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ARTICLE INFO ABSTRACT

Keywords: ) Bio-chemical networks are often modeled as systems of ordinary differential equations
Computational systems biology (ODEs). Such systems will not admit closed form solutions and hence numerical simulations
Modeling will have to be used to perform analyses. However, the number of simulations required to
ODEs ) ’

carry out tasks such as parameter estimation can become very large. To get around this,
we propose a discrete probabilistic approximation of the ODEs dynamics. We do so by
discretizing the value and the time domain and assuming a distribution of initial states
w.r.t. the discretization. Then we sample a representative set of initial states according to
the assumed initial distribution and generate a corresponding set of trajectories through
numerical simulations. Finally, using the structure of the signaling pathway we encode
these trajectories compactly as a dynamic Bayesian network.

This approximation of the signaling pathway dynamics has several advantages. First,
the discretized nature of the approximation helps to bridge the gap between the accuracy
of the results obtained by ODE simulation and the limited precision of experimental
data used for model construction and verification. Second and more importantly, many
interesting pathway properties can be analyzed efficiently through standard Bayesian
inference techniques instead of resorting to a large number of ODE simulations. We
have tested our method on ODE models of the EGF-NGF signaling pathway [1] and the
segmentation clock pathway [2]. The results are very promising in terms of accuracy and
efficiency.

Dynamic Bayesian networks

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative mathematical models are needed for understanding the dynamics of complex biological processes that
govern various intra- and inter-cellular functions. Here we focus on signaling pathways which typically sense extra-cellular
or internal signals and in response, activate a cascade of intra-cellular reactions. A multitude of signaling pathways govern
and coordinate the behavior of cells and many disease processes arise from defects in signaling pathways. Hence it is
important to develop quantitative dynamic models for this class of bio-pathways.

A signaling pathway can be viewed as a network of bio-chemical reactions and one often models this network as a system
of Ordinary Differential Equations (ODEs) [3]. The equations describe specific bio-chemical reactions while the variables
represent the concentration levels of molecular species (genes, RNAs, proteins).

However, signaling pathways usually involve a large number of bio-chemical reactions. Hence the corresponding systems
of ODEs will not admit closed form solutions. Instead, one will have to numerically generate trajectories to study the
dynamics. Further, the quantitative observations of the system will have very limited precision. Specifically, the initial
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concentration levels of the various proteins and rate constants will often be available only as intervals of values. Further,
experimental data in terms of the concentration levels of a few proteins at a small number of time points will also be
available only in terms of intervals of values. In addition, the data will often be gathered using a population of cells.
Consequently, when numerically simulating the ODE model, one must resort to Monte Carlo methods to ensure that
sufficiently many values from the relevant intervals are being sampled. As a result, basic tasks such as model validation,
parameter estimation and sensitivity analysis will require the generation of a large number of trajectories. This motivates
our main goal: Approximating the dynamics of systems of ODEs modeling bio-chemical networks.

We start with such a system of ODEs and fix a suitable discretization of the value domains of the variables and rate
constants into finite sets of intervals. We also fix a discretization of the time domain into a finite number of time points.
We assume a prior distribution of the initial states. Usually, this prior will consist of a uniform distribution over some of
the discretized intervals of values of the variables and the rate constants. Then by sampling the prior distribution of initial
states, we numerically pre-compute and store a representative subset of trajectories induced by the ODEs dynamics. The
key idea is to exploit the dependencies/independencies in the pathway structure to compactly encode these trajectories as
a time-variant dynamic Bayesian network [4]. The resulting approximation is called the Bayesian Dynamics Model (BDM).
We then view the BDM as an approximation of the ODEs dynamics and perform analysis tasks on this simpler model.

Since the trajectories are grouped together through the discretization, our method bridges the gap between the accuracy
of the results obtained by ODE simulation and the limited precision of experimental data used for model construction and
validation. In addition, the BDM represents the dependencies between the variables more explicitly in the graph structure
of the underlying dynamic Bayesian network (DBN). More crucially, many interesting pathway properties can be analyzed
efficiently through standard Bayesian inference techniques, instead of resorting to large scale numerical simulations.

Admittedly, there is a one-time computational cost incurred to construct the BDM. But this cost can be easily amortized
by performing multiple analysis tasks using the BDM. We have tested our method on a model of the EGF-NGF signaling
pathway [1] which determines the stimulation-dependent PC12 cell fate. We have also constructed a BDM model of the
segmentation clock pathway [2] which governs the periodic formation of the vertebral precursors. The results we obtain are
very promising in terms of both accuracy and efficiency.

1.1. Related work

A variety of qualitative and quantitative computational models have been proposed in the recent years to study bio-
pathways [5-8]. The quantitative models can be broadly classified into two types. In one approach, the number of molecules
of each kind is kept track of and stochastic simulations are used to advance the system state one reaction at a time. In the
second approach, one tracks the concentrations of the molecular species of each kind and ODEs are used to construct the
models. One then deploys deterministic numerical simulations to study the dynamics. Clearly, both approaches are needed
to cover different contexts.

Discretization is a common approach which has been adapted in many modeling formalisms. For instance, discretized
approximations of stochastic models are studied in [9-11]. In these works, the dynamics of a process-algebra-based
description of a bio-pathway is given in terms of a Continuous Time Markov Chain (CTMC) which is then discretized using
the notion of levels to ease analysis. Apart from the fact that our starting point is a system of ODEs, a crucial additional step
that we take is to exploit the structure of the pathway to factor the dynamics into a dynamic Bayesian network. We then
perform analysis tasks on this more compact representation. In a similar vein, our model is more compact than the graphical
model of a network of non-homogenous Markov chains studied in [14].

For sure, our dynamic Bayesian network based model may be viewed as a factored Markov chain. In this sense, a crucial
component of our construction mirrors the technique of factoring a Hidden Markov Model (HMM) as a dynamic Bayesian
network by decomposing a system state into its constituent variables [15]. This connection leads us to believe that the
techniques proposed in [16], as well as the verification techniques reported in [17,18] can be adapted to our setting.

Analyzing CTMC models such as PEPA requires stochastic simulations that are often computationally intensive [19].
We note however, in our setting, though BDM is a probabilistic graphical model, we do not have to resort to stochastic
simulations. The inferencing algorithm we use (the Factored Frontier Algorithm [20]), in one sweep, gathers information
about the statistical properties of the family of trajectories encoded by the BDM.

1.2. Organization and contents

The rest of the paper is organized as follows. After the preliminaries in the next section, we describe our method for
constructing the BDM approximation in Section 3. In Section 4, we present techniques for performing tasks such as basic
inferencing, parameter estimation and global sensitivity analysis using the BDM model. In the subsequent section we present
two case studies. In the final section, we summarize the paper and discuss future work.

This paper is an improved and expanded version of the work presented in [21]. In addition, we present here a
second case study consisting of the segmentation clock pathway model (Section 5.2). Furthermore, we discuss sampling
methods (Section 3.3.1) and present a new sampling method called equation sampling. We later compare its performance
(Section 5.1.5) with the sampling technique used in [21]. Finally, we have varied the number of intervals used to discretize
the value spaces and compared the accuracies of the resulting approximations (Section 5.1.4).
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Additional material containing figures and tables supporting the work presented here can be found at [22]. One can also
obtain from here our open source tool for the BDM’s construction and analysis.

2. Preliminaries

We first develop the notions leading to the observation that the flows (vector fields) that arise as the solution to our
systems of ODEs will be measurable functions. This will secure the mathematical basis for our approximation. The relevant
material can be found in [23-26].

Let N denote the set of non-negative integers. Assume that X and Y are metric spaces [27]. A function f : X — Y is said
to be of class C¥, where k € N, if the derivatives f’, f”, ..., f® exist and are continuous. Thus, the class C° consists of all
continuous functions and the class C! consists of all continuously differentiable functions.

