
Solving the Perspective-2-Point Problem for Flying-Camera Photo Composition

Ziquan Lan1,2 David Hsu1,2 Gim Hee Lee2

1NUS Graduate School for Integrative Sciences and Engineering,
2Department of Computer Science, National University of Singapore

{ziquan, dyhsu, gimhee.lee}@comp.nus.edu.sg

Figure 1: Flying-camera photo composition with two objects of interest: an envisioned use case. LEFT: The initial viewpoint. Colored
circles indicate objects of interest. MIDDLE-LEFT: Compose a photo with simple gestures on the viewfinder image. MIDDLE-RIGHT:
The camera determines the desired viewpoint and flies to it autonomously. RIGHT: The final viewpoint with the desired composition.

Abstract

Drone-mounted flying cameras will revolutionize
photo-taking. The user, instead of holding a camera
in hand and manually searching for a viewpoint, will
interact directly with image contents in the viewfinder
through simple gestures, and the flying camera will
achieve the desired viewpoint through the autonomous
flying capability of the drone. This work studies a common
situation in photo-taking, i.e., the underlying viewpoint
search problem for composing a photo with two objects
of interest. We model it as a Perspective-2-Point (P2P)
problem, which is under-constrained to determine the six
degrees-of-freedom camera pose uniquely. By incorporat-
ing the user’s composition requirements and minimizing
the camera’s flying distance, we form a constrained non-
linear optimization problem and solve it in closed form.
Experiments on synthetic data sets and on a flying camera
system indicate promising results.

1. Introduction

Drone-mounted flying cameras will be ubiquitous in
the near future and revolutionize photo-taking. They
produce fascinating photos from viewpoints unreachable
previously [4]. People may bring along compact, portable
flying cameras [2, 3, 6] and use their touchscreen mo-
bile phones as viewfinders to take photos [3, 7]. The
autonomous flying capability of drone-mounted cam-
eras opens a new way of photo-taking. With traditional

cameras, the user holds a camera in hand and manually
searches for a favorable viewpoint. With flying cameras,
the user will interact directly with the image through sim-
ple gestures on the touchscreen viewfinder, and the cam-
era will determine the desired viewpoint and fly to it au-
tonomously (Fig. 1). To achieve this, we study the under-
lying viewpoint search problem for composing a photo
with two objects of interest, which is common in, e.g.,
foreground-background or side-by-side composition.

Assume that the positions of two objects of interest are
known [15, 22, 25] and their corresponding projections
on the image plane are specified by the user. Determin-
ing the six degrees-of-freedom (DoFs) camera pose that
satisfies the composition constraints is the well-known
Perspective-n-Point (PnP) problem, with n = 2. P2P is re-
lated to the family of minimal problems in computer vi-
sion, and our solution approach shares a similar line of
thought. While many minimal problems in computer vi-
sion attempt to solve for the unique solution of the un-
known camera parameters with a minimum number of
correspondences, the P2P problem is under-determined
and has infinite solutions: the minimum number of point
correspondences required to solve the PnP problem is 3.
We propose to solve the problem by adding the constraint
that the flying camera should reach one of the solutions
as fast as possible along the shortest path. This leads to a
constrained nonlinear optimization problem.

We show that our constrained nonlinear optimization
problem can be solved in closed form. By analyzing the ge-
ometry of the solution space and applying the first-order
optimality conditions of the objective function, we derive

APPEARED IN
Proc. Conf. on Computer Vision & Pattern Recogition (CVPR), 2018

a maximum of 16 candidate solutions. We then obtain the
global optimum by enumeration. While generic nonlin-
ear optimization methods can solve our problem as well,
they are not practical on-board the drones that have lim-
ited computation power. In addition, they often get stuck
in local minima, because of the nonlinear constraints.
In summary, we introduce an interesting instance of the
PnP problem with n = 2 for flying-camera photo com-
position (Section 3). We provide a closed-form solution
to the resulting constrained nonlinear optimization prob-
lem (Section 4). Finally, we conduct experiments on syn-
thetic data sets and on a flying camera system to evaluate
our solution for feasibility and robustness (Section 5).

2. Related Work

2.1. User Interactions for Photo Composition

Photo composition with flying cameras is usually
achieved by explicitly controlling the camera pose us-
ing, e.g., joystick controllers and GPS maps [3, 8]. Joy-
sticks allow the user to control the pan, tilt, dolly, truck
and pedestal motions of the camera. However, control-
ling the low-level camera motions is not only tedious,
but also often results in loss of situational awareness, in-
accurate attitude judgment, and failure to detect obsta-
cles [26]. Compared with joystick controllers, GPS maps
enable task-level camera motions, such as tracking [3, 5],
orbiting [1, 5], and navigating to waypoints [3, 7]. How-
ever, GPS maps do not supply the visual information to
identify attractive viewpoints for visual composition.

