address both the exploration-exploitation trade-off and playlist generation with a
single unified model.

—Our bandit approach systematically balances exploration and exploitation, a central
issue well studied in reinforcement learning. Experimental results show that our
recommender system mitigates the difficulty of cold start and improves recommen-
dation performance compared to the greedy approach.

—We build a single rating model that captures both the user preference over audio
content and the novelty of recommendations. It seamlessly integrates music recom-
mendation and playlist generation.

—We also present an approximation to the rating model and new probabilistic inference
algorithms in order to achieve real-time recommendation performance.

—Although our approach is designed specifically for music recommendation, it is pos-
sible to generalize it to other media types as well.

In the following, Section 2 describes related work. Section 3 formulates the rating model
and our multi-armed bandit approach to music recommendation. Section 4 presents the
approximate Bayesian models and inference algorithms. Section 5 presents evaluation
of our models and algorithms. Section 6 discusses the possible generalization directions
of the approach to other media types. Section 7 summarizes the main results and
provides directions for future research.

2. RELATED WORK

2.1. Music Recommendation

Since Song et al. [2012] and Shen et al. [2013] provide a very recent and comprehensive
review of existing related works on music recommendation, we will first briefly sum-
marize the state-of-the-art and discuss highly relevant work in detail later. Currently,
music recommender systems can be classified according to their methodologies into four
categories: collaborative filtering (CF), content-based methods, context-based methods,
and hybrid methods. Collaborative filtering recommends songs by considering those
preferred by other like-minded users. The state-of-the-art method for performing CF is
matrix factorization [Koren et al. 2009]. Although CF is the most widely used method,
it suffers the notorious cold-start problem, as it cannot recommend songs to new users
whose preferences are unknown (the new-user problem) or recommend new songs to
users (the new-song problem). Unlike CF, content-based methods recommend songs
with audio content similar to the user’s preferred songs [Chen and Chen 2001]. The
recommendation quality of content-based systems is largely determined by acoustic fea-
tures, such as timbre and rhythm features [Song et al. 2012]. Content-based systems
solve the new-song problem but not the new-user problem. Context-based music rec-
ommender systems are increasingly popular. They recommend songs to match various
aspects of the user context (e.g., activities, locations, environment, mood, or physiolog-
ical states) or text context [Wang et al. 2012; Braunhofer et al. 2013; Kaminskas et al.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 1, Article 7, Publication date: August 2014.



7:4 X. Wang et al.

2013; Cheng and Shen 2014; Schedl and Schnitzer 2014; Eck et al. 2007; Knees and
Schedl 2013]. Hybrid methods combine two or more of the preceding methods [Yoshii
et al. 2006].

There is relatively little work combining music recommendation with playlist gener-
ation. In Chen et al. [2012], a playlist is modeled as a Markov process whose transition
probability models both user preferences and playlist coherence. In Zheleva et al.
[2010], a model similar to latent Dirichlet allocation is used to capture user latent
taste and mood of songs. In Aizenberg et al. [2012], a new CF model is developed to
model playlists in Internet radio stations. While these earlier approaches also combine
recommendation with playlist generation, our model differs in three aspects: (1) it is
based on audio content while the previous three depend only on usage data; (2) our
model is highly efficient, thus allowing easy online updates; (3) our model is crafted
and evaluated based on real-life user interaction data as opposed to data crawled from
the Web. Zhang et al. [2012] try to recommend using a linear combination of CF results
with the results from an existing novelty model that ranks songs by CF before gener-
ating the playlists according to novelty. The parameters for the linear combination are
manually adjusted. Moreover, they provide only system-level control of novelty while
our method provides personalized control. Other work, such as Hu and Ogihara [2011],
generates music playlists within a user’s own music library. They assume that the
user’s preference is already known and does not need to be inferred.

2.2. Reinforcement Learning

Unlike supervised learning (e.g., classification, regression) that considers only pre-
scribed training data, a reinforcement learning (RL) algorithm actively explores its
environment to gather information and exploits the acquired knowledge to make deci-
sions or predictions.

The multi-armed bandit is a thoroughly studied reinforcement learning problem. For
a bandit (slot machine) with M arms, pulling arm i will result in a random payoff r sam-
pled from an unknown and arm-specific distribution pi. The objective is to maximize
the total payoff given a number of trials. The set of arms is A = {1 . . . M}, known to the
player; each arm i ∈ A has a probability distribution pi, unknown to the player. The
player also knows he has n rounds of pulls. At the l-th round, he can pull an arm Il ∈ A,
and receive a random payoff rIl , sampled from the distribution pIl . The objective is to
wisely choose the n pulls ((I1, I2, . . . In) ∈ An) in order to maximize total payoff

∑n
l=1 rIl .

A naive solution to the problem would be to first randomly pull arms to gather infor-
mation to learn pi (exploration) and then always pull the arm that yields the maximum
predicted payoff (exploitation). However, either too much exploration (the learned in-
formation is not used much) or too much exploitation (the player lacks information
to make accurate predictions) results in a suboptimal total payoff. Thus, balancing
exploration and exploitation is the key issue.

The multi-armed bandit approach provides a principled solution to this problem.
The simplest multi-armed bandit approach, namely ε-greedy, chooses the arm with the
highest predicted payoff with probability 1 − ε or chooses arms uniformly at random
with probability ε. An approach better than ε-greedy is based on a simple and elegant
idea called upper confidence bound (UCB) [Auer 2003]. Let Ui be the true expected
payoff for arm i, namely, the expectation of pi; UCB-based algorithms estimate both its
expected payoff Ûi and a confidence bound ci from past payoffs, so that Ui lies in (Ûi −
ci, Ûi +ci) with high probability. Intuitively, selecting an arm with large Ûi corresponds
to exploitation, whereas selecting one with large ci corresponds to exploration. To
balance exploration and exploitation, UCB-based algorithms follow the principle of
“optimism in the face of uncertainty” and always select the arm that maximizes Ûi + ci.
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Bayes-UCB [Kaufmann et al. 2012] is a state-of-the-art Bayesian counterpart of
the UCB approach. In Bayes-UCB, the expected payoff Ui is regarded as a random
variable and the posterior distribution of Ui given the history payoffs D, denoted as
p(Ui|D), is maintained. Moreover, the fixed-level quantile of p(Ui|D) is used to mimic
the upper confidence bound. Similar to UCB, every time Bayes-UCB selects that arm
with the maximum quantile. UCB-based algorithms require an explicit form of the
confidence bound that is difficult to derive in our case, but in Bayes-UCB, the quantiles
of the posterior distributions of Ui can be easily obtained using Bayesian inference. We
therefore use Bayes-UCB in our work.