A o -algebra over a set X is a nonempty collection of subsets of X that is closed under complementation and countable
unions. The Borel o -algebra on a topological space X, denoted as By, is the minimal o -algebra containing all the open sets
of X.

A probability space is a triple (2, #, P) consisting of a set §2, a o-algebra # over §2, and a functionP : ¥ — [0, 1]
such that: (i) P(£2) = 1; (ii) if {A, }wew is a countable family of pairwise disjoint sets in ¥, then P(U,A,) = Y, P(Ay).

Let X and Y be nonempty sets and M and & be o -algebras of subsets of X and Y respectively. A functionf : X — Y is
said to be (M, N )-measurable if

EeN =f"E)eM.
The following fact is crucial for our purposes.

Proposition 1. [26] If X and Y are metric spaces and f : X — Y is continuous, then f is (B, By)-measurable.

2.1. ODEs and flows

Through the rest of this section and the next one, we assume a set of ODEs x;(t) = f;(x(t), p) involving the variables
{x1, %2, ..., X,}. Each variable x;(t) is a real-valued function of t with the domain of t being the set of reals. {p1, p2, . . ., Pm}
is the set of real-valued parameters. We will require the ODEs to be autonomous in the sense t does not appear explicitly
in any f;. In our setting, we will often be interested in studying the dynamics for different combinations of values for the
parameters. Hence it will be convenient to treat them also as variables. However they will be time-invariant; once their
values are fixed at t = 0, these values will not change through the passage of time. Consequently, we will implicitly assume
m additional differential equations of the form p;(t) = 0 with j ranging over {1, 2, ..., m}. We will often let v range over
R’ , the values space of the variables and k range over R, the values space of the parameters and z range over R”++m, the
combined values space. In vector form, our system of autonomous ODEs may be represented as Z' = F(Z). We shall assume
that the ODEs will be modeling mass action or Michaelis-Menten kinetics [28]. However, our method will be applicable for
more general types of reaction kinetics too.

Based on the preceding remarks, we can assume f; : R’fm — R, to be of the form:

Ti
> Gnig;
i=1

where r; is the number of reactions associated with species x; and ¢; = —1 (¢; = +1) if x; is a reactant(product) of the
jth reaction. Further, the quantities n; € Z denote the stoichiometric coefficients and g; are rational functions of the form
& = DuXaXp (Mass action) or gj = puXqXp/(Pp + Xa) (Michaelis-Menten) witha, b € {1,2,...,n}and o, B € {1,2,...,m},
describing the kinetic rates of the corresponding reactions. This leads us to assume that f; € C! for each i and hence
F : R™™ — R™ can also be assumed to be a C' function. Furthermore, the variables representing the concentration
level of a species within a single cell as well as the parameters capturing the reaction rates will take values from a bounded
interval. Hence the domain of F can be restricted to a bounded region D of R"™.

Given z; = (vg, k) where vy specifies the initial values of the variables and k specifies the parameters values, the
system of ODEs will have a unique solution since F € C! [23]. We shall denote this solution by Z(t) with Z(0) = z, and
Z'(t) = F(Z(t)). We are guaranteed that Z(t) will be a C°-function [23].

It will be convenient to define the flow @ : R, x & — D of Z = F(Z) for arbitrary initial vectors z. It will be a C°-
function given by: @ (t, z) = Z(t) with ®(0,z) = Z(0) = zand 3(P(t, z))/dt = F(P(t, z)) for all t [23]. Further, & (t, -)
will be bijective.

Since the flow @ is C°, i.e. continuous and » < R™™ is a metric space we are assured that @ (t, -) is (Bp, Bop)-
measurable by Proposition 1. In what follows, we use @, to denote @ (t, -) and summarize the above observations via:

Proposition 2. Suppose Z = F(Z) is an autonomous system of ODEs with F in C! and with the domain of F being a bounded
region D ofR”f'". Then there exists a unique flow @ : Ry x D — D for arbitrary initial vectors z satisfying: @ (t, z) = Z(t)
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Pa(X)) = {X1, X3} % (x3) x;
Pa(Xs) = {X2, X1, X4} Kxﬁjy x5
Pa(Xs) = {Xs) / () /. e / /. &)
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t, t, t, t

Fig. 1. A DBN example.

with @(0,z) = Z(0) = zand 3(P (t, z))/dt = F(P(t, z)) for all t. Further, ®(t, -) will be in C° and hence B4-measurable. As
aresult, forallt € R:

Be Bp = &, '(B)={z€ D | ®(t,2) € B} € Byp.

2.2. Markov Chains and dynamic Bayesian networks

A Markov Chain [29] is a pair (S, {p;}) where S = {s1, s, ..., sa} is set of states and p; € [0, 1] are the transition
probabilities with Zjﬁ:]p,j = 1foreveryi. Thus if the system is in state s; at t then it will be in state s; at t + 1 with probability

pjj. Given an initial probability distribution @O over S att = 0, viewed as an 1 x fi-row vector, the probability distribution
Wk over S at t = k will be given by (&%) T where T is the i x fi transition probability matrix with Ty = pj;.

A Bayesian network [15] is a finite acyclic directed graph BN = (V, E) which has a finite-valued random variable X, and
a conditional probability table CPT, associated with each node v. The entries in CPT, will be of the form Pr(X, = x|X,, =
X1, Xy, =X, .., Xy = x;) where {vy, vz, ..., v;} is the set of parents of v given by Pa(v) = {u | (u, v) € E}. BN represents
— often compactly — the joint probability distribution over the random variables {X,},cv given by: Pr(X,, = x1,X,, =
X2, ... ,Xvﬁ =Xp) = 1_[?:1 PT(XUI. = X; |Xv,'1 = Xi1, Xviz = Xi2, ... ’XUij = Xij) with Pa(vy) = {vi1, vio, ..., UU}

Dynamic Bayesian networks (DBNs) are Bayesian networks that model temporal evolution of systems whose (local
states) are modeled as random variables [4]. There are many variants of dynamic Bayesian networks. We will be dealing

with a restricted class of time-variant two-slice dynamic Bayesian networks. They will be of the form (B, {B‘L}E:], Pa),
where By defines the initial probability distributions {Pr(X?)} of the random variables {Xi}f:1. And {Bd_,} are two-slice

temporal Bayesian networks for the time points {t', ..., ta}. The nodes of the Bayesian network B‘L denoted V¢ is given
by V¢ = {Xid_1 |1 <i<lju {Xid | 1 < i < I} (here we are identifying the nodes with the random variables associated
with them). The edge relation E“ will be the subset of {X{™' | 1 <i < I} x {X! | 1 <i < I} satisfying (X", X{) € E*iff
X; € Pa(X;). As might be expected, Pa : X — 2Xwith X = {X; | 1 < i < I}. Each node Xid will also a conditional probability
table CPT{ associated with it with entries of the form Pr(X? = x | X' = x;1, .. .X;’l = x;), where Pa(X;) = {X1, . . . X;}.

Thus the way the nodes of the (d + 1)th layer are connected to the nodes of the dth layer will remain invariant. However
CPTid“ will be, in general, different from CPTid. An example of such a dynamic Bayesian network is shown in Fig. 1. To
avoid clutter we have not shown the CPTs associated with each node. In our setting these dynamic Bayesian networks will
represent an associated Markov chain in a factored form.

3. The Construction of the Bayesian dynamics model

Conceptually, our approximation technique consists of three major steps. First we discretize the value spaces of the
variables and parameters into a finite sets of intervals. We also discretize the time domain of interest into a finite number
of time points. Finally we assume a prior distribution of initial values over the intervals. As a result, the flow defined by our
system of ODEs will induce a Markov chain M Cjgeq;.