An alternative is to directly interact with the image
contents. Through-the-lens camera control has been pro-
posed for cameras in virtual environments [17, 21]. It al-
lows the user to directly manipulate objects’ locations on
the screen, so that the camera parameters are automat-
ically recomputed to satisfy the desired on-screen loca-
tions. Such direct manipulation techniques have been
successfully demonstrated in real-time flying camera sys-
tem [22], which proposed a sample-based method to
compute the camera pose. However, its solutions vary
from time to time depending on the random samples. In
contrast, this study aims to determine a unique viewpoint
by minimizing the flying distance.

2.2. Minimal Problems

Minimal problems in computer vision are the prob-
lems solved from a minimal number of correspondences.
For example, in the five-point relative pose problem [29],
five corresponding image points are needed to provide
five epipolar equations to estimate the essential matrix.
A sixth point correspondence is needed if the focal length
is unknown [31] or there is a radial distortion parameter
to be estimated [11, 20]. Similarly, additional point corre-

spondences are required if there are more unknown cam-
era parameters, such as the eight-point problem for es-
timating fundamental matrix and single radial distortion
parameter for uncalibrated cameras [19], and the nine-
point problem for estimating fundamental matrix and
two different distortion parameters for uncalibrated cam-
eras [11, 20]. In contrast, our problem solves for a camera
pose with six unknown parameters, but it only has four
equations derived from two correspondences.

2.3. Perpsective-n-Point

PnP problems estimate the rotation and translation of
a calibrated perspective camera by using n known 3D ref-
erence points and their corresponding 2D image projec-
tions. Since each correspondence provides two equality
constraints, the minimal case is having three correspon-
dences [16]. Four and more correspondences have been
also investigated to improve robustness [23, 24, 32, 34, 35].

This study solves a P2P problem. Early studies on
P2P make additional assumptions, such as planar motion
constraints [10, 13], known camera orientation [9, 27],
known viewing direction and triangulation constraint of
the 3D points [12]. We assume no such assumptions. In-
stead, we form an optimization problem to find the solu-
tion with the minimal flying distance to reach.

3. Problem Formulation

Composition in photography is usually referred to as
the placement of relative objects in an image frame [18].
Each object is an abstract notion of how the photographer
interprets a group of visual elements in the scene. We rep-
resent each object as a ball BW

j , j = 1,2, in a world coordi-

nate frame FW . The ball center qW
j = [xW

j yW
j zW

j]T repre-

sents the estimated object centroid position, and the ra-
dius ε j denotes a collision-free distance estimated based
on the object size during selection [22]. Correspondingly,
the user-specified object projections are represented as
pI

j = [u I
j v I

j 1]T in the homogeneous image coordinate

frame FI . In addition, the camera has a starting camera
position tW

0 = [xW
0 yW

0 zW
0]T in FW . We are interested in

a camera pose in FW that could be represented as a rota-
tion matrix RW

C and a translation vector tW
C from FC to FW .

The resulting camera pose should be the nearest one that
not only satisfies desired object compositions but also not
colliding with the two objects. Hence, we formulate an
optimization problem as follows.

argmin
RW

C ,tW
C

‖tW
C − tW

0 ‖2
, (1)

subject to
λ j pI

j = K (RC
W qW

j + tC
W), (2a)

‖tW
C −qW

j ‖ ≥ ε j , (2b)

O
ω

(a)

(b)

Q2

C

(a) (b)

Q1

P 1

P 2 Q2Q1

P 1 P 2

C

ω

Figure 2: Camera positions that satisfy constraints in Eq. (2). C
denotes the camera’s center of perspective. Q1 and Q2 denote
the object positions. P1 and P2 denote the user-specified object
projections. LEFT: ∠Q1CQ2 =∠P1C P2 = ω is a constant angle.
RIGHT: All points on the solid arc of ¯O satisfy constraints in Eq.
(2). Rotating the arc around the axis through Q1 and Q2 forms a
toroid, on which all points satisfy constraints in Eq. (2) as well.

in which j = 1,2. λ j denotes the depth factor of the j -th
object. K is the calibrated intrinsic parameter matrix for
the perspective camera with the pinhole imaging model.
RC

W and tC
W denote the rotation matrix and translation

vector from FW to FC , respectively.
The equality constraint in Eq. (2a) corresponds to the

projective imaging equations derived from the two point
correspondences. Since K is known, it is convenient to
use the normalized camera coordinate frame

p̂C
j = [ûC

j v̂C
j 1]T = K−1 pI

j , j = 1,2. (3)

The inequality constraint in Eq. (2b) ensures a
collision-free distance to each object. It is reasonable to
assume that ε1 + ε2 is relatively small as compared to the
distance between the two objects, which, in fact, ensures
the existence of the solution.

4. P2P Solution in Closed Form

Before diving into the details of the algebraic deriva-
tion, we first analyze the solution space of the constraints.
The solution space for camera positions ∈ R3 that sat-
isfy the constraints is a toroidal surface (see Fig. 2 and
3). Each camera position corresponds to a unique cam-
era orientation ∈ SO(3), so that we can first solve for the
position and then determine the orientation.

Parameterizing the toroidal solution space ∈ R3 is the
key to solve the problem. We introduce an auxiliary frame
with one axis passing through the rotational axis of the
toroid for easy parameterization.