There are more sophisticated RL methods such as Markov Decision Process (MDP)
[Szepesvári 2010], which generalizes the bandit problem by assuming that the states of
the system can change following a Markov process. Although MDP can model a broader
range of problems than the multi-armed bandit, it requires much more data to train
and is often more computationally expensive.

2.3. Reinforcement Learning in Recommender Systems

Previous work has used reinforcement learning to recommend Web pages, travel in-
formation, books, news, etc. For example, Joachims et al. [1997] use Q-learning to
guide users through Web pages. In Golovin and Rahm [2004], a general framework
is proposed for Web recommendation, where user implicit feedback is used to update
the system. Zhang and Seo [2001] propose a personalized Web document recommender
where each user profile is represented as vector of terms whose weights of the terms are
updated based on the temporal difference method using both implicit and explicit feed-
back. In Srivihok and Sukonmanee [2005], a Q-learning-based travel recommender is
proposed, where trips are ranked using a linear function of several attributes including
trip duration, price, and country, and the weights are updated according to user feed-
back. Shani et al. [2005] use an MDP to model the dynamics of user preference in book
recommendation, where purchase history is used as the states and the generated profit
the payoffs. Similarly, in a Web recommender [Taghipour and Kardan 2008], browsing
history is used as the states, and Web content similarity and user behavior are com-
bined as the payoffs. Chen et al. [2013] consider the exploration/exploitation trade-off
in the rank aggregation problem, that is, aggregating partial rankings given by many
users into a global ranking list. This global ranking list can be used for unpersonalized
recommenders but is of very limited use for personalized ones.

In the seminal work done by Li et al. [2012], news articles are represented as feature
vectors; the click-through rates of articles are treated as the payoffs and assumed a
linear function of news feature vectors. A multi-armed bandit model called LinUCB is
proposed to learn the weights of the linear function. Our work differs from theirs in
two aspects. Fundamentally, music recommendation is different from news recommen-
dation, due to the sequential relationship between songs. Technically, the additional
novelty factor of our rating model makes the reward function nonlinear and the con-
fidence bound difficult to obtain. Therefore we need the Bayes-UCB approach and the
more sophisticated Bayesian inference algorithms (Section 4). Moreover, we cannot
apply the offline evaluation techniques developed in Li et al. [2011] because we as-
sume that ratings change dynamically over time. As a result, we must conduct online
evaluation with real human subjects.

Although we believe reinforcement learning has great potential in improving mu-
sic recommendation, it has received relatively little attention and found only limited
application. Liu et al. [2009] use MDP to recommend music based on a user’s heart
rate to help the user maintain it within the normal range. States are defined as differ-
ent levels of heart rate and biofeedback is used as payoff. However: (1) parameters of
the model are not learned from exploration and thus exploration/exploitation trade-off
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is not needed; (2) the work does not disclose much information about the evaluation
of the approach. Chi et al. [2010] use MDP to automatically generate playlists. Both
SARSA and Q-learning are used to learn user preferences and states are defined as
mood categories of the recent listening history, similar to Shani et al. [2005]. However,
in their work: (1) the exploration/exploitation trade-off is not considered; (2) mood or
emotion, while useful, can only contribute so much to effective music recommendation;
and (3) the MDP model cannot handle long listening history, as the state space grows
exponentially with history length; as a result, too much exploration and computation
will be required to learn the model. Independent of and concurrent with our work,
Liebman and Stone [2014] build a DJ agent to recommend playlists based on reinforce-
ment learning. Their work differs from ours in that: (1) the exploration/exploitation
trade-off is not considered; (2) the reward function does not consider the novelty of
recommendations; (3) their approach is based on a simple tree-search heuristic, while
ours the thoroughly studied muti-armed bandit; (4) not much information about the
simulation study is disclosed and no user study conducted.

The active learning approach [Karimi et al. 2011] only explores songs in order to
optimize the predictive performance on a predetermined test dataset. Our approach, on
the other hand, requires no test dataset and balances both exploration and exploitation
to optimize the entire interactive recommendation process between the system and
users. Since many recommender systems in reality do not have test data or at least
have no data for new users, our bandit approach is more realistic compared with the
active learning approach.

Our work is the first to balance exploration and exploitation based on reinforcement
learning, and particularly multi-armed bandit, in order to improve recommendation
performance and mitigate the cold-start problem in music recommendation.

3. A BANDIT APPROACH TO MUSIC RECOMMENDATION

3.1. Personalized User Rating Model

Music preference is the combined effect of many factors, including music audio content,
novelty, diversity, moods and genres of songs, user emotional states, and user context
information [Wang et al. 2012]. As it is unrealistic to cover all the factors in this article,
we focus on audio content and novelty.

Music Audio Content. Whether a user likes or dislikes a song is highly related to
the audio content of the song. We assume that the music audio content of a song can
be described as a feature vector x1. Without considering other factors, a user’s overall
preference for this song can be represented as a linear function of x as

Uc = θ ′x, (1)

where the parameter vector θ represents the user preference in different music fea-
tures. Different users may have varying preferences and thus different values of θ . To
keep the problem simple, we assume that a user’s preference is invariant, namely θ
remains constant over time, and we will address the case of changing θ in future work.

Although the idea of the exploration/exploitation trade-off can be applied to CF as
long as the rating distribution can be estimated as shown in Figure 1, we choose to
work on the content-based approach instead of CF for a number of reasons. First,
we need a posterior distribution of Uc in order to use Bayes-UCB as introduced in
Section 2.2, so non-Bayesian CF methods cannot be used. Second, existing Bayesian
methods for matrix factorization [Salakhutdinov and Mnih 2008; Silva and Carin 2012]
are much more complicated than our linear model and also require large amounts of

1Please refer to Table I in the Appendix for a summary of the notations used in this article.
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Fig. 2. Proportion of repetitions
in users’ listen history.

Fig. 3. Zipf ’s law of song repeti-
tion frequency.