This Markov chain cannot be computed explicitly. Hence as a second step, we compute an approximation of this Markov
chain by sampling the initial states according to the prior sufficiently many times, and generating a trajectory for each of the
sampled initial states. Then by a simple process of counting tied to the discretized value space and time domain, we obtain
the Markov Chain denoted M Cgpprox as an approximation of MCigeq.

However, the number of states of M Cgyprox Will be exponential in the number of variables. To get around this, in the
third step, we exploit the pathway structure (i.e. the way the variables are coupled to each other in the system of ODEs) to
represent M Cgpprox cOmpactly as a dynamic Bayesian network. This representation of M Cgpprox is our final object and will
be called the Bayesian Dynamics Model (BDM).

This three step procedure is however just a conceptual framework. We shall construct the BDM directly from the given
system of ODEs instead of passing through a Markov chain. We now proceed with a more technical description the steps
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involved in constructing the BDM model. In doing so, we shall assume that we are given the system of ODEs X;(t) = f;(x(t), p)
with n variables and m rate parameters specified in the previous section with the associated notations and assumptions.

3.1. The Markov chain MCijgeal

Pathways models are usually validated by experimental data available only for a few time points with the concentrations
measured at the final time point typically signifying the steady state value. Hence we assume the dynamics is of interest

only for discrete time points and that too only up to a maximal time point. We denote these time points as {tg, t1, . . ., tmax}-
It is not necessary to uniformly discretize the time domain. However, to simplify the notations of the following sections, we
fix a time step At > 0 and the time points of interest is assumed to be the set {d - At} with d ranging over {0, 1, ..., d}.

Thus d - At is the maximal time point of interest.

Next we assume that the values of the variables can be observed with only finite precision and accordingly partition the
range of each variable x; into L' intervals [v}"i”, vi]), [v}, viz), e [viL"fl, v"*]. We denote this set of intervals as {;. We also
similarly discretize the range of each parameter p; into a set of intervals denoted as {,,;. The set § = {{i}1<i<n U {dntj}1<j<m
is called the discretization. Again, we wish to emphasize that the value space can be discretized non-uniformly and our
constructions will go through.

As pointed out earlier, the initial values as well as the rate constants (even when they are known) will be given not
as point values but as distributions (usually uniform) over the intervals defined by the discretization. We correspondingly
assume we are given a prior distribution in the form of a probability density function Y° capturing the initial values.

For example, suppose we are given that the initial values are uniformly distributed within a hypercube 71 X iz X oo X fn+m,
where i,- € J;foreachi. Let i,- = [l;, u;) and @; = u; — I;. Then the corresponding prior probability density function Y° will
be given by:

1

@) = !Olzm iz el X fusm,

otherwise.

The associated probability space we have in mind is (D, B85, P°) where B, is the Borel o-algebra over D; the minimal
o-algebra containing the open sets of £ under the usual topology. P is the probability distribution induced by Y° and is
given by:

P°(B) = /Yo(z)dz, for every B € By.
B

Further, TRAJigess = {®:(2)};>0 With z ranging over i] X iz X - X ?n+m is the family of trajectories starting from all the
possible points in this hypercube. As before, @ is the flow induced by the system ODEs.
@ is measurable by Proposition 1. Hence we can define the probability distribution P* over 8, for every t as:

P‘(B) = P°(®, '(B)), foreveryB e Bjp.

Let v be a real number in the range of x;. We define [v] as the interval in which v falls. In other words, [v] = I'iffv € I.
Similarly, [k] = J if k € ] for a parameter value k of p; with ] € 4.

Lifting this notation to the vector setting, if z = (v1, vy, ..., Up, k1, ko, ..., k) € RT”I, we define [z] = ([v{], [v2],
<oy [vnl, [k1], ..., [kn]) and refer to it as a discrete state. An .M C-state is a pair (s, d), where s is a discrete state and
de{0,1,..., a}.We next define Pr((s,d)) = P ({z |z€l; x b X -+ x Inym}), wheres = (I1, I, ..., Iy1m). We term
the M C-state M to be feasible iff Pr(M) > 0.

The transition relation denoted as —, between M C-states is defined via: M = (s,d) —> M’ = (s, d) iffd =d + 1 and
both M and M’ are feasible and there exist zg, z, and Z’ such that @ (d- At, zy) = zand @ ((d+1)- At, zy) = z'. Furthermore,
[zl =sand [Z] =5 .

Let E, F denote, respectively, the event that the system is in the discrete state s at time d - At and in the discrete
state s’ at time (d + 1) - At for two feasible MC-states (s,d - At) and (s, (d + 1) - At). Let EF = E N F denote
joint event {zy | ®(d - At,zg) € s,®((d + 1) - At,zg) € §'}. Consequently, we define the transition probability
Pr((s,d) — (s',d")) = Pr(F|E) = Pr(EF)/Pr(E). Since Pr(E) > O this transition probability is well-defined.

Let M = {Mj, My, ..., Mj} be the set of M-states. We can now define the Markov chain MCjseqt = (M, {p;}) with
transition probabilities p; = Pr(M; — M;) as above.

Example. A typical biochemical equation depicting an enzyme catalyzed reaction can be written as follows:
kq k3
S+Ek:ES—>E+P. (1)
2

As the basic component of signal transduction pathways [30], it accounts for one step in the transduction of a signaling
cascade. In this reaction, the enzyme E binds reversibly to the substrate S, before converting it into the product P and
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releasing it. The parameters k1, k, and k3 are the rate constants that govern the speed of these reactions. The corresponding
ODE model will be:
ds
dt
dE
dt
dES
dt
dP
dt
Assuming that the range of each variable or parameter is: S € [0, 15],E € [0, 10],ES € [0,10],P € [0, 15],k; €
[0,1],k, € [0, 1], ks € [0, 1] (for simplicity, we ignore all units in this example), we partition each range into 5 equal-
sized intervals and form the discretization § = {{s, d¢, dgs, dp, Lk, dk,, i}, where £s = 4p ={[0, 3),[3, 6),[6, 9), [9, 12),
[12, 15]}, L = Jgs = {[0, 2), [2, 4), [4, 6), [6, 8), [8, 10]} and Lk, = Ly, = Jx; = {[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8),
[0.8, 1]}. We fix the time step At to be 0.1 and fix the number of time points to be 100. We have adopted equal-sized
intervals and fixed time steps only for convenience.
Suppose we are given a prior distribution that the initial values zo = (S, E, ES, P, k1, k,, k3) are uniformly distributed
within a hypercube C = [12, 15] x [8, 10] x [0, 2) x [0, 3) x [0.2,0.4) x [0.4,0.6) x [0.2, 0.4). We then have the prior
probability density function Y° given by:

—ky-S-E+ky-ES

=—k1SE+(k2+k3)ES
:k1-S-E—(k2+k3)-ES

= ks - ES.

1 _ 15
TO(Z) — {(1512)(108)(20)(30)(0.40.2)(0.60.2)(0.40.2) — 36
0

ifzeC,
otherwise.

Thus, My = (so = ([12, 15], [8, 10], [0, 2), [0, 3), [0.2, 0.4), [0.4, 0.6), [0.2, 0.4)), 0) will be the initial .M C-state of the
induced Markov chain M Cjgeq. Clearly Pr(My) = 1 since Pr(Mg) = P°({z |z € C}) = f{ Y%(z)dz = 1.

z|zeC}

3.2. The Markov Chain MC gpprox

The ODEs system will typically not admit a closed form solution. Hence @ cannot be derived explicitly and as a
consequence, MCjgq can not be explicitly computed either. We can however compute an approximation of M Cjgeq as
follows.