The remaining part of the section solves the optimiza-
tion problem with the following steps. First, we construct
the auxiliary coordinate frame. Then, we reformulate the
constraints and the objective function using the auxiliary
frame. Finally, we solve the equation system derived from
the first-order optimal condition of the objective function
to find the global optimal camera position, hence, the cor-
responding camera orientation.

x

(a) (b)

q1
W

q2
W

t C
W

p1
W p2

W

q1
C

q2
C

p2
W

p1
W

t C
W

ρ2

c1CA θ

y

z

q2
A

z

y

x

t 0
A

x

y

z ø

q1
A C’

C

Xθ

t C
*A

FA FA

Figure 3: The auxiliary frame FA . LEFT: The objective is to find
t∗A

C on the toroid with the minimal distance to the initial camera

position tA
0 . RIGHT: The intersections between the toroid and

any plane x = Xθ in FA are circles, so any point C ′ on the circle
can be parametrized using a reference point C and an angle φ.

4.1. Constructing the Auxiliary Frame

We construct the auxiliary frame FA with one axis be
the axis of rotation passing through qW

1 and qW
2 as shown

in Fig. 2. More specifically, qW
1 coincides with the origin

of FA and qW
2 sits on the positive x-axis of FA , see Fig. 3,

qA
1 =

0
0
0

 , qA
2 =

ξlen

0
0

 , ξlen = ‖qW
1 −qW

2 ‖. (4)

Using the auxiliary frame, we manage to reformulate
and solve the original problem in a simpler form, as
shown in the subsequent subsections.

Let RW
A and tW

A be the rotation matrix and translation
vector from FA to FW , respectively. Then, tW

A = qW
1 , and

the first column of RW
A , c1

W
A = (qW

2 −qW
1)/ξlen . The sec-

ond and the third columns of RW
A could be chosen as an

arbitrary pair of orthonormal vectors that span the null
space of c1

W
A . In the case when RW

A is an improper rota-
tion matrix, i.e., det(RW

A) =−1, we flip the second and the
third columns of RW

A .

4.2. Reformulating Equality Constraints

Now, we use the auxiliary frame FA to reformulate the
equality constraints in Eq. (2a) as

λ j p̂C
j = RC

A qA
j + tC

A , j = 1,2, (5)

in which RC
A and tC

A are the unknown rotation matrix and
translation vector from FA to FC , respectively. It is desir-
able to eliminate the depth factors as follows,

[p̂C
j]× (RC

A qA
j + tC

A) = 03×1, j = 1,2, (6)

where [p̂C
j]× is the skew-symmetric matrix for vector p̂C

j .

Eq. (6) produces six equality constraints, and two of them
are redundant. We transform the remaining four equality
constraints into a matrix form,

A w = 04×1, (7)

ω

ω

(a) (b)

q1
W

q2
W

t C
W

p1
W

p2
W

q1
W q2

W

p2
W

p1
W

t C
W

ρ1

ρ2

c1
C
A

||ρ ||1

ρ1
θ

ρ x ρ1 2

Figure 4: Parameterization of c1
C
A using θ.

where

A =


0 0 0 0 −1 v̂1

0 0 0 1 0 −û1

0 −1 v̂2 0 −1/ξlen v̂2/ξlen

1 0 −û2 1/ξlen 0 −û2/ξl en

 , (8a)

w = [
r11 r21 r31 t1 t2 t3

]T
, (8b)

in which r11, r21, r31, t1, t2 and t3 are the entries in RC
A and

tC
A , respectively, i.e.,

RC
A =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , tC
A =

t1

t2

t3

 . (9)

Note that there is a constraint imposed on the first three
entries, r11, r21 and r31, in w, as they form the first column
c1

C
A of RC

A , which means ‖c1
C
A‖ = 1.

The benefit of constructing FA shows up. Since qA
1 and

qA
2 are constructed to have only one non-zero entry, w is

much simplified so that it does not contain the entries in
the second column c2

C
A and the third column c3

C
A of RC

A .
Otherwise, without FA , w would contain all the 9 entries
in a rotation matrix with more constraints imposed.

Next, we parameterize w. The vector w of unknowns
belongs to the null space of A. Since nullity(A) = 2 as
rank(A) = 4 according to Eq. (8a), w can be expressed as
the following linear combination form,

w = [
e1 e2

][
α1

α2

]
,

e1 =
[
û2 v̂2 1 0 0 0

]T
, (10)

e2 =
[
û2 − û1 v̂2 − v̂1 0 û1ξlen v̂1ξlen ξl en

]T
,

whereα1 andα2 are two coefficients, e1 and e2 are the two
eigenvectors of A corresponding to the two null eigenval-
ues of A, which could be easily verified. Hence, c1

C
A and tC

A
can be expressed as linear combinations as well,

c1
C
A = [

ρ1 ρ2
][
α1

α2

]
, tC

A = [
τ1 τ2

][
α1

α2

]
, (11)

in which ρ1 = p̂C
2 , ρ2 = p̂C

2 − p̂C
1 , τ1 = 03×1 and τ2 = p̂C

1 ξlen .
Now, c1

C
A and tC

A are parameterized with two parame-
ters, α1 and α2. Next, we use the constraint, ‖c1

C
A‖ = 1, to

reduce to a form using only one parameter. The idea is de-
picted in Fig. 4. We observe that c1

C
A is a unit vector in the

2D plane spanned by ρ1 and ρ2. Hence, it can be parame-
terized using a rotation angle θ. We denote the matrix for
a rotation by an angle of θ around ρ1 ×ρ2 as Rθ . Hence,
c1

C
A = Rθρ1/‖ρ1‖, which contains θ as the only parameter.