Fig. 4. Examples of Un = 1 −
e−t/s. The line marked with cir-
cles is a four-segment piecewise-
linear approximation.

training data. These issues render the user study costly and cumbersome. Third, our
bandit approach requires the model to be updated once a new rating is obtained,
but existing Bayesian matrix factorization methods are inefficient for online updat-
ing [Salakhutdinov and Mnih 2008; Silva and Carin 2012]. Fourth, CF suffers from new
song problem while the content-based method does not. Fifth, CF captures correlation
instead of causality and thus does not explain why a user likes a song. In contrast, the
content-based approach captures one important aspect of the causality, namely, music
content.

Novelty. Inspired by Gunawardana and Shani [2009], we seek to measure novelty by
first examining the repetition distributions of 1000 users’ listening histories collected
from Last.fm2. The box plot in Figure 2 shows the proportion of repetitions, defined as:
1 − number of of unique songs

listening history length . Note that, since Last.fm does not record the user’s listening
histories outside Last.fm, the actual proportion is expected to be even larger than the
median 68.3% shown here. Thus, most of the songs a user listens to are repeats. We also
studied the song repetition frequency distribution of every individual user’s listening
history. The frequencies of songs were first computed for every user. Then, all users’
frequencies were ranked in decreasing order. Finally, we plotted frequencies versus
ranks on a log-log scale (Figure 3). The distribution approximately follows the Zipf ’s
law [Newman 2005], where only a small set of songs are repeated most of the time
while all the rest are repeated much less often. Most other types of recommenders
do not follow Zipf ’s law. For instance, recommending books that have been bought or
movies that have been watched makes little sense. In music recommendation, however,
it is critically important to appropriately repeat songs.

One problem with existing novelty models is that they do not take the time elapsed
since previous listening into consideration [Gunawardana and Shani 2009; Lathia et al.
2010; Castells et al. 2011; Zhang et al. 2012]. As a result, songs listened to a year ago
as well as just now have the same likelihood to be recommended. Inspired by Hu and
Ogihara [2011], we address this issue by assuming that the novelty of a song decays
immediately after it is listened to and then gradually recovers. Let t be the time elapsed
since the last listening of the song, the novelty recovers according to the function

Un = 1 − e−t/s, (2)

where s is a parameter indicating the recovery speed. The higher the value of s, the
slower the recovery of novelty. Figure 4 shows a few examples of Un with different
values of s. Note that the second term of Eq. (2), e−t/s, is the well-established forgetting

2http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html.
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Fig. 5. Relationship between the multi-armed bandit problem and music recommendation.

curve proposed by Ebbinghaus [1913] that measures the user’s memory retention of a
song. Novel songs are thus assumed to be those of which a user has little or no memory.

Different users can have different recovery rates s. As can be seen from the
widespread distribution in Figure 2, some users may repeatedly listen to their favorite
songs, while others may be keen to exploring songs they have not listened to previously.
Therefore, s is an unknown user parameter to be learned from user interactions.

Combined Model. A user’s preference for a recommendation can be represented as
a rating; the higher the rating, the more the user likes the recommendation. Unlike
traditional recommenders that assume a user’s ratings are static, we assume that a
rating is the combined effect of the user’s preference of the song’s content and the
dynamically changing novelty. Thus, a song rated as 5 last time could be rated as 2
later because the novelty has decreased. Finally, we define the combined rating model
as

U = UcUn = θ ′x
(
1 − e−t/s) . (3)

In this model, the more the user likes a particular song, the more likely it will be
repeated due to the larger UC value. Also, given that the user’s favorites comprise a
small subset of his/her library, the U model behaves in accordance with Zipf ’s Law and
ensures that only a small proportion of songs will be frequently repeated. This property
of the model will be verified in Section 5.3.2.

In Section 5.3.1, we will show that the product form of Eq. (3) leads to significantly
better performance than the alternative linear combination U = aUc + bUn.

Other Factors. We note that, besides novelty, the repetition of songs can also be
affected in other ways. When a user comes to a song of great excitement, he may listen
to it again and again. When his interest changes, he may discard songs that he has been
frequently repeating. Sometimes, the user finds a song boring initially but repeats it
frequently later, while in other cases he may stop repeating a song because he is bored.
Understanding and modeling all these factors and precisely predicting when to repeat
a song for a particular user would make a very interesting follow-up study.

3.2. Interactive Music Recommendation

Under our rating model, each user is represented by a set of parameters � = {θ, s}.
If we knew the values of � of a user, we could simply recommend the songs with the
highest rating according to Eq. (3). However, � is hidden and needs to be estimated from
historical data, and thus uncertainty always exists. In this case, the greedy strategy
used by traditional systems is suboptimal, hence it is necessary to take the uncertainty
into account and balance exploration and exploitation.

The multi-armed bandit approach introduced in Section 2.2 offers a way to do so
for the interactive music recommendation process. As illustrated in Figure 5, we treat
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songs as arms and user ratings as payoffs3. The music recommendation problem is
then transformed into a multi-armed bandit problem and the objective of the music
recommender is also changed to maximizing the sum of the ratings given by the target
user over the long term. We argue that the cumulative rating is a more realistic objective
than the myopic predictive accuracy used by traditional music recommenders, because
users generally listen to songs for a long time instead of focusing on one individual
song.

We adopt the Bayes-UCB algorithm introduced in Section 2.2 for our recommenda-
tion task. We denote the rating given by the target user to a recommendation i as a
random variable Ri. The expectation of Ri is U given the feature vector (xi, ti):

E[Ri] = Ui = θ ′xi
(
1 − e−ti/s) . (4)

Then, we develop Bayesian models to estimate the posterior distribution of U given
the history recommendation and user ratings. We sketch the framework here and
explain it in greater detail in Section 4. We assume that the prior distribution of �
is p(�) and that, at the (l + 1)-th recommendation, we have accumulated l history
recommendations Dl = {(xi, ti, ri)}l

i=1 as training samples, where ri is the rating given
by the user to the i-th recommendation. The posterior distribution of � can then be
obtained based on the Bayes’ rule:

p(�|Dl) ∝ p(�)p(Dl|�). (5)

Consequently, the expected rating of song k, denoted as Uk, can be predicted as

p(Uk|Dl) =
∫

p(Uk|�)p(�|Dl)d�. (6)

Henceforth, we will use λl
k to denote p(Uk|Dl) for simplicity.