We sample z (the initial state) a sufficiently large number of times, say N, according to the prior distribution P° (we say
more about N below). For each sampled initial z, we determine through numerical integration the M-states [®(d - At, z)],

with d ranging over {0, 1, ..., d}. We also determine the transitions along this trajectory. Then through a simple counting
process involving these N trajectories (as illustrated below), we compute a Markov chain that we refer to M Cgpprox-

Example (continued). Continuing with the enzyme-kinetic system example presented in previous sub-section, we
randomly pick 1000 points from the hypercube C as initial states. Through numerical simulation, we generate 1000
trajectories starting from those points. Then Pr((s, d)) is the fraction of the 1000 trajectories that are in the discrete state s
at time point d- At. Pr((s, d) — (s’, d+ 1)) is the fraction of the trajectories that are in s at time point d - At which land in s’
at time point (d + 1) - At. For instance, suppose 132 trajectories are in the discrete state s, at time point 0.1, and 12 of these
132 trajectories evolve to land in the discrete state s; at time point 0.2. Then we have Pr((s;, 1)) = 132/1000 = 0.132 and
Pr((sz, 1) — (s3,2)) = 12/132 = 0.091.

However, the number of states of this Markov chain will be exponential in n. As a result, for many signaling pathways,
MCqpprox Will be simply too large. Hence we shall construct a time-variant two-slice DBN called the BDM to compactly
represent M Cgpprox- We shall however compute the BDM directly from the N sampled trajectories.

3.3. The BDM representation

The key observation is that the structure of the system of ODEs can be exploited to factorize M Cgpprox into a time-variant

2-slice DBN. This DBN will have (n + m) x (a + 1) nodes. The node v will have associated with it a random variable Xid.
This random variable will take as values the intervals in J4;; the intervals into which the value space of x; (in case i < n) or
the parameter p;_, (in case i > n) has been discretized. The superscript d will stand for the fact the probability distribution
associated with Xid describes the probability of the value of the variable x; (or the parameter p;_, ) falling into various intervals
in 4; at time d - At. In what follows, for convenience, we will use the same name to denote a node and the random variable
associated with it. From the context it should be clear which role is intended. We now proceed with the construction of the

DBN (B, {B%, }4_,, Pa).
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PriP?21|PL 1 ESU= 17, ks= ") = 0.7,

LI €1,
I” €I
e,

Fig. 2. A slice of the BDM of the enzyme-kinetic system.

We assume that the prior distribution of initial values of the variables and parameters are independent of each other. This
is often a reasonable assumption. Even when the assumption is violated it is certainly reasonable to assume that marginal
prior probabilities of each variable and parameter can be computed and thus B® = {Pr (Xio)}?;m can be computed. Next, the
parent relation Pa is defined as follows. In doing so, it will be convenient to identify the variable x; with X; and the parameter
Dj with Xngj.

Suppose z,z' € {x1,X2, ..., Xn, D1, D2, - .., DPm}.- Then z’ € Pa(z) iff z/ = z or z is a variable and z’ appears in the right-
hand side of the equation for dz/dt in the system of ODEs.

Thus the structure of the ODEs and more precisely, the structure of the bio-chemical network induces the underlying
graph of the DBN.

V¢, the set of nodes of the Bayesian network BY, = (V¢, E4) willbe: V¢ = (X' | 1 <i < n+m}U{X? | 1 <i < n+m}.
The edge relation E? is defined in the obvious way now using the function Pa. To spell it out, it will be the subset of
X1 <i<n4m) x (X |1 <i<n+m}satisfying (X', X%) € E4iff X; € Pa(Xy).

Finally, suppose Pa(x;) = {z1, ..., z;}. Then the conditional probability table (CPT) associated with the node Xid will have
entries of the form Pr(Xid =1] zf_l =1 ..., zld_l = I') = h with I ranging over {; and I ranging over Jifor1 <j<land
h ranging over [0, 1]. This entry captures probability of the value of the variable x; (assuming i < n) falling in the intervals I
at time d - At given that at time (d — 1) - At, the value of the variable (parameter) z; was in the interval Pfor1<j<lLlItis
in this sense the dynamics defined by M C;4eq is captured in a factored form by the DBN.

Example (continued). Fig. 2 shows two adjacent slices in the BDM of the enzyme-Kkinetic system. The structure of this BDM
is derived from the ODEs presented in Section 3.1. For instance, the parent nodes of P4+ are P, ES? and k4 since P¢, P4*! refer
to the same variable P while ES, k3 appear in the expression for dP/dt. As mentioned earlier, the parameters are assumed to
retain their values during a run and hence we denote k;” as simply k; and there will be no CPTs associated with these nodes.
On the other hand, the CPT associated with the node P%+! will have entries of the form Pr(P®! =1 | P4 = I',ES¢ = 1", k3 =
Iy = h,whereI,I' € 4p,1"” € dgs,I"” € i, and h € [0, 1]. As illustrated in this example, the connectivity between the
nodes in successive slices will remain invariant. However, due to the fact that the CPTs associated with the nodes capture
the transition probabilities at different time points, they will be time variant.

MCapprox Will have, in the worst case, 0((21 + 1)K™) states and O(aKZ") transitions, where K is the maximum of | ;| with

1 <i < n+ m. In contrast, the number of nodes in the BDM representation is O(a(n + m)) and the conditional probability
table associated each node will have at most O(K®*1) entries, where R is the maximal number of parents a node can have.
Usually, the reactants in pathway models will be sparsely coupled to each other and hence R will be much smaller than n.
For instance, in the first case study to be presented, n = 32 and R = 5.

To fill up the entries of the CPTs associated with the nodes we randomly choose N combinations of initial values for the
variables and the parameters from their prior distribution as before. Since we assume that the initial values are independent
of each other, the values of a variable/parameter can be sampled according to its marginal prior distribution. For instance,
in our running example, we can randomly choose a value from [12, 15] for S, a value from [8, 10] for E, a value from [0, 2)
for ES, a value from [0, 3) for ES, a value from [0, 1] for k;, a value from [0, 1] for k,, a value from [0, 1] for k3, and then form
a vector of initial values.

After picking N sample initial value vectors, we perform numerical integration to generate N trajectories and discretize
those trajectories by the predefined intervals and compute the conditional probabilities for each node by simple counting.
For example, suppose 132 trajectories hit (P® = [0, 3), ES® = [0, 2), k3 = [0.2, 0.4)) at time 0 and 12 of them in turn hit
(P! = [3, 6)) at time 0.1, then Pr(P! = [3, 6) | P° = [0, 3), ES® = [0, 2), k3 = [0.2, 0.4)) = 12/132 = 0.091.

It is not difficult to show that M Cgpprox can be recovered from this DBN [31]. However one would rarely need the kind of
global information provided by M Cgpprox to analyze the pathway dynamics. Hence one can almost always avoid having to
explicitly construct this large entity.

3.3.1. Sampling methods
Since we have n variables and m parameters, the N sampled initial values vectors should be picked from a (n 4+ m)-
dimensional space. According to the prior distribution, the value of each variable or known parameter often lies in one
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interval. For instance, the value of species E in our running example lies in [8, 10]. Thus, for existing models or for those for
which the parameter estimation has already been carried out, we can randomly pick a value for each variable/parameter
according to their marginal prior and then form a vector of initial values. We term this type of sampling as direct sampling.

However, the value of an unknown parameter will range over all its intervals. For instance, in our running example, the
value of each unknown parameter should be sampled from 5 intervals. Thus if we have u unknown parameters whose value
spaces have been discretized to K intervals each, one will require a sample size of | - K to ensure J samples for each possible
combinations of interval values of the unknown parameters. We term this as global sampling. Thus the number of samples
this method would require will be exponential in the number of unknown parameters. This will often be an unacceptably
large number.

At the other end of the spectrum, we can pick ] samples for each possible interval of variables or parameters. The idea is to
randomly choose a point within the target interval I of, say, the variable x; and then arbitrarily extend this point value to an
(n+m)-dimensional vector over the allowed intervals of the other variables and parameters. We term this as local sampling
and it will require a sample size of (n + m) - J - K with coverage of | per interval. Hence local sampling will require a much
smaller sample size. However, it cannot guarantee adequate coverage for combinations of interval values of the parameters.