More explicitly,

c1
C
A = sin(θ)

[
ξ1 ξ2 ξ3

]T +cos(θ)
[
ξ4 ξ5 ξ6

]T
, (12)

in which ξk ’s are constant, k = 1,2,3,4,5,6. We omit their
full expressions here for brevity.

Since c1
C
A is a linear combination of ρ1 and ρ2 (see

Eq. (11)), we have [α1 α2]T = S+ c1
C
A , in which S+ is

the Moore-Penrose matrix inverse of [ρ1 ρ2]. Plugging
[α1 α2]T back into Eq. (11), we parameterize tC

A with θ as

tC
A = sin(θ)

‖ρ1‖
‖ρ1 ×ρ2‖

τ2. (13)

4.3. Reformulating Inequality Constraints

Similarly, we also reformulate the inequality con-
straints in Eq. (2b) using FA as

‖tA
C −qA

j ‖ ≥ ε j , j = 1,2, (14)

where tA
C is the unknown translation vector from FC to FA ,

tA
C =

x
y
z

=−
(c1

C
A)T

(c2
C
A)T

(c3
C
A)T

tC
A , (15)

in which c1
C
A , c2

C
A and c3

C
A are respectively the first, second

and third columns of RC
A defined previously.

To obtain the boundary points that satisfy both the
equality and inequality constraints, we use the parame-
terizations in the previous subsection to parameterize x,
y and z in tA

C respectively, as follows.
First, we can parameterize x with θ using the parame-

terizations of c1
C
A and tC

A in Eq. (12) and Eq. (13),

x = ξl en sin(θ)[sin(θ)− p̂C
1 · p̂C

2

‖p̂C
1 × p̂C

2 ‖
cos(θ)], (16)

in which · and × denote the inner product and the cross
product of two vectors receptively. Let ω denote the an-
gle between the two known vectors p̂C

1 and p̂C
2 , which cor-

responds to ∠P1C P2 as shown in Fig. 2. Since p̂C
1 · p̂C

2 =
‖p̂C

1 ‖‖p̂C
2 ‖cos(ω) and ‖p̂C

1 ×p̂C
2 ‖ = ‖p̂C

1 ‖‖p̂C
2 ‖sin(ω), we can

simplify x as

x = ξlen sin(θ)[sin(θ)−cot(ω)cos(θ)],

=−ξl en csc(ω)sin(θ)cos(θ+ω).
(17)

Next, we parameterize y and z. Since ‖tA
C‖ = ‖tC

A‖, we
have

y2 + z2 = ‖tC
A‖2 −x2,

= ξ2
l en csc2(ω)sin2(θ)sin2(ω+θ).

(18)

The benefit of constructing FA shows up, again. Eq.
(17) and Eq. (18) show that both x and y2 + z2 are func-
tions of θ. In other words, a fixed θ determines a plane in
FA with a fixed x value, and the points on that plane forms
a circle with a fixed radius

√
y2 + z2, which is depicted in

Fig. 3. Hence, we introduce a new parameter φ for the
angle of rotation around the x-axis of FA , so that

y = sin(φ)ξlen

√
csc2(ω)sin2(θ)sin2(ω+θ),

z = cos(φ)ξl en

√
csc2(ω)sin2(θ)sin2(ω+θ).

(19)

Finally, plugging Eq. (17) and Eq. (19) back into Eq.
(14), we obtain two equations for the boundary

sin(θ) =±sin(ω)ε1/ξlen , (20a)

sin(θ+ω) =±sin(ω)ε2/ξlen , (20b)

from which we can solve for eight possible pairs of sin(θ)
and cos(θ) corresponding to eight solutions of θ.

In fact, the parameterization of y2 + z2 in Eq. (18) suf-
fices our need to parameterize the boundary points. Nev-
ertheless, the individual parameterization of y and z is
useful in the next subsection.

4.4. Reformulating the Objective Function

At last, we reformulate the objective function in Eq. (1)
using FA as well,

argmin
RW

C ,tW
C

‖tA
C − tA

0 ‖
2

(21)

in which tA
0 = RW

A
T

(tW
0 − tW

A) = [ξx ξy ξz]T is known. This
reformulated objective function essentially means mini-
mizing the distance from the initial camera position tA

0 to
the toroid tA

C in FA , as shown in Fig. 3.