Finally, to balance exploration and exploitation, Bayes-UCB recommends song k∗
that maximizes the quantile function: k∗ = arg maxk=1...|S| Q(α, λl

k) where Q satisfies
P[Uk ≤ Q(α, λl

k)] = α and S is all the songs in the database. We set α = 1 − 1
l+1

following Kaufmann et al. [2012]. The detailed recommendation algorithm is described
in Algorithm 1.

ALGORITHM 1: Recommendation using Bayes-UCB
for l = 1 to n do

for all song k = 1, . . . , |S| do
compute ql

k = Q
(
1 − 1/l + 1, λl−1

k

)
end for
recommend song k∗ = arg maxk=1...|S| ql

k and gather rating rl; update p(�|Dl) and λl
k

end for

The cold-start problem is caused by the lack of information required for making good
recommendations. There are many ways for mitigating the cold-start problem, most
of which rely on additional information about the users or songs, such as popularity/
metadata information about the songs [Hariri et al. 2012] or context/demographic in-
formation about the users [Wang et al. 2012]. Although music audio content is required
by Uc, it is usually easy to obtain from industry. Our bandit approach addresses the

3Although in reality users usually do not give explicit feedback (i.e., ratings) to every recommended song,
implicit feedback (e.g., skipping a song, listening to a song fully) can be obtained much more easily. In this
article, we focus on explicit feedback to keep the problem simple.
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Fig. 6. Graphical representation of the Bayesian models. Shaded nodes represent observable random vari-
ables, while white nodes represent hidden ones. The rectangle (plate) indicates that the nodes and arcs inside
are replicated for N times.

cold-start problem without relying on additional information about users and songs.
Instead, it seeks to appropriately explore and exploit information during the whole
interactive process. Thus, the bandit approach presents a fundamentally different
solution to the cold-start problem, yet can be used in conjunction with the existing
methods.

There are other Bayesian multi-arm bandit algorithms such as Thompson sam-
pling [Agrawal and Goyal 2012] and optimistic Bayesian sampling [May et al. 2012].
Thompson sampling is based on the probability matching idea, that is, selecting the
song according to its probability of being optimal. Optimistic Bayesian sampling uses
an exploitative function on top of Thompson sampling. Which of the three is supe-
rior? Theoretically, this remains an open question. However, they have been shown to
perform comparably well in practice [May et al. 2012]. Existing studies provide little
guidance on our selection between them. In this article, we focus on the exploration/
exploitation trade-off principle and simply choose the most recent Bayes-UCB in our
implementation. Nevertheless, our system could easily adapt to the other two algo-
rithms as they are also based on the posterior rating distributions.

4. BAYESIAN MODELS AND INFERENCE

4.1. Exact Bayesian Model

To compute Eqs. (5) and (6), we develop the following Bayesian model (see Figure 6(a)
for graphical representation).

R|x, t, θ , s, σ 2 ∼ N (θ ′x(1 − e−t/s), σ 2) θ |σ 2 ∼ N (0, c0σ
2I)

s ∼ G(d0,e0) τ = 1/σ 2 ∼ G( f0, g0)

Every part of the model defines a probabilistic dependency between the random vari-
ables. N (·, ·) is a (multivariate) Gaussian distribution with the mean and (co)variance
parameters, and G(·, ·) is a Gamma distribution with the shape and rate parameters.
The rating R is assumed normally distributed following the convention of recommender
systems. A gamma prior is put on s because s takes positive values. Following the con-
ventions of Bayesian regression models, a normal prior is put on θ and a Gamma prior
on τ . We assume that θ depends on σ 2 because it leads to better convergence in the
simulation study.

Since there is no closed-form solution to Eq. (5) under this model, Markov Chain
Monte Carlo (MCMC) is used as the approximate inference procedure. Directly evalu-
ating Eq. (6) is also infeasible. Thus we use Monte Carlo simulation to obtain λl

k: for
every sample obtained from the MCMC procedure, we substitute it into Eq. (4) to obtain
a sample of Ui, and then use the histogram of the samples of Ui to approximate λl

k.
This approach is easy to understand and implement. However, it is very slow and

users could wait for up to a minute until the Markov chain converges. To make the
algorithm more responsive, we develop an approximate Bayesian model and a highly
efficient variational inference algorithm in the following sections.
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4.2. Approximate Bayesian Model

4.2.1. Piecewise-Linear Approximation . It is very difficult to develop better inference algo-
rithms for the exact Bayesian model because of the irregular form of the function Un(t).
Fortunately, Un can be well approximated by a piecewise-linear function (as shown in
Figure 4), thus enabling us to develop an efficient model.

For simplicity, we discretize time t into K predetermined intervals: [0, ξ1),
[ξ1, ξ2), . . . [ξK−1,+∞) and only consider the class of piecewise-linear functions whose
consecutive line segments intersect at the boundaries of these intervals. This class of
functions can be compactly represented as a linear function [Hastie et al. 2009]. We
first map t into a vector t = [(t − ξ1)+, . . . (t − ξK−1), t, 1], where (t − ξ )+ = max(t − ξ, 0),
and then approximate Un(t) as Un(t) ≈ β ′t, where β = [β1, . . . βK+1]′ is a vector of pa-
rameters to be learned from training data. Now, we can represent U as the product of
two linear functions: U = UcUn ≈ θ ′xβ ′t.

Based on this approximation, we approximate the distributions of R and the param-
eters of the exact Bayesian model as

R|x, t, θ ,β, σ 2 ∼ N (θ ′xβ ′t, σ 2), θ |σ 2 ∼ N (μθ0, σ
2D0)

β|σ 2 ∼ N (μβ0, σ
2E0), τ = 1/σ 2 ∼ G(a0, b0),

(7)

where θ ,β, τ are parameters. D0, E0,μθ0,μβ0, a0, b0 are the hyperparameters of the
priors to be specified beforehand; D0 and E0 are positive definite matrices. The graph-
ical representation of the model is shown in Figure 6(b). We use conjugate priors for
θ ,β, τ , which makes the variational inference algorithm described later very efficient.

4.2.2. Variational Inference. Recall that our objective is to compute the posterior distri-
bution of parameters � (now it is {θ,β, τ }) given the history data D = {(xi, ti, ri)}N

i=1,
namely p(θ,β, τ |D). Using piecewise-linear approximation, we now develop an efficient
variational inference algorithm.