To bring this out through an artificial but simple case, suppose x takes values in the intervals I; and I, while y takes values
in the intervals I3 and I4. To get a local coverage of 100 samples per interval, we may pick 100 points from I; and extend it
by combining it with a random value for y (which will fall in I5 or I ). Let S; be the set of such samples. Similarly let S, be the
set of 100 samples obtained by picking 100 points from I, and extending each of them randomly to a value for y. Finally, let
S3 (S4) be the 100 samples obtained by picking 100 values from I5 (I;) and extending each of them randomly to a value for
x. In this way, with 400 samples we will be able to guarantee a minimum of 100 hits for each of the intervals {I1, I, I3, I4}.
However suppose the y-values of all the samples in S; (S;) fall in S3 (S4) and the x-values of all the samples in S3(S4) fall in
S1(S2). Then none of the 400 samples will fall in I; x I4 (I; x I3) and hence we will get 0-coverage for the combination of this
pair of intervals!

To ensure that we are exploring the ODEs dynamics adequately, we need to ensure that all the possible combinations
of interval values of unknown parameters governing any single equation are being sampled an adequate number of times.
Otherwise, the probabilistic inference we need to to perform on the BDM model during parameter estimation and sensitivity
analysis will have poor quality.

Hence to get good coverage in the presence of many unknown parameters, one will have to resort to more sophisticated
methods. Here we propose a method called equation sampling by which numerical simulations can be carried out in the
presence of unknown parameters while ensuring that the local dynamics defined by the individual equations are being
explored adequately. To bring out the main idea, suppose the equation for the variable x; involves the unknown parameters
ki and k, and the values of k; (k;) have been divided into three intervals I (I7), I, (I;) and I3 (I3). Then for a specific
combination of intervals, say I, and I} we pick 100 samples such that the k; value lies in I; and the k, value lies in I} for each
of the samples. In this way we can pick 900 samples which ensure that there are at least 100 samples for each combination
of interval values for k; and k,. In general, we will be able provide a coverage of ] samples for each possible combination
of interval values of the unknown parameters in the equation for each variable with the help of n - J - K samples, where R
is the maximal number of unknown parameters appearing in an equation. Since the positive terms (negative terms) in the
differential equation of a species describe the rates of reactions that producing (consuming) this species, equation sampling
will provide of a coverage of all possible local conditions that determines the dynamics of a single species. Thus, with this
type of sampling, the quality of model analysis tasks can be ensured with an acceptable sample size.

3.3.2. Optimizations

Various optimizations can be developed to reduce the practical complexity of the BDM construction. Specifically, the
sampling process followed by the generation of a trajectory can be easily parallelized and executed on a computing cluster.
In addition, the CPTs can be stored using a sparse representation. Yet another optimization is to split up a “fat” node with a
large number of parents into nodes with smaller fan-in degrees and thus reduce R. As shown in Fig. 3, the reduction can be
based on the form of the differential equation associated with the variable. Given that dES/dt = k; - S - E — (ko + k3) - ES,
we introduce two internal nodes X and Y, where X corresponds to the positive term of dES/dt, namely, k; - S - E and Y
corresponds to the negative term (k, + k3) - ES. As a result, R can be reduced from 6 to 3. We note however, at present we
consider this optimization only to reduce the sizes of the CPTs and not to reduce the number of samples when using the
equation sampling method. More details can be found in the Supplementary Material [22].

For sure, the construction of the BDM will involve a significant computational effort but it is a one time cost and significant
optimizations can be deployed. Moreover, once the BDM has been constructed, many of the analysis tasks can be performed
very efficiently and the one time cost of constructing the BDM can be easily amortized. The experimental results presented
in Section 5 will support this claim.

3.4. Error analysis

Since N is finite, there will be an error between the transition probabilities (also the .M C-state probabilities) computed
using M Cgpprox and the ones defined by M Cjgeqi. By the central limit theorem [25], this error can be probabilistically bounded.
Let MCigeas = (M, {pu}) and M@approx = (M, {ﬁlj})v we have
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before splitting after splitting

Fig. 3. Node splitting.

Proposition 3. Suppose the number of samples is N. Then € will be the error with probability ¢ between p;; in M Cgpprox and the
corresponding pj; in M Cgeq Where

=g (C‘ZF]) /Pij(1N—pij)

—y2/2dy.

with ¢(x) = ﬁ Fe

Proof. Let X be a random variable such that X = 1 (X = 0 resp.) denote the event that a sample trajectory passes (not
passes resp.) a discrete state s at time d - At. Hence X will have a Bernoulli distribution with parameter p; with u = p;; and

0% = pii(1 — p). 1f X4, X5, ..., Xy are the N measurements, by Central Limit Theorem, we have:
N
X N
Pi—efz’;]“—ufe}%mb(ef)—l
o

where € is the error and ¢ (x) = \/% I e~¥’/2dy. Thus,

€= ¢_1( —; ) Pi N Py \vith probability c. O

Similarly, we have:

Proposition 4. For each M = (s, d) € M, its probability ﬁr(M) computed from M Cgpprox differs from the one Pr(M) defined in
MCigeqr by an error less than or equal to € with probability ¢ where:

1 Pr(M)(1 — Pr(M
e=¢! (C—; )\/ rM)( N r) with probability c,

with () = 2= [*, eV’ /2dy,

Therefore, given an error bound € and a confidence level ¢, we can compute N, the number of samples required to get an
error less than or equal to € with likelihood c. For instance, let ¢ = 0.01 and ¢ = 0.95. To estimate Pr((s;, 1) — (s3, 2)), we
need [(,/0.091(1 — 0.091) - ¢~1((0.95 4 1/2)/0.01)?] = 3178 samples. Further, this error will tend to 0 with probability
1 as N tends to co. There will be an additional error induced by the pth-order numerical integration method we use to
compute the N trajectories. This error is O(AtP) and will tend to 0 as At tends to 0 or p tends to oo.

This error analysis is preliminary and more needs to be done as we remark in the concluding section.

4. Analysis methods

We now present some of the analysis techniques we have developed for the BDM representation. These techniques are
founded on a basic Bayesian inference method realized via the FF (Factored Frontier) algorithm [20]. Specifically we develop
parameter estimation and sensitivity analysis methods for the BDM model. Our goal here is not to develop new algorithms to
solve these problems. Rather, we wish to demonstrate how standard techniques for tackling these problems can be adapted
to the BDM framework in a straightforward manner.
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4.1. Probabilistic inference

As pointed out earlier, although the dynamics defined by the ODEs is deterministic, to answer a basic query such as
“what will be the concentration of the protein x; at time t?” one will have to numerically generate a representative sample of
trajectories and compute the average of the values for x; at t yielded by the individual trajectories.

Using our BDM approximation, we can answer such a basic query and other more sophisticated queries by Bayesian
inference. Specifically, given a Bayesian network, some observed evidence and some knowledge about the distribution of
values of a set of variables, Bayesian inference aims to compute posterior distribution for a set of query variables. In our
setting, the observed evidence will consist of known initial conditions and parameters as well as experimental data. Query
variables will typically be selected random variables in the BDM. We adopt an approximate inference algorithm for DBNs
known as the Factored Frontier (FF) algorithm [20].

The FF algorithm approximates, at each time point, joint distributions as products of marginal distributions. For example:
Pr(xd, x4, x9) ~ H?:l Pr(x%). Hence the posterior distribution will be computed according to:

PrxiD) =Y | Pr(d|Pacy =1) [ Preuip) |. 2)

I uePa(xf)

Here Pr(u|D) are the marginal distributions over the parents, D is the evidence, and Pa(x;) denotes the parents of x;. The
implementation of FF is straightforward. By storing Pr(x?|Pa(x?)) in the conditional probability tables and propagating

Pr(u|D) to the next time point, we can use (2) to compute Pr(xid |D). The time complexity of this algorithm is O(tAi(n—{—m)KR‘H ),
where as before, K is the maximal number of intervals associated with a variable or rate constant’s value domain and R is
the maximal number of parents a node can have.