Plugging Eq. (17) and Eq. (19) into Eq. (21), we suc-
cessfully parameterize the objective function

obj(φ,θ) =(−ξlen csc(ω)sin(θ)cos(θ+ω)−ξx)2 (22)

+ (sin(φ)
√

csc2(ω)sin2(θ)sin2(ω+θ)−ξy)2

+ (cos(φ)
√

csc2(ω)sin2(θ)sin2(ω+θ)−ξz)2.

C12

q1
A

γ

(a) (b)

q1
W

q2
W

t C
W

p1
W p2

W

q2
C

p2
W

p1
W

t 0
A

ρ2

c1
C
A

||ρ ||1

ρ1

θ

y

z

q2
A

z

y

xø

C11

C21

C22

C’11

C’21

C’12

C’22

FA

Figure 5: Optimal camera position candidates. qA
1 , qA

2 and tA
0

determine a plane in FA , which intersects with the toroid and
forms two solid arcs. C11, C12, C21 and C22 in blue are four can-
didates. Their symmetric points about the x-axis, C ′

11, C ′
12, C ′

21
and C ′

22 in red, are also candidates. The green points around qA
1

and qA
2 are eight candidates at the boundary.

4.5. Minimization

To minimize obj with respect to φ and θ, we build the
first-order optimality condition of Eq. (22), and identify
all the stationary points and boundary points. First, we
calculate the derivative of obj with respect to φ

∂obj

∂φ
= 2ξlen(ξz sin(φ)−ξy cos(φ))√

csc2(ω)sin2(θ)sin2(θ+ω). (23)

Setting it to be 0, we have the following three cases

sin(θ) = 0, (24a)

sin(θ+ω) = 0, (24b)

sin(φ) =± ξy√
ξ2

y +ξ2
z

, cos(φ) =± ξz√
ξ2

y +ξ2
z

. (24c)

Note that Eq. (24a) and Eq. (24b) correspond to the
cases when qA

1 and qA
2 are optimal solution candidates re-

spectively, which clearly violate the inequality constraints
in Eq. (14). Suppose the problem does not have the in-
equality constraints, qA

1 and qA
2 will be physically infea-

sible solutions. Then, other optimal solution candidates
solved from Eq. (24c) may not contain the true optimum.

Eq. (24c) corresponds to the general cases. It shows
that φ only depends on the initial camera position tA

0 . In
fact, the angle φ corresponds to the plane determined by
the three points, tA

0 , qA
1 and qA

2 , as shown in Fig. 5. Al-
though two solutions of φ can be solved from Eq. (24c),

they differ from each other by π, which essentially corre-
spond to the same plane. Therefore, the optimal camera
position sits on the plane determined by tA

0 , qA
1 and qA

2 .
Next, we substitute the two solutions of φ from Eq.

(24c) into the derivative of obj with respect to θ, and ob-
tain the following two cases.

∂obj

∂θ
= ξl en csc2(ω)

2E1
(E1E2 +E3E4), (25a)

∂obj

∂θ
= ξl en csc2(ω)

2E1
(E1E2 −E3E4), (25b)

where Ek ’s are expressions, k = 1,2,3,4. We omit the full
expressions of E2,E3,E4 for brevity. We show E1 here in
order to further simplify the expressions,

E1 =
√

csc2(ω)sin2(θ)sin2(θ+ω),

=±csc(ω)sin(θ)sin(θ+ω),
(26)

which removes the square root by considering two cases.
Setting Eq. (25a) and Eq. (25b) to be 0, we obtain four

equations, among which two are duplicates, therefore, re-
dundant. The remaining two cases can be further simpli-
fied to

sin(2θ)ξ7 +cos(2θ)ξ8 = 0, (27a)

sin(2θ)ξ9 +cos(2θ)ξ10 = 0, (27b)

where ξk ’s are constant, k = 7,8,9,10. Again, we omit their
full expressions for brevity.

Using Eq. (27), we can easily solve for eight possible
pairs of sin(θ) and cos(θ) corresponding to eight general
solutions of θ. Fig. 5 depicts the geometric meanings of
the eight general solutions.

4.6. Identifying the Best Camera Position

Plugging sin(φ), cos(φ), sin(θ) and cos(θ) solved from
Eq. (24c), Eq. (20) and Eq. (27) back into Eq. (17) and
Eq. (19), we can get eight solutions at the boundary and
eight general solutions of tA

C as illustrated in Fig. 5. We
apply three steps to identify the best camera position in
FW . First, we use the property of ∠pA

1 tA
C pA

2 =ω (see Fig. 2)
and the inequality constraints to eliminate the infeasible
solutions. Second, among the feasible solutions, we pick
t∗A

C , the one with the shortest distance to tA
0 . Finally, we

compute the best camera position t∗W
C in FW , using RW

A
and tW

A constructed.

4.7. Determining the Camera Orientation

The optimal orientation is uniquely determined. In
Fig. 2, the lengths of the line segments C P1 and C P2

are both fixed, so the optimal camera position t∗W
C deter-

mines two more points in FW . It is then easy and stan-
dard to retrieve the optimal camera orientation R∗W

C us-
ing these three known points [33].

