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Abstract: How can a delivery robot navigate reliably to a destination in a new
office building, with minimal prior information? To tackle this challenge, this
paper introduces a two-level hierarchical approach, which integrates model-free
deep learning and model-based path planning. At the low level, a neural-network
motion controller, called the intention-net, is trained end-to-end to provide robust
local navigation. The intention-net maps images from a single monocular camera
and “intentions” directly to robot controls. At the high level, a path planner uses
a crude map, e.g., a 2-D floor plan, to compute a path from the robot’s current lo-
cation to the goal. The planned path provides intentions to the intention-net. Pre-
liminary experiments suggest that the learned motion controller is robust against
perceptual uncertainty and by integrating with a path planner, it generalizes effec-
tively to new environments and goals.
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1 Introduction

Goal-directed, collision-free global navigation is an essential capability of autonomous robots. How-
ever, robots still do not quite match humans in such navigation tasks, despite decades of research and
a vast literature [1, 2]. For example, upon arriving at a new shopping complex, a human can follow
an abstract 2-D floor plan, devoid of most geometric and visual details of the 3-D world, and reach
any location in the building, unimpeded by railings, glass walls, . . . that often cause failures in robot
navigation systems. Similarly, a human can drive to any destination in a new city by following a
roadmap or GPS based navigation directions. There are two key elements to humans’ performance:
the ability to plan a path using a simplified abstract model of the 3-D world and more importantly,
the ability to execute the planned path robustly using local visual information. To achieve compa-
rable performance in robot navigation, we propose to integrate model-free deep learning for local
collision avoidance and model-based path planning for goal-directed global navigation.

The idea of combining global path planning and local motion control is well studied in collision-free
robot navigation [3, 4]. There are many path planning methods [5]. There are many motion control
methods as well, e.g., potential-field [6], visual servoing [7], . . . , but they are usually manually
designed. In recent years, deep learning has achieved extraordinary success in many domains, from
image classification, speech recognition to game playing [8, 9, 10]. Deep learning has also found
application in navigation tasks. Earlier work, however, usually trains the agent to move along a fixed
path [11], with some notable exceptions [12].

Our proposed approach consists of a path planner at the high level and a motion controller, trained
via deep learning, at the low level (Figure 1). The path planner computes a collision-free global
path according to a crude input map, e.g., a 2-D floor plan. The motion controller tracks this path,
using images from a single monocular camera onboard the robot. It handles all local environment
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Figure 1: A two-level navigation hierarchy, with a path planner at the top and the intention-net, a learned local
motion controller, at the bottom. (a) Two paths planned for different goals in the same environment. (b) The
intention as a discretized local move. (c) The intention as a local path and environment.

dynamics, including obstruction from static and dynamic obstacles not in the input map—such as
furniture and people—and social conventions for navigation. The local motion controller is trained
end-to-end via imitation learning. After training, the robot navigates to arbitrary goals in previously
unseen environments. The proposed two-level architecture is more robust against perceptual uncer-
tainty than traditional navigation systems, as the motion controller is learned from data. Further, by
integrating with a path planner, it the learned motion controller generalizes to new environments and
goals effectively.

We represent the local motion controller as a deep neural network F . Previous work trains F via
imitation learning to follow roads and avoid obstacles, with impressive performance [11]. However,
it implicitly assumes F to be a mapping directly from perceptual inputs to controls. The robot is
thus not steerable according to high-level goals. For example, at an intersection, the decision to
go straight or make a turn depends on not only the local perceptual input, but also the navigation
goal. Mimicking the expert in the training dataset does not lead to the right action, as the goals
may be different. Instead, we train a neural-network controller, called the intention-net, conditioned
on both perceptual inputs and intentions. In our two-level architecture, the planned path at the top
provides the intention for the motion controller at the bottom. The controller chooses the robot
control conditioned on both the intention and the local perceptual input. Specifically, the intention
may represent a subgoal along the path and the local environment at the robot’s current location.

This work introduces a two-level hierarchical approach for robot navigation, with a path planner at
the top and the intention-net, a motion controller learned from data, at the bottom (Section 3). The
intention is the key ingredient that binds together the two levels of the hierarchy. Preliminary results
in simulation and real-robot experiments suggest that the new approach enables a mobile robot to
navigate reliably in a new environment with only a crude map (Section 4).

2 Related Work

Deep learning has been immensely successful in many domains [11, 12, 13, 9, 14, 15, 10]. In robot
navigation, one use of deep learning is to learn a flight controller that maps perceptual inputs directly
to control for local collision-free maneuver of a drone [15]. It addresses the issue of local collision
avoidance, but not that of goal-directed global navigation. Another use is to train a system end-
to-end for autonomous driving, using monocular camera images [11], but the system drives along
a fixed route and cannot reach arbitrary goals. Some recent work explores model-free end-to-end
learning for goal-directed navigation by incorporating the goal as part of the perceptual inputs [16,
17]. One may improve the learning efficiency and navigation performance by adding auxiliary
objectives, such as local depth prediction and loop closure classification [18]. Without a model,
these approaches cannot exploit the sequential decision nature of global navigation effectively and
have difficulty in generalizing to complex new environments. To tackle this challenge, our proposed
two-level architecture integrates model-free deep learning for local collision avoidance and model-
based global path planning, using a crude map.
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Hierarchies are crucial for coping with computational complexity, both in learning and in plan-
ning. Combining learning and planning in the same hierarchy is, however, less common. Kaelbling
et al.proposed to learn composable models of parameterized skills with pre- and post-conditions so
that a high-level planner can compose these skills to complete complex tasks [19]. Our hierarchi-
cal method shares similar thinking, but specializes to navigation tasks. It uses intention instead of
general pre- and post-conditions to bind together hierarchical layers and achieves great efficiency.