Using this algorithm, and with some additional computations, many queries can be answered. For instance, given the
initial conditions, a single run of the FF algorithm will infer the marginal distributions of each variable at every time
point. These probability distributions can then be used to validate the model by comparing them with experimental data.
Flow cytometry data may provide direct information about the probability distributions of species concentration in a cell
population. For such data, we may discretize it into distributions over intervals and supply it to the FF algorithm. On the other
hand, western blot data, which is more common, will provide the averages of species concentration in a cell population.
Suppose we have the data for x; at time d - At, denoted as D,‘fi'm . Note that the marginal distribution of xf inferred by FF

algorithm is over discrete values {;. To compute the real-valued “mean” of xf that can be compared with D,dq'A‘ , we identify

each interval I = [I, u) in £ with its mid-point (I + u)/2. Then the expected value E(xf) can be computed and compared
with DEAL,

4.2. Parameter estimation

Lack of knowledge about the parameters and hence the need to perform parameter estimation using limited data
is a major bottleneck to pathway modeling. Current approaches to parameter estimation formulate it as a non-linear
optimization problem [32]. A typical procedure will involve searching in a high dimensional solution space, in which each
point represents a vector of parameter values. Whether a point is good or not is measured by an objective function, which
will capture the difference between experimental data and prediction generated by simulations using the corresponding
parameters.

For a large pathway model, one often needs to evaluate a very large number of solution points involving a numerical
integration for each evaluation. This makes the process computationally intensive. The BDM representation allows us
search for good parameter values in a hierarchical manner. Due to the discretized nature of the BDM, the solution space
is transformed into a rectilinear grid tessellated by hyperrectangles that we call blocks. An important observation is that
kinetic parameters are often robust [33]. In other words, the points around a good solution in the search space will also have
relatively small objective values. Thus, instead of searching point by point in the solution space, we can first search for a few
promising blocks and then take a closer look within these small blocks. Guided by this intuition, the general scheme of our
“grid search” algorithm consists of two phases: (1) identify good blocks, (2) do a local search within candidate blocks. We
note that phase (2) is necessary only when we aim to estimate parameters with finer granularity than the granularity of the
BDM'’s discretization. Otherwise, one can skip phase (2) and return a probabilistic estimate (typically a Maximal Likelihood
Estimate) of a combination of intervals of parameter values. For executing phase (1), we can apply any standard search
algorithms over the discretized search space. As this space is much smaller than the original one, a simple direct search
algorithm such as Hooke & Jeeves’s search [34] can be adopted and the overall search process will only require a small
number of evaluations of the objective function.

A block dictates a combination of intervals of parameter values. In order to evaluate the goodness of a block, we execute
FF algorithm once by supplying the chosen parameter values — in terms of intervals — as evidence. Then the objective value
can be computed by comparing the expected value of marginal distributions with the experimental data as described in
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the previous subsection. Hence the parameter estimation process will only require a small number of executions of the FF
algorithm and the overall running time will be significantly shortened.

Note that during BDM construction, if we do not have any knowledge about the prior distributions of unknown
parameters, we can assume they are uniformly distributed within their ranges. Then after filling up all the entries of the
CPTs of the BDM, the FF algorithm will be able to evaluate the goodness of any block in the discretized search space.

Example (continued). Assume that only k; and k; are unknown parameters and that k3 € [0.2, 0.4). Assume further that we
have experimental data for S and P at time points {1, 2, 5, 10}. We then construct a BDM according to a prior distribution
that the initial values zy = (S, E, ES, P, k1, k;, k3) are uniformly distributed within the hypercube [12, 15] x [8, 10] x
[0,2) x [0, 3) x [0, 1] x [0, 1] x [0.2, 0.4). Since |4y, | = |dk,| = 5, the solution space [0, 1] x [0, 1] is discretized into 25
blocks. In phase (1), we try to search for good blocks among the 25 blocks. Suppose we conduct a Hooke & Jeeves’s search
and evaluate blocks one by one. For instance, to evaluate block ([0.4, 0.6), [0.2, 0.4)), we set Pr(k; = [0.4,0.6) = 1 and
Pr(k, = [0.2, 0, 4) = 1 (the distributions of S°, E®, ES®, P°, and k; are the same as the prior distribution for constructing the
BDM) and execute FF algorithm. If the inferred distribution of S'° is {Pr(S'° = [12, 15]) = 0.6, Pr(S'® = [9, 12)) = 0.4}, we
have E(S'%) = (15 — 12)/2 - 0.6 + (12 — 9)/2 - 0.4 = 12.3. Then we can compute the weighted square root error between
E(5'%) and the available data. After searching suppose we find that ([0.2, 0.4), [0.4, 0.6)) is the best block (i.e. it has the
minimal objective value), we then can either execute phase (2) by searching within the solution space [0.2, 0.4) x [0.4, 0.6)
or just return {k; ~ U(0.2, 0.4), k; ~ U(0.4, 0.6)} as a probabilistic estimate (U stands for uniform distribution).

4.3. Global sensitivity analysis

Sensitivity analysis has been used to identify the critical parameters in signal transduction [35]. To overcome the
limitations of traditional local sensitivity analysis methods, global methods have been proposed recently such as multi-
parametric sensitivity analysis (MPSA) [36]. The MPSA procedure consists of: (1) draw samples from parameter space and
for each combination of parameters, compute the weighted sum of squared error between experimental data and predictions
generated by selected parameters; (2) classify the sampled parameter sets into two classes (good and bad) using a threshold
error value; (3) plot the cumulative frequency of the parameter values associated with the two classes; (4) evaluate the
sensitivities as the Kolmogorov-Smirnov statistic [37] of cumulative frequency curves.

Signaling pathway models often contain a large number of parameters. Hence it is necessary to sample a representative
set from all possible combinations of parameter values. To improve this process, [38] adopts Latin Hypercube Sampling (LHS)
since it requires fewer samples while guaranteeing that individual parameter ranges are evenly covered. Briefly, the range of
each parameter is divided into K equal-sized intervals. Then for each parameter, one randomly samples K values, one from
each interval of the parameter. Then to generate combinations of parameter values which are samples for MPSA, values are
chosen in a random order from the K values for each parameter. This method helps to computationally manage the large
number of parameters being varied simultaneously, while ensuring maximal sampling through each parameter dimension
[39]. In our BDM setting, MPSA can be performed in a similar manner using LHS since the parameter space is discretized into
blocks. In addition, the number of samples used to reach convergence is reduced since we can quickly evaluate the goodness
of the whole block using the FF algorithm instead of having to draw samples from a block.

5. Two case studies

We have implemented the scheme for constructing the BDM in Java. To validate our techniques, we carried out two
case studies. The first one involves a signaling network built by Brown et al [1], which aims to study the influence of the
nerve growth factor (NGF) and the mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. The
second case study deals with a signaling network with complicated dynamics studied by Goldbeter et al. [2] to investigate
a remarkable example of biological rhythms, namely, the segmentation clock.

5.1. Case study 1: the EGF-NGF signaling pathway

PC12 cells are a valuable model system in neuroscience. They proliferate in response to EGF stimulation but differentiate
into sympathetic neurons in response to NGF. This interesting phenomenon has been intensively studied [40]. It has been
reported that the signal’s specificity is correlated with different Erk dynamics. Specifically, a transient activation of Erk1/2
has been associated with cell proliferation, while a sustained activity has been linked to differentiation. How EGF and NGF
affect the dynamics of active Erk through a network of intermediate signaling proteins is shown schematically in Fig. 4.