Following the convention of the mean-field approximation [Friedman and Koller
2009], we assume that the joint posterior distribution can be approximated by a re-
stricted distribution q(θ ,β, τ ), consisting of three independent factors [Friedman and
Koller 2009]:

p(�|D) = p(θ,β, τ |D) ≈ q(θ ,β, τ ) = q(θ )q(β)q(τ ).

Because of the choice of the conjugate priors, it is easy to show that the restricted distri-
butions q(θ ), q(β), and q(τ ) take the same parametric forms as the prior distributions.
Specifically,

q(θ ) ∝ exp
(

−1
2

θ ′�θ Nθ + η′
θ Nθ

)
, q(β) ∝ exp

(
−1

2
β ′�βNβ + η′

βNβ

)
,

q(τ ) ∝ τaN−1 exp (−bNτ ) .

To find the values that minimize the KL-divergence between q(θ ,β, τ ) and the true
posterior p(θ ,β, τ |D) for the parameters �θ N, ηθ N, �βN, ηβN, aN, and bN, we use the
coordinate descent method. Specifically, we first initialize the parameters of q(θ ), q(β),
and q(τ ) and then iteratively update q(θ ), q(β), and q(τ ) until the variational lower
bound L (elaborated in Appendix C) converges. Further explanation about the prin-
ciple can be found in Friedman and Koller [2009]. The detailed steps are described
in Algorithm 2, where p and K are the dimensionalities of x and t, respectively; the
moments of θ,β, τ are derived in Appendix B.
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ALGORITHM 2: Variational inference
input: D, D0, E0, μθ0, μβ0, a0, b0
initialize �θ N , ηθ N , �βN , ηβN , aN , bN
repeat

update q(θ): �θ N ← E[τ ]
(
D−1

0 + ∑N
i=1 xit′

iE
[
ββ ′] tix′

i

)
, ηθ N ← E[τ ]

(
D−1

0 μθ0 + ∑N
i=1 rixit′

iE[β]
)

update q(β): �βN ← E[τ ]
(
E−1

0 + ∑N
i=1 tix′

iE[θθ ′]xit′
i

)
, ηβN ← E[τ ]

(
E−1

0 μβ0 + ∑N
i=1 ritix′

iE[θ ]
)

update q(τ ): aN ← p+K+N
2 + a0,

bN←1
2

[
tr

[
D−1

0

(
E[θθ ′]

)]+(
μ′

θ0 − 2E[θ ]′
)
D−1

0 μθ0

]
+ 1

2

[
tr

[
E−1

0

(
E[ββ ′]

)]+
(
μ′

β0 − 2E[β]′
)

E−1
0 μβ0

]

+ 1
2

N∑
i=1

(
r2
i + x′

iE[θθT ]xit′
iE[ββT ]ti

)
−

N∑
i=1

rix′
iE[θ]t′

iE[β] + b0

until L converges
return �θ N , ηθ N , �βN , ηβN , aN , bN

4.2.3. Predict the Posterior Distribution p(U|D). Because q(θ ) and q(β) are normal distribu-
tions, θ ′x and β ′t are also normally distributed

p(θ ′x|x, t,D) ≈ N
(
x′�−1

θ Nηθ N, x′�−1
θ Nx

)
, p(β ′t|x, t,D) ≈ N

(
t′�−1

βNηβN, t′�−1
βNt

)
,

and the posterior distribution of U in Eq. (6) can be computed as

p(U |x, t,D) = p(θ ′xβ ′t|x, t,D) =
∫

p(θ ′x = a|x, t,D)p
(

β ′t = U
a

|x, t,D
)

da.

Since there is no closed-form solution to the preceding integration, we use Monte Carlo
simulation. Namely, we first obtain one set of samples for each of θ ′x and β ′t and then
use the elementwise products of the two groups of samples to approximate the distri-
bution of U . Because θ ′x and β ′t are normally distributed univariate random variables,
the sampling can be very efficiently done. Moreover, the prediction for different songs
is trivially parallelizable and thus scalable.

4.2.4. Integration of Other Factors. Although the approximate model considers music au-
dio content and novelty only, it is easy to incorporate other factors as long as they can be
approximated by linear functions. For instance, diversity is another important factor
for a playlist. We could measure the diversity that a song contributes to a playlist as d
and assume the user preference for d follows a function that can be approximated by
a piecewise-linear function. Following the method in Section 4.2.1, we can map d into
a vector d and modify the approximate Bayesian model in Section 4.2.1 by adding an
additional term γ ′d to Eq. (7) and putting a prior on γ as shown in the following:

R|x, t, d, σ 2, θ ,β, γ ∼ N (θ ′xβ ′tγ ′d, σ 2), γ |σ 2 ∼ N
(
μγ 0, σ

2F0
)
.

Given the symmetry between x, t, and d, we can modify Algorithm 2 without further
derivation.

Similarly, we could incorporate more factors such as coherence of mood and genre
into the model. Moreover, the model can also be applied to other regression tasks as long
as the regression function can be factorized into the product of a few linear functions.

5. EXPERIMENTS

We compare the results from our evaluations of six recommendation algorithms in this
section. Extensive experimental evaluations of both efficiency and effectiveness of the
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algorithms and models have been conducted and the results show significant promise
from both aspects.

5.1. Experiment Setup

5.1.1. Compared Recommendation Algorithms. To study the effectiveness of the
exploration/exploitation trade-off, we introduced two baselines, Random and Greedy.
The Random approach represents pure exploration and recommends songs uniformly
at random. The Greedy approach represents pure exploitation and always recommends
the song with the highest predicted rating. Therefore, the Greedy approach simulates
the strategy used by traditional recommenders, where the parameters {θ, s} were es-
timated by minimizing the mean square error using the L-BFGS-B algorithm [Byrd
et al. 1995].

To study the effectiveness of the rating model, we introduced a baseline using
LinUCB, a bandit algorithm that assumes the expected rating is a linear function
of the feature vector [Li et al. 2012]. In LinUCB, ridge regression served as the re-
gression method and the upper confidence bound is used to balance exploration and
exploitation.