4.8. Discussion

At the end of this section, we briefly discuss the issues
related to multiple optimal solutions and the change in
the flying distance caused by noisy inputs.

There are three special cases with multiple optimums.
First, when the two object projections coincide with each
other, i.e., ω = 0, csc(ω) in Eq. (17) is undefined. Then, x
can be any arbitrary value and y = z = 0. This corresponds
to the cases that the optimal camera positions are aligned
with the two objects. Second, when the initial camera
position is aligned with the two objects, i.e., ξy = ξz = 0,
sin(φ) and cos(φ) in Eq. (24c) are undefined. Then, φ
can be any arbitrary value. The optimal camera positions
form a circle. Third, when the initial camera position co-
incides with some point like O in Fig. 2, i.e., ξx = ξl en/2
and ‖tC

A‖ = csc(ω)ξlen/2. Then, solving Eq. (27) may yield
infinitely many solutions of θ, which correspond to all the
points on the solid arc in Fig. 2.

Using Fig. 5, we can intuitively see how the flying dis-
tance is affected after perturbing the inputs. There are
three cases. First, if tA

0 stays outside the toroid before and
after perturbing the inputs, the toroid’s shape and size are
not substantially changed, so that the flying distance does
not change much either. Second, if tA

0 stays inside the
toroid before and after perturbing, the flying distance is
upper bounded by the toroid size, so that the flying dis-
tance is also stable. Third, if tA

0 crosses the toroid surface
because of the perturbation, the flying distance is small
hence stable. The next section presents the empirical re-
sults of using noisy inputs.

5. Experiments

Though the closed-form solution is optimal, we are in-
terested in its applicability and robustness in real photo-
taking scenarios, which contain both inaccurate human
inputs caused by e.g., fat-finger errors [30] and imperfect
robot executions.

In this section, we first show that the resulting flying
distance is robust to inaccurate user inputs. We measure
the relative flying distance error using synthetic data sets.
Then, we measure the quality of the resulting composi-
tion using the reprojection error with a real flying robot.

5.1. Evaluation using Synthetic Data

We use synthetic data sets to show that the flying dis-
tance is robust to inaccurate user inputs.

First, we generate ground truth data. We randomly
generate 10,000 different sets of inputs. Each set consists
of an initial camera position tW

0 , two object centroids qW
1

and qW
2 , two collision-free distances ε1 and ε2, and two

object projections pI
1 and pI

2 on the image plane. The im-
age size is 1920 × 1080. tW

0 , qW
1 and qW

2 are uniformly

25

20

15

10

5

0re
la

tiv
e

di
st

an
ce

 e
rr

or
 (%

)

1 2 3 4 5 6 7 8 9
user-selected object position noise (%)

10

1

0.8

0.6

0.4

0.2

0re
la

tiv
e

di
st

an
ce

 e
rr

or
 (%

)

5 10 15 20 25 30 35 40 45
user-specified object projection noise (%)

Figure 6: Results from synthetic data. The horizontal red lines
indicate the medians. The boxes denote the first Q1 and third
Q3 quartiles, the dashed lines extending upwards depict the sta-
tistical data extent taken to be Q3 + 1.5(Q3-Q1).

drawn from a unit cube [0,1]3. ε1 and ε2 are uniformly
generated so that ε1 + ε2 ≤ ‖qW

1 −qW
2 ‖. pI

1 and pI
2 are uni-

formly drawn within the image size.
Then, we consider two types of noise introduced by in-

accurate user inputs.

5.1.1 Noisy User-Selected Object Positions

During object selection, the object positions may be in-
accurately estimated. We corrupt qW

1 and qW
2 with noise

that follows a uniform distribution around the original
object centroids. The noise ranges from 1% to 10% of their
original relative distances in 3D.

5.1.2 Noisy User-Specified Object Projections

During direct manipulation, the object projections may
not be specified accurately as in one’s mind. We corrupt
pI

1 and pI
2 with noise that follows a uniform distribution

around the original object projections. The noise ranges
from 5% to 45% of their original relative distances on the
image to ensure non-overlapping sampling regions.

5.1.3 Measurement

We measure the relative flying distance error denoted
as Errordist(%) = |dnoisefree − dnoisy|/‖qW

1 − qW
2 ‖, in which

dnoisefree = ‖tW
0 − tnoisefree

W
C ‖ is the distance from the ini-

tial camera position tW
0 to the optimized final position

tnoisefree
W
C based on noise-free user inputs, dnoisy = ‖tW

0 −
tnoisy

W
C ‖ is the distance from tW

0 to the optimized position

tnoisy
W
C based on corrupted user inputs, and ‖qW

1 −qW
2 ‖

indicates the scale of the environment. Fig. 6 shows that

25

20

15

10

5

0

fre
qu

en
cy

 (%
)

reprojection error (%)

1

0.8

0.6

0.4

0.2

0
re

la
tiv

e
di

st
an

ce
 e

rr
or

(%

)
10 20 30 40 50 60 70 80 90

user input noise (%)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Figure 7: Results from real robot experiments.

the flying distance solved using our method is robust to
very noisy user inputs in both cases.