This model includes a common pathway to Erk through Ras shared by both the EGFR and NGFR, and also two important
side branches through PI3K and C3G. This introduces multiple feedback loops leading to sophisticated dynamics. The ODE
model of this pathway is available in the BioModels database [41]. It consists of 32 differential equations and 48 associated
rate parameters (estimated from multiple sets of experimental data).

To construct the BDM, we first derived its graph from its ODEs (see Supplementary Table 1). We then discretized the
ranges of each variable and parameter into 5 equal-size intervals and fixed the time step At to be 1 min. These choices
were made mainly in order to proceed with the BDM construction smoothly but without trivializing the effort. Further, the
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Fig. 4. EGF-NGF pathway [1].
1.20x10° 1.30x10° 1.30x10" 1.320410° 1.30x10%
. * 5
960x10° boundNGFR 1.04x10° Sos 1.04x10° 1056x10° 1.04x10°
7.20x10° 7.80x10° 5 % 7.80x10"
== 7.80x10 PYORSK* | 7.920x10 fae
480x10° 5.20x10° 5.20x10° 5.280¢10° 5.20¢10* as
240x10° 2.60x10° 26010 2640x10° 2.60x10"
Iy —_—
0.00 000 000 0.000 0.00
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 0 20 40 60 80 100
s s
6.600x10 6.600x10' 132000 120000 1.320x10
g T O ittt I s il |
5.280x10 5.280x10’ Erce 105600 96000 1.056x10%
3.960x10° Mek* 3.960x10° = 72000 7.920x104
— 79200 Rap1
2640x10° 2.640x10° 52800 48000 AKT* | 5280x104
1.320x10° /\_\ 1.320x10° 26400 24000 - 264010
0.000 0.000 0 0 0000
0 20 40 60 8 100 0 20 40 60 8 100 0 20 40 60 8 100 0 20 40 60 8 100 0 20 40 60 80 100

Fig. 5. Simulation results of EGF-NGF signaling pathway. Solid lines represent nominal profiles and dash lines represent BDM simulation profiles.

experimental data (western blot) is such that 5 uniform intervals seemed a reasonable choice. However our construction can
be easily extended to non-uniform values intervals and time points. To fill up the conditional probability tables associated
with the nodes, 3 x 10° trajectories were generated up to 100 mins by sampling initial states and parameters from the prior
which are assumed to be uniform distributions over certain intervals (Supplementary Tables 2 and 3). Since we planned
to study the effectiveness of our BDM based parameter estimation method (Section 5.1.2), we singled out 20 of the 48
parameters to be unknown ( Supplementary Table 3) . When generating the 3 x 108 initial states, the sampled initial values
of these parameters were chosen from their full range of possible values and not biased towards any specific intervals.
These samples were generated using the direct sampling method. We recall that in this method, the initial values of those
trajectories are according to prior distribution (except for the parameters designated to be “unknown” as described above).
Specifically, we randomly pick a value for each variable/parameter according to their marginal prior and then form a vector
of initial values. The computational workload was distributed on 10 Opteron 2.2 GHz processors in a cluster. It took around
4 h to construct the BDM. All the subsequent experiments reported below were done using an Intel Xeon 2.8 GHz processor.

5.1.1. Probabilistic inference

To test the quality of our approximation, we implemented Monte Carlo integration for the ODE model to get good
estimates by sampling and averaging. Specifically, we numerically generated a number of random trajectories — according
to the prior — using ODEs and computed the average values of the variables at the chosen time points. Our experiments
show that the average values converge when the number of random trajectories generated is roughly 10%. The averaged
trajectories projected to individual protein concentration time series values are termed to be the nominal simulation profiles.
Using the implemented FF algorithm the mean of each variable over time was computed. In doing so, for the 20 parameters
which were assumed to be unknown during the BDM construction process, their values were presented as specific intervals
(derived from the original ODE model) in the form of evidence.

The time profiles resulting from the execution of the FF algorithm are termed to be the BDM-simulation profiles. As
summarized in Fig. 5, our BDM-simulation profiles fit the nominal simulation profiles quite well for most of the cases.
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Fig. 6. Parameter estimation results. (a) BDM-simulation profiles vs. training data. (b) BDM-simulation profiles vs. test data.

In terms of running time, a single execution of FF inference required 0.08 s while generating a stable nominal profile
requires 105.4 s. Thus, the total computation time will be sharply reduced for our approach when many such “queries”
need to be answered.

5.1.2. Parameter estimation

In order to test the performance of the BDM-based parameter estimation method, we synthesized experimental time
series data for 9 (out of 32) proteins {bounded EGFR, bounded NGFR, active Sos, active C3G, active Akt, active p90RSK, active
Erk, active Mek, active PI3K}, measured at the time points {2, 5, 10, 20, 30, 40, 50, 60, 80, 100} (min). This data was synthesized
using prior knowledge about initial conditions and parameters (see Supplementary Tables 2 and 3). To mimic western blot
data which is cell population based, we first averaged 10 random trajectories generated by sampling initial states and rate
constants, and then added observation noise with variance 5% to the simulated values. With the assumed measurement
precision, these values were discretized into 5 intervals, which represent the concentration levels in western blot data. We
reserved the data of 7 proteins for training the parameters and reserved the rest data for testing the quality of the estimated
parameter values.

With 20 of the 48 parameters having been designated during the BDM construction as being unknown, the Hooke
& Jeeves algorithm was implemented to search in the discretized parameter space. The estimated parameter values in
terms of maximal likelihoods of certain combination of interval values (of the 20 unknown parameters) can be found in
Supplementary Table 4. As shown in Fig. 6, the BDM-simulation profiles generated using the estimated parameters matches
the training data as shown and also has good agreement with the test data.

We compared the efficiency and quality of our results with the following ODE based optimization algorithms: Levenberg-
Marquardt (LM) [42], Genetic Algorithm (GA) [43], Stochastic Ranking Evolutionary Strategy (SRES) [44], and Particle Swarm
Optimization (PSO) [45]. These optimization algorithms were executed using the COPASI [46] tool. We scored the resulting
parameters obtained from all the algorithms using the weighted sum-of-squares difference between the experimental data
and the corresponding simulation profiles (i.e. low scores correspond to low errors). The results are summarized in Fig. 7,
which suggests that our method achieves a good balance between accuracy and performance. We also note that the cost of
constructing the BDM representation gets rapidly amortized.

5.1.3. Global sensitivity analysis

We modified and implemented the MPSA method for the BDM setting. Using the same experimental data set introduced
in previous subsection, the global sensitivities (K-S statistics) of the rate constants were computed. The results are shown in
Fig. 8. The cumulative frequency distributions for the acceptable and unacceptable cases can be found in [22]. Specifically,
the reactions involved in the phosphorylation of Erk (k3 ), Mek (k17), Akt (k34) and p9ORSK (k,g) have the highest sensitivities,
indicating that these reactions affect the system behavior most directly. These results are consistent with previous findings
[40,47].

The MPSA method adopts Monte Carlo strategy for the ODE model. We recorded the running time of the algorithm until
the K-S values converged. The total running time of the ODEs based MPSA method was about 22 h, while the MPSA method
based on the BDM required only 34 min. Thus the cost of constructing the BDM can be easily recovered when one performs
parameter estimation followed by sensitivity analysis.

5.1.4. Different discretizations
To evaluate the effects of different discretizations, we constructed BDMs for the EGF-NGF pathway by fixing K intervals
for each variable, with K ranging over {3, 4, 5, 6, 7, 8}. We then computed the mean of each variable over time using the FF
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discretizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

algorithm for each BDM. The resulting profiles were compared with the nominal profiles. The comparison results are shown
in Fig. 9. As might be expected, as K increases, the quality of our approximations will improve. However, since the time and
space complexity of BDM based analysis depends on K, there is a tradeoff between efficiency and accuracy. To help decide
on a good value of K, we scored the discretizations with different K's using the weight sum-of-square difference between
nominal profiles and BDM profiles, and measured the running time of a single FF inference. The results are summarized in
Fig. 10 showing that discretizations with 5 or 6 intervals might be good choices, at least in the present context.