Two combinations of the factors Uc and Un were evaluated: Uc and UcUn. We denote
them as C and CN for short, where C and N indicate content and novelty, respectively.
For example, Bayes-UCB-CN contains both content and novelty. Furthermore, Bayes-
UCB-CN corresponds to the exact Bayesian model with the MCMC inference algorithm
(Section 4.1), whereas Bayes-UCB-CN-V the approximate model with the variational
inference algorithm (Section 4.2).

We evaluated six recommendation algorithms that were combinations of the four ap-
proaches and three factors: Random, LinUCB-C, LinUCB-CN, Bayes-UCB-CN, Bayes-
UCB-CN-V, and Greedy-CN. Because LinUCB-CN cannot handle nonlinearity and thus
cannot directly model UcUn, we combined the feature vector x in Uc and the time vari-
able t in Un as one vector and treated the expected rating as a linear function of the
combined vector. Greedy-C was not included because it was not related to our objective.
As discussed in Section 3.2, the bandit approach can also be combined with existing
methods to solve the cold-start problem. We plan to study the effectiveness of such
combinations in future works.

5.1.2. Songs and Features. Ten thousand songs from different genres were used in the
experiments. Videos of the songs were crawled from YouTube and converted by ffm-
peg4 into mono channel WAV files with a 16 kHz sampling rate. For every song, a 30s
audio clip was used [Wang et al. 2012]. Feature vectors were then extracted using a
program developed based on the MARSYAS library5, in which a window size of 512
was used without overlapping. The features used (and their dimensionalities) are Zero
Crossing Rate (1), Spectral Centroid (1), Spectral Rolloff (1), Spectral Flux (1), MFCC
(13), Chroma (14), Spectral Crest Factor (24), and Spectral Flatness Measure (24).
Detailed descriptions of these features are given in Table II in the Appendix. The fea-
tures have been commonly used in the music retrieval/recommendation domain [Cano
et al. 2005; Yoshii et al. 2006; Wang et al. 2012]. To represent a 30s clip in one fea-
ture vector, we used the mean and standard deviation of all feature vectors from the
clip. Next, we added the one-dimensional feature tempo to the summarized feature
vectors. The resulting feature dimensionality is 79 × 2 + 1 = 159. Directly using the
159-dimensional features requires a large amount of data to train the models and
makes user studies very expensive and time consuming. To reduce the dimensionality,

4http://ffmpeg.org.
5http://marsyas.sourceforge.net.
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we conducted Principal Component Analysis (PCA) with 90% of variance reserved. The
final feature dimensionality is thus reduced to 91.

The performance of these features in music recommendation was checked based on a
dataset that we built. We did not use existing music recommendation datasets because
they lack explicit ratings and dealing with implicit feedback is not our focus. Fifty-two
undergraduate students with various cultural backgrounds contributed to the dataset,
with each student annotating 400 songs with a 5-point Likert scale from “very bad” (1) to
“very good” (5). We computed the tenfold cross-validation RMSE of Uc for each user and
averaged the accuracy over all users. The resulting RMSE is 1.10, significantly lower
than the RMSE (1.61) of the random baseline with the same distribution as the data.
Therefore, these audio features indeed provide useful information for recommendation.
The accuracy can be further improved by feature engineering [Oord et al. 2013], which
we reserve for future work.

5.1.3. Evaluation Protocol. In Li et al. [2011], an offline approach is proposed for eval-
uating contextual bandit approaches with the assumption that the context (including
the audio features and the elapsed time of songs) at different iterations is identi-
cally independently distributed. Unfortunately, this is not true in our case because
when a song is not recommended, its elapsed time t keeps increasing and is thus
strongly correlated. Therefore, an online user study is the most reliable means of
evaluation.

To reduce the cost of the user study, we first conducted a comprehensive simulation
study to verify the approaches. We then proceeded to user study for further verification
only if they passed the simulations. The whole process underwent a few iterations,
during which the models and algorithms were continually refined. The results hereby
presented are from the final iteration. Intermediate results are either referred to as
preliminary study whenever necessary or omitted due to page limitation.

5.2. Simulations

5.2.1. Effectiveness Study. U = UcUn was used as the true model because the pre-
liminary user studies showed that this resulted in better performance, which will be
verified in Section 5.3 again. Because our model considers the impact of time, to make
the simulations close to real situations, songs were rated about 50s after being recom-
mended. We treated every 20 recommendations as a recommendation session, and the
sessions were separated by four-minute gaps.

Priors for the Bayesian models were set as uninformative ones or chosen based
on preliminary simulation and user studies. For the exact Bayesian model, they are:
c0 = 10, d0 = 3, e0 = 10−2, f0 = 10−3, g0 = 10−3, where f0, g0 are uninformative and
c0, d0, e0 are based on preliminary studies. For the approximate Bayesian model, they
are: D0 = E0 = 10−2I, μθ0 = μβ0 = 0, a0 = 2, b0 = 2 × 10−8, where μθ0,μβ0, a0, b0 are
uninformative and D0, E0 are based on preliminary studies; I is the identity matrix.

Un was discretized into the following intervals (in minutes) according to
the exponentially decaying characteristics of human memory [Ebbinghaus 1913]:
[0, 2−3), [2−3, 2−2), . . . , [210, 211), [211,+∞). We defined the smallest interval as [0, 2−3)
because people usually do not listen to a song for less than 2−3 minutes (7.5s). The
largest interval was defined as [211,+∞) because our preliminary user study showed
that evaluating one algorithm takes no more than 1.4 day, namely approximately 211

minutes. Further discretization of [211,+∞) should be easy. For songs that had not
been listened to by the target user, the elapsed time t was set as one month to ensure
that Un is close to 1.

We compared the performance of the six recommendation algorithms in terms of
regret, a widely used metric in the RL literature. First we define that, for the l-th
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Fig. 7. Regret comparison in simulation. Fig. 8. Time efficiency comparison.

recommendation, the difference between the maximum expected rating E[R̂l] =
maxk=1...|S| Uk and the expected rating of the recommended song is 	l = E[R̂l] − E[Rl].
Then, the cumulative regret for the n-th recommendation is: Rn = ∑

l=1...n 	l =∑
l=1...n E[R̂l] − E[Rl], where a smaller Rn indicates better performance.
Different values of parameters {θ , s} were tested. Elements of θ were sampled from

the standard normal distribution and s was sampled from the uniform distribution
with the range (100, 1000), where the range was determined based on the preliminary
user study. We conducted ten runs of the simulation study. Figure 7 shows the means
and standard errors of the regret of different algorithms at different numbers of recom-
mendations n. From the figure, we see that the algorithm Random (pure exploration)
performs the worst. The two LinUCB-based algorithms are worse than Greedy-CN
because LinUCB-C does not capture the novelty and LinUCB-CN does not capture
the nonlinearity within Uc and Un although both LinUCB-C and LinUCB-CN balance
exploration and exploitation.