5.2. Evaluation with Real Robot

5.2.1 Robot System Setup

The flying robot is connected via Wi-Fi to an ASUS lap-
top PC with an Intel Core i7 processor. We use an open-
source drone driver, Bebop Autonomy [8], to communi-
cate with the Bebop at 30 Hz. Although the camera res-
olution is 1920 × 1080, the driver [8] only transmits im-
ages of size up to 1280× 720. The Bebop runs low-level
controllers on-board. The PC handles all computations
and hosts the Robot Operating System framework, which
is used to communicate with the robot.

5.2.2 Robot Trajectory Execution

The 6 DoFs camera pose is estimated using ORB-SLAM
[28] without other external sensors, such as a motion cap-
ture system. However, the drone driver [8] only supports
5 DoFs camera control. We enable the 6th DoF by rotating
the image plane, so that the effective image area becomes
a circular area at the center of the image, as in Fig. 8. Due
to the hardware constraint, the pan-tilt range is also lim-
ited, so that some viewpoints are not achievable.

The camera flying trajectory is modeled as a straight
line connecting the initial camera position to the goal po-
sition, by assuming the environment to be free of major
obstruction for flying. The camera orientation is com-
puted based on its position at that moment, in order to
minimize the reprojection error at all times.

To execute the flying trajectory, each DoF of the cam-
era is controlled by an independent PID controller. The
control gains are fine-tuned by assuming that the SLAM
map is in the metric unit. To resolve the scale ambigu-
ity of the SLAM map, we adopt a scale estimation method
using the on-board ultrasonic altitude measurement [14].

In practice, the goal camera viewpoint can never be
achieved. A viewpoint is considered as successful, if it sat-
isfies all the following conditions. The camera position
error is below 0.5 meter. The orientation error is below 1
degree. All control signals at that moment are below cer-
tain thresholds as well.

Figure 8: The viewpoint changing process. LEFT: In the initial viewpoint, each colored circle annotates an object that is composed to
the position indicated by the same colored cross. MIDDLE-LEFT: The viewpoint rotates to compose one object first. MIDDLE-RIGHT:
The viewpoint moves so that the other object gradually converges to the desired composition . RIGHT: The final viewpoint.

5.2.3 Data Collection

The experiments are conducted in an indoor environ-
ment of size 8m ×6m ×2.5m. We use two distinctive col-
ored balls of diameter 10cm to represent two objects of
interest. We place the two balls at fixed locations in the
center area of the room. Their distance is 1.5 meter.

We collect data from 50 trials. After building a SLAM
map, we place the camera at the locations of the two balls
to record their positions qW

1 and qW
2 in the SLAM map.

Since the objects in real photo-taking scenarios have vari-
ous shapes, we are not interested in the accuracy of object
centroid estimation. We set the collision-free distances ε1

and ε2 to be 0.5m and 0.8m respectively.
For each trial, we randomly generate tW

0 within the en-
vironment. We also randomly generate pI

1 and pI
2 that are

uniformly drawn from the circular area of diameter 700
pixels at the center of the image. We collect 30 frames at
the successful viewpoints from each trial. We reject the
unreachable viewpoints that are outside the environment
or beyond the camera pan-tilt range limits.

5.2.4 Measurement

We measure the reprojection error on each collected
frame. For each frame, we exact the centroid pixel
pexacted

I
j for each ball j , and measure the distance to its

corresponding desired composition, e j = ‖pexacted
I
j −pI

j ‖.

Hence, the reprojection error of a frame with respect to
the image size is Errorreproj(%) = (e1 +e2)/(2×720).

The histogram in Fig. 7 shows the distribution of re-
projection errors. Overall, the reprojection errors are rela-
tively small, under very challenging conditions, including
imperfect controls, SLAM system errors, etc.

5.3. Viewpoint Changing Process

We illustrate the viewpoint changing process while
composing two objects using a concrete scenario. As
shown in Fig. 8, the scenario starts from a high-angle
viewpoint. The two main parts of the sculpture are se-
lected as the objects of interest. We build the SLAM map,
and record the estimated object positions. We manually

specify the desired compositions for the objects in order
to emulate the end points of direct manipulation gestures.

The viewpoint changes in two steps. First, it quickly
changes the orientation to compose one object, since
changing orientation is much faster than flying. Gradu-
ally, the other object converges to the desired composi-
tion while the camera is moving towards the goal. This
phenomenon is caused by the fact that the orientation is
recomputed based on the camera position at that time in
order to minimize the reprojection error.

6. Conclusion

The evaluation results show that our closed-form solu-
tion to the formulated optimization problem is applica-
ble to real flying robot systems. Our problem focuses on a
subset of aspects that are important to flying camera pho-
tography, including minimizing the flying distance, and
avoiding collisions with objects of interest. We believe
the formation could be generalized to include other as-
pects as well, such as stabilizing the frame by removing
one DoF from rotation, or collision-free flying by adding
constraints for obstacles in the environments.