5.1.5. Equation sampling

We also implemented the equation sampling method described in Section 3 that provides a coverage of | samples for
each possible combination of interval values of the unknown parameters in each equation. Using this method, we generated
495,000 trajectories to get a coverage of 1000 per combination. Fig. 11 shows the comparison of time profiles generated
using the two sampling methods. The two set of profiles are nearly indistinguishable, suggesting that the equation sampling
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Fig. 11. The comparison of two sampling methods. Solid lines represent direct sampling with 3 millions samples and dash lines present J-coverage sampling
with ] = 1000.

can efficiently reduce the number of samples required. This also motivated us to conduct our next case study using this
method.

5.2. Case study 2: segmentation clock network

In the developing vertebrate embryos, the segmental pattern of the spine is established when the somites are
rhythmically produced. The periodic formation process of somites is governed by an oscillator called the segmentation
clock, which drives the oscillatory expression of a large network of signaling genes [48]. The underlying signaling network
proposed by Goldbeter et al. is shown in Fig. 12. It couples three oscillating pathways consisting of the FGF, Wnt and Notch
signaling pathways, whose periodic behaviors are produced by negative feedback loops. The corresponding ODE model can
be accessed in the BioModels database [41]. It includes 22 differential equations and 75 associated rate parameters. Again,
anticipating our goal of evaluating the BDM based parameter estimation method, 40 of the 75 parameter values were singled
out to be unknown. The rest of the experiments were conducted as described in our first case study.

We first constructed a BDM for the segmentation clock model. The graph of BDM is shown in Supplementary Table 5.
Similar to the previous case study, we discretized the ranges of each variable and parameter into 5 equal-size intervals and
fixed the time step At to be 5 min. To provide an equation of coverage of 1000 per combination, 2585,000 trajectories were
generated up to 500 mins by sampling the prior (Supplementary Tables 6 and 7).

It is worth noting that even though equation sampling was used, a much larger sample size (in relation to the first case
study in the context of equation sampling) is required due to the larger number of parameters and the “fatness” (i.e. the
number of parameters appearing on the right-hand side) of some of the equations. The construction process consumed
around 3.1 h on a cluster consisted of 10 processors.
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5.2.1. Probabilistic inference

To generate stable nominal profiles, we averaged 10* trajectories according to the prior. The nominal profiles were then
compared with the BDM-simulation profiles computed from the FF inference results. The comparison results are shown in
Fig. 13, which shows a good fit between them. In terms of running time, a single execution of FF inference required 0.01 s
while generating a stable nominal profile took 407.3 s.

5.2.2. Parameter estimation

We next tested the performance of the BDM-based parameter estimation method. We synthesized population based
experimental time series data for 8 (out of 22) proteins {Notch protein, nuclear NicD, Lunatic fringe mRNA, Axin2 mRNA,
active ERK, Dusp6 mRNA, Dusp6 protein, cytosolic NicD}, measured at the time points {400, 410, 420, 430, 440, 450, 460, 470,
480, 490} (min) based on the prior knowledge about initial conditions and parameters (see Supplementary Tables 6 and 7).
We averaged 10* random trajectories generated by sampling initial states and rate constants, and then added observation
noise with variance 5% to the simulated values. The data of 6 proteins were reserved for training the parameters and the
rest data were used for testing the quality of the estimated parameter values.

For the 40 parameters which had been designated to be unknown, the BDM based implementation of Hooke & Jeeves
algorithm was applied. The results can be found in Supplementary Table 8. As shown in Fig. 14 (a) and (b), the BDM-
simulation profiles generated using the estimated parameters obtained (with the match to training data as shown) has
good agreement with the test data.

We then compared the efficiency and quality of our results with the ODE based optimization algorithms: LM, GA, SRES,
and PSO introduced in previous subsection. The results are summarized in Fig. 14(c) suggesting again that our method
achieves a good balance between accuracy and performance and the cost of constructing the BDM representation gets rapidly
amortized.

5.2.3. Global sensitivity analysis

The global sensitivities of the parameters were computed using a BDM based MPSA method and are shown in Fig. 15.
Specifically, the reactions involved in the degradation of Dusp6 mRNA (ks4), the transcription of Dusp6 gene induced by
TF X (k33) and the transcription of the Axin2 gene induced by factor TF X (kig) have the highest sensitivities, indicating
that these reactions affect the system’s behavior most directly. Since all these reactions are present in the FGF pathway, we
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hypothesize that FGF pathway is the key regulatory mechanism that drives and synchronizes the oscillatory gene expression
of the segmentation clock.

The total running time of the ODE based MPSA method was about 81.25 h, while the MPSA method based on the BDM
required only 3.25 h.

6. Discussion

We have proposed a probabilistic approximation scheme for signaling pathway dynamics specified as a system of ODEs.
Assuming a discretization and an initial distribution, it consists of pre-computing and storing a representative sample
of trajectories induced by the system of ODEs. We use a dynamic Bayesian network representation, called the Bayesian
Dynamics Model, to compactly represent these trajectories by exploiting the pathway structure. Basically, the underlying
graph of the BDM captures the dependencies of the variables on other variables and rate constants as defined by the system
of ODEs. Due to the probabilistic graphical representation, a variety of analysis questions concerning the pathway dynamics
traditionally addressed using Monte Carlo simulations can be converted to Bayesian inference and solved more efficiently.
Using the FF algorithm for doing basic Bayesian inference, we have adapted standard parameter estimation and sensitivity
analysis algorithms to the BDM setting.

We have demonstrated the applicability of our techniques with the help of the EGF-NGF signaling pathway and
segmentation clock pathway. The BDM approximation successfully captured the dynamics of the two pathways so that
queries about cell population behavior can be quickly answered. We showed that with our model the unknown rate
constants can be efficiently estimated from noisy experimental data. We also gained insights about the pathway dynamics
by identifying critical parameters in signal transduction via rapid global sensitivity analysis. At the end of performing these
analysis tasks we had easily regained the initial computational investment made to construct the BDM model.

Apart from its computational efficiency, it is worth noting that the BDM model is a more realistic model for recording
the current state of knowledge about a bio-pathway. In particular, the probabilistic and intervals-based estimates it returns
will better match the noisy and incremental fashion in which experimental data is usually generated.

Turning to future work, a crucial ingredient in the construction of the BDM is the family of sample trajectories that are
needed to get a good approximation. Our error analysis can provide the lower bound of the sample size only for the individual
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states and transitions. More work is needed to develop sampling schemes using which good lower bounds for global error
estimates can be achieved.

We need to apply our method to a variety of pathway models. We are currently doing so in collaboration with biologists
in the settings of Complement pathways, Apoptosis/Autophage pathways and DNA damage/repair pathways. Further, it will
be useful to augment the ODE model with some discrete features but this should be easy to achieve. A more challenging
issue is to abstract the BDM representation to an input-output transducer so that one can efficiently model networks of
pathways and inter-cellular interactions models. It is also important to develop formal verification techniques based on the
BDM representation. In this context, we note that the FF algorithm can compute the marginal probabilities of the discretized
values of variables at specific time points. Hence it will be appropriate to develop probabilistic bounded model checking
methods for the BDM model and we are beginning to pursue this. Finally, our approximation technique might have a wider
applicability. A rich class of dynamical systems can be captured via ODEs and in a variety of situations it may be appropriate
and useful to abstract their behaviors as dynamic Bayesian networks as we have done here.
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