Bayes-UCB-based algorithms performed better than Greedy-CN because Bayes-UCB
balances exploration and exploitation. In addition, the difference between Bayes-UCB
and Greedy increases very fast when n is small. This is because small n means a small
number of training samples and results in high uncertainty, that is, the cold-start stage.
Greedy algorithms, which are used by most existing recommendation systems, do not
handle the uncertainty well, while Bayes-UCB can reduce the uncertainty quickly and
thus improves the recommendation performance. The good performance of Bayes-UCB-
CN-V also indicates that the piecewise-linear approximation and variational inference
are accurate.

5.2.2. Efficiency Study. A theoretical efficiency study of MCMC and variational infer-
ence algorithms is difficult to analyze due to their iterative nature and deserves future
work. Instead, we conducted an empirical efficiency study of the training algorithms
for Bayes-UCB-CN (MCMC), Bayes-UCB-CN-V (variational inference), and Greedy-
CN (L-BFGS-B). In addition, the variational inference algorithm for the three-factor
model described in Section 4.2.4 was also studied. LinUCB and Random were not in-
cluded because the algorithms are much simpler and thus faster (but also perform
much worse). Experiments were conducted on a computer with an Intel Xeon CPU
(L5520 @ 2.27 GHz) and 32GB main memory. No multithreading or GP-GPU were
used in the comparisons. The programming language R was used to implement all the
six algorithms.

From the results in Figure 8, we can see that the time consumed by both MCMC and
variational inference grows linearly with the training set size. However, variational
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Fig. 9. Accuracy versus training time. Fig. 10. Sample efficiency comparison.

inference is more than 100 times faster than the MCMC, and significantly faster than
the L-BFGS-B algorithm. Comparing the variational inference algorithm with two or
three factors, we find that adding another factor to the approximate Bayesian model
only slightly slows down the variational inference algorithm. Moreover, when the sam-
ple size is less than 1000, the variational inference algorithm can finish in 2s, which
makes online updating practical and well meets the user requirement. Implement-
ing the algorithms in more efficient languages like C/C++ can result in even better
efficiency.

The training time of all the algorithms is also affected by the accuracy that we
want to achieve. To study this, we generated a training set (350 samples) and a test
set (150 samples). For each algorithm, we ran it on the training set multiple times.
Every time we used a different number of training iterations and collected both the
training time and prediction accuracy on the test set. The whole process was repeated
ten times. For each algorithm and each number of iterations, the ten training times
and prediction accuracies were averaged. From the results shown in Figure 9, we can
see that variational inference (VI) converges very fast; L-BFGS-B takes much longer
time than VI to converge, while MCMC is more than 100 times slower than VI.

Time consumed in the prediction phase of the Bayesian methods is larger than that of
Greedy- and LinUCB-based methods because of the sampling process. However, for the
two-factors model Bayes-UCB-CN-V, prediction can be accelerated significantly by the
PRODCLIN algorithm without sacrificing the accuracy [MacKinnon et al. 2007]. In ad-
dition, since prediction for different songs is trivially parallelizable, scaling variational
inference to large music databases should be easy.

We also conducted a sample efficiency study of the exact Bayesian model, the ap-
proximate Bayesian model, and the minimum mean-squared-error-based frequentist
model used for Greedy-CN. We first generated a test set (300 samples) and then tested
all the models with different sizes of training samples. The whole process was repeated
ten times and the average accuracies are shown in Figure 10. We can see that the ex-
act Bayesian model and the frequentist model have almost identical sample efficiency,
confirming that the only difference between Bayes-UCB and Greedy-CN is whether un-
certainty is considered. The approximate Bayesian model performs slightly worse than
the others because of the piecewise-linear approximation and the variational inference
algorithm.

5.3. User Study

Undergraduate students aged 17–25 years were chosen as our study target. It would
be interesting to study the impact of occupations and ages on our method in the future.
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Fig. 11. User evaluation interface. Fig. 12. Performance comparison in user study.

Most applicants were females, and we selected 15 from them with approximately equal
number of males (6) and females (9). Their cultural backgrounds were diversified to
include Chinese, Malay, Indian, and Indonesian. They all listen to music regularly (at
least three hours per week). To reduce the number of subjects needed, the within-
subject experiment design was used, that is, every subject evaluated all recommenda-
tion algorithms. Every subject was rewarded with a small token payment for her time
and effort. For each of the six algorithms, a subject evaluated 200 recommendations,
a number more than sufficient to cover the cold-start stage. Every recommended song
was listened to for at least 30s (except when the subject was very familiar with the song
a priori) and rated based on a 5-point Likert scale as before. Subjects were required to
rest for at least four minutes after listening to 20 songs to ensure the quality of the
ratings and simulate recommendation sessions. To minimize the carryover effect of the
within-subject design, subjects were not allowed to evaluate more than two algorithms
within one day. Moreover, there must be a gap of more than six hours between two
algorithms. The user study lasted one week. Every subject spent more than 14 hours
in total. The dataset will be released after the publication of this article. During the
evaluation, the recommendation models were updated immediately whenever a new
rating was obtained. The main interface used for evaluation is in Figure 11.

5.3.1. The Overall Recommendation Performance. Because the true model is not known in
the user study, the regret used in simulations cannot be used here. We thus choose
the average rating as the evaluation metric, which is also popular in evaluations of RL
algorithms. Figure 12 shows the average ratings and standard errors of every algorithm
from the beginning to the n-th recommendation.

T-tests at different iterations show Bayes-UCB-CN outperforms Greedy-CN since
the 45th iteration with p-values < 0.039. Bayes-UCB-CN-V outperforms Greedy-CN
from the 42nd to the 141st iteration with p-values < 0.05, and afterwards with p-
values < 0.1. Bayes-UCB-CN and Greedy-CN share the same rating model and the
only difference between them is that Bayes-UCB-CN balances exploration/exploitation
while Greedy-CN only exploits. Therefore, the improvement of Bayes-UCB-CN over
Greedy-CN is solely contributed by the exploration/exploitation trade-off.