To conclude, this paper solved the P2P problem for
flying-camera photo composition. To the best of our
knowledge, this is the first study that determines the cam-
era parameters given an under-constrained system. By
incorporating the user’s composition requirements and
minimizing the camera’s flying distance, we formed a
constrained nonlinear optimization problem, solved it in
closed form, and evaluated the applicability in real fly-
ing camera systems. While there are many different prob-
lem formulations using other optimization objectives and
constraints, this study is the first step towards the general
problems of its kind.

Acknowledgement

This work is supported in part by an NUS NGS scholar-
ship, NUS School of Computing Strategic Initiatives, and
a Singapore MOE Tier 1 grant R-252-000-637-112.

References

[1] 3DR Solo. URL https://3dr.com/solo-drone.

[2] AirSelfie. URL http://www.airselfiecamera.com.

[3] DJI Drones. URL http://www.dji.com/products/drones.

[4] Dronestagram. URL http://www.dronestagr.am/2017-
international-drone-photography-contest.

[5] Hexo+. URL https://hexoplus.com.

[6] Nixie. URL http://flynixie.com.

[7] Parrot Bebop Drone. URL http://global.parrot.com/au
/products/bebop-drone.

[8] AutonomyLab. Autonomylab/bebop_autonomy.

[9] M. Bansal and K. Daniilidis. Geometric urban geo-
localization. In CVPR, 2014.

[10] O. Booij, Z. Zivkovic, et al. The planar two point algorithm.
IAS technical report, University of Amsterdam, 2009.

[11] M. Byrod, Z. Kukelova, K. Josephson, T. Pajdla, and K. As-
trom. Fast and robust numerical solutions to minimal
problems for cameras with radial distortion. In CVPR, 2008.

[12] F. Camposeco, T. Sattler, A. Cohen, A. Geiger, and M. Polle-
feys. Toroidal constraints for two-point localization under
high outlier ratios. In CVPR, 2017.

[13] S.-I. Choi and S.-Y. Park. A new 2-point absolute pose
estimation algorithm under planar motion. Advanced
Robotics, 2015.

[14] J. Engel, J. Sturm, and D. Cremers. Scale-aware navigation
of a low-cost quadrocopter with a monocular camera. RAS,
2014.

[15] J. Fuentes-Pacheco, J. R. Ascencio, and J. M. Rendón-
Mancha. Visual simultaneous localization and mapping:
a survey. AIRE, 2012.

[16] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete so-
lution classification for the perspective-three-point prob-
lem. TPAMI, 2003.

[17] M. Gleicher and A. Witkin. Through-the-lens camera con-
trol. In SIGGRAPH, 1992.

[18] T. Grill and M. Scanlon. Photographic composition. Am-
photo Books, 1990.

[19] Z. Kukelova and T. Pajdla. A minimal solution to the auto-
calibration of radial distortion. In CVPR, 2007.

[20] Z. Kukelova and T. Pajdla. Two minimal problems for cam-
eras with radial distortion. In ICCV, 2007.

[21] M.-H. Kyung, M.-S. Kim, and S. J. Hong. A new approach
to through-the-lens camera control. Graphical Models and
Image Processing, 1996.

[22] Z. Lan, M. Shridhar, D. Hsu, and S. Zhao. Xpose: Reinvent-
ing user interaction with flying cameras. In RSS, 2017.

[23] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: an accurate
O(n) solution to the pnp problem. IJCV, 2009.

[24] S. Li, C. Xu, and M. Xie. A robust O(n) solution to the
perspective-n-point problem. TPAMI, 2012.

[25] E. Marder-Eppstein. Project tango. In SIGGRAPH Real-
Time Live!, 2016.

[26] D. E. McGovern. Experience and results in teleoperation of
land vehicles. In Pictorial Communication in Virtual and
Real Environments, 1991.

[27] L. Merckel and T. Nishida. Evaluation of a method to solve
the perspective-two-point problem using a three-axis ori-
entation sensor. In CIT, 2008.

[28] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. ORB-SLAM:
a versatile and accurate monocular slam system. T-RO,
2015.

[29] D. Nistér. An efficient solution to the five-point relative
pose problem. TPAMI, 2004.

[30] K. A. Siek, Y. Rogers, and K. H. Connelly. Fat finger worries:
how older and younger users physically interact with PDAs.
In INTERACT, 2005.

[31] H. Stewénius, D. Nistér, F. Kahl, and F. Schaffalitzky. A min-
imal solution for relative pose with unknown focal length.
Image and Vision Computing, 2008.

[32] B. Triggs. Camera pose and calibration from 4 or 5 known
3d points. In ICCV, 1999.

[33] S. Umeyama. Least-squares estimation of transformation
parameters between two point patterns. TPAMI, 1991.

[34] S. Urban, J. Leitloff, and S. Hinz. MLPnP-a real-time max-
imum likelihood solution to the perspective-n-point Prob-
lem. arXiv preprint arXiv:1607.08112, 2016.

[35] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Oku-
tomi. Revisiting the pnp problem: a fast, general and opti-
mal solution. In ICCV, 2013.