More interestingly, when n ≤ 100 (cold-start stage) the differences between Bayes-
UCB-CN and Greedy-CN are even more significant. This is because, during the cold-
start stage, the uncertainty is very high; Bayes-UCB explores and thus reduces the
uncertainty quickly while Greedy-CN always exploits and thus cannot reduce the
uncertainty as efficiently as Bayes-UCB-CN. To verify this point, we first define a
metric for uncertainty as 1

|S|
∑|S|

k=1 SD[p(Uk|Dn)], which is the mean of the standard
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Fig. 13. Uncertainty.

deviations of all songs’ posterior distributions p(Uk|Dn) estimated using the exact
Bayesian model. Larger standard deviation means larger uncertainty as illustrated
in Figure 1. Given the iteration n, we calculate an uncertainty measure based on each
user’s recommendation history. The means and standard errors of the uncertainties
among all users at different iterations are shown in Figure 13. When the number of
training data points increases, the uncertainty decreases. Also as expected, the un-
certainty of Bayes-UCB-CN decreases faster than Greedy-CN when n is small, and
later the two remain comparable because both have obtained enough training samples
to fully train the models. This verifies that our bandit approach handles uncertainty
better during the initial stage, thus mitigating the cold-start problem.

Results in Figure 12 also show that all algorithms involving CN outperform LinUCB-
C, indicating that the novelty factor of the rating model improves recommendation
performance. In addition, Bayes-UCB-CN outperforms LinUCB-CN significantly, sug-
gesting that multiplying Uc and Un together works better than linearly combining
them.

5.3.2. Playlist Generation. As discussed in Section 3.1, repeating songs following the
Zipf ’s law is important for playlist generation. Therefore, we evaluated the playlists
generated during the recommendation process by examining the distribution of song
repetition frequencies for every user. We generated the plots of the distributions in
the same way we generated Figure 3 for the six algorithms. Ideal algorithms should
reproduce repetition distributions of Figure 3.

The results of the six algorithms are shown in Figure 14. As we can see, all algorithms
with Uc and Un multiplied together (i.e., Bayes-UCB-CN, Greedy-CN, BayesUCB-CN-
V) reproduce the Zipf ’s law pattern well, while the algorithms without Uc (Random,
LinUCB-C) or with Uc and Un added together (LinUCB-CN) do not. This confirms
that our model U = UcUn can effectively reproduce the Zipf ’s law distribution. Thus,
we successfully modeled an important part for combining music recommendation and
playlist generation.

5.3.3. Piecewise-Linear Approximation. In addition to the studies detailed previously, the
piecewise-linear approximation of the novelty model is tested again by randomly se-
lecting four users and showing in Figure 15 their novelty models learned by Bayes-
UCB-CN-V. Specifically, the posterior distributions of β ′t for t ∈ (0, 211) are presented.
The lines represent the mean values of β ′t and the regions around the lines the confi-
dence bands of one standard deviation. The scale of β ′t is not important because β ′t is
multiplied together with the content factor, and any constant scaling of one factor can
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Fig. 14. Distributions of song repetition frequency.

Fig. 15. Four users’ diversity factors learned from the approximate Bayesian model.

be compensated by the scaling of the other one. Comparing Figure 15 and Figure 4, we
can see that the learned piecewise-linear novelty factors well match our analytic form
Un. This again confirms the accuracy of the piecewise-linear approximation.

6. DISCUSSION

Exploring user preferences is a central issue for recommendation systems, regardless
of the specific media types. Under uncertainty, the greedy approach usually produces
suboptimal results and balancing exploration/exploitation is important. One successful
example of the exploration/exploitation trade-off is the news recommender [Li et al.
2012]. Our work in this article has shown its effectiveness in music recommendation.
Given that uncertainty exists universally in all kinds of recommenders, it will be
interesting to examine its effectiveness in recommenders for other media types, such
as video and image.

Our models and algorithms could be generalized to other recommenders. First, the
mathematical form of the approximate Bayesian model is general enough to cover a
family of rating functions that can be factorized as the product of a few linear functions
(Section 4.2.4). Moreover, we can often approximate nonlinear functions with linear
ones. For instance, we can use a feature mapping function φ(x) and make Uc = θ ′φ(x)
to capture the nonlinearity in our content model. Therefore, it will be interesting
to explore our approximate Bayesian model and the variational inference algorithm
in other recommendation systems. Second, the proposed novelty model may not be
suitable for movie recommendation due to different consumption patterns in music
and movies. In other words, users may listen to their favorite songs many times,
but repetitions are relatively rare for movies. However, the novelty model may suit
recommenders that repeat items (e.g., food or makeup recommenders [Liu et al. 2013]).
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If their repetition patterns also follow the Zipf ’s law, both the exact and approximate
Bayesian models can be used; otherwise, the approximate Bayesian model can be used.

As for extensions of this work, the first interesting direction is to model the correla-
tions between different users to further reduce the amount of exploration. This could be
achieved by extending the Bayesian models to hierarchical Bayesian models. Another
interesting direction is to consider more factors such as diversity, mood, and genres to
generate even better playlists.

For people who prefer CF, a future direction could be to use the exploration/
exploitation trade-off idea to boost CF’s performance. A simple approach is to use
the latent features learned by existing matrix factorization methods to replace the
audio features in our methods and keep other parts of our methods unchanged.

7. CONCLUSION

In this article, we described a multi-armed bandit approach to interactive music recom-
mendation that balances exploration and exploitation, mitigates the cold-start prob-
lem, and improves recommendation performance. We described a rating model includ-
ing music audio content and novelty to integrate music recommendation and playlist
generation. To jointly learn the parameters of the rating model, a Bayesian regres-
sion model together with an MCMC inference procedure were developed. To make the
Bayesian inference efficient enough for online updating and generalize the model for
more factors such as diversity, a piecewise-linear approximate Bayesian regression
model and a variational inference algorithm were built. The results from simulation
demonstrate that our models and algorithms are accurate and highly efficient. User
study results show that: (1) the bandit approach mitigates the cold-start problem and
improves recommendation performance, and (2) the novelty model together with the
content model capture the Zipf ’s law of repetitions in recommendations.
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