Navigation is one of the most important robotic tasks. One classic approach consists of three steps:
build a map of the environment through, e.g., SLAM [20], plan a path using the map, and finally
execute the path. High-fidelity geometric maps make it easier for path planning and execution.
However, building such maps is time-consuming. Further, even small environmental changes may
render them partially invalid. Alternatively, the optical flow approach does not use maps at all and
relies on the visual perception of the local environment for navigation [21]. While this avoids the
difficulty of building and maintaining accurate geometric maps, it is difficult to achieve effective
goal-directed global navigation in complex geometric environments without maps. Our approach
uses crude maps, e.g., 2-D floor plans, and sits between the two extremes. Floor plans are widely
available for many indoor environments. One may also sketch them by hand.

3 Integrated Planning and Learning with Intention-Net

Our proposed hierarchical method performs closed-loop planning and control. At each time step,
the path planner at the high level replans a path from the robot’s current position to the goal, us-
ing a crude floor-plan map. The path is processed to generate the “intention” for the intention-net
motion controller. Given the intention and an image from a single monocular camera, the low-level
controller computes the desired speed and steering angle for the robot to execute. The process then
repeats. In this section, we first present the intention-net motion controller (Section 3.1) and the
learning method (Section 3.2). We then briefly describe the path planner (Section 3.3).

3.1 Intention-Net

Figure 2: The LPE intention
represented as a 224 × 224 im-
age. It captures information
on the path that the robot has
recently traversed (in red), the
path ahead (in blue), the robot’s
current position (where the red
and the blue paths meet), and the
local geometric environment ac-
cording to the map.

Intention binds together global path planning and local motion con-
trol. Intuitively, intention captures what the path planner expects the
motion controller to do at the robot’s current position. We propose
two definitions of intention. The simpler one mimics the instructions
usually given for navigation: go straight, turn left, etc. . We call it
discretized local move (DLM). DLM may take four discrete values:
TURNLEFT, TURNRIGHT, GOFORWARD, and STOP. Given a path σ
from the robot’s current position x to the goal, we compute DLM by
estimating the local signed curvature of σ at x. If the absolute value
of the curvature is smaller than a chosen threshold, then the DLM
is GOFORWARD. Otherwise, the DLM is either TURNLEFT or TURN-
RIGHT according to the sign of the curvature. The DLM is STOP if
the robot reaches the goal. DLM is intuitive, but restricts the inten-
tion to four discrete values. This is clearly inadequate, for example,
at an intersection with five or more branches. Our second defini-
tion, local path and environment (LPE), is richer. It is represented
as a 224× 224 image, containing both the path and the environment
within a local window of the current robot position (Figure 2). See
Figure 1c for additional examples.

We represent the intention-net is a deep multivariate regression network F . At time step t, it takes
as input a camera image Xt and the intention It, which is obtained from the path computed by the
high-level planner. It outputs the robot control µt = (vt, θt), where vt and θt are the robot speed
and steering angle, respectively. Formally, µt = (vt, θt) = F (Xt, It).

Figure 3 provides a sketch of the network architectures for the DLM-net and the LPE-net. The
DLM-net takes as input a camera image of size 224× 224 and the DLM intention with four discrete
values. It extracts from the image a feature vector of length 2048, using ResNet50 without the last
fully connected layer. It encodes the intention first as a binary vector of length 4 and then expands
it to a vector of length 64 in order to balance the influence of the visual and the intention feature
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Figure 3: Intention-net architectures. (a) DLM-net. The DLM intention takes four discrete values: TURN-
RIGHT, GOFORWARD, TURNLEFT, and STOP. (b) LPE-net. The LPE intention is represented as a 224× 224
image. Both networks also take a 224× 224 camera image as the input.

vectors. The visual and the intention feature vectors are concatenated together as a single vector,
which is then processed by a fully connected linear layer to generate the controls for all intentions.
The DLM-net finally selects the control using the input intention.

The architecture for the LPE-net is even simpler conceptually. It takes as input a camera image and
an intention image, both of size 224×224, and process them through a two-stream siamese network
with shared weights. The intention image represents the environment according to the map and the
robot path within a local window of the robot’s current position. The camera image captures visual
appearance of the 3-D world. The siamese network tries to reasoning about the spatial relationships
between the two and embeds them in a space that preserves their spatial relationships. The siamese
network outputs two feature vectors of length 2048. They are concatenated and processed by a fully
connected linear layer to generate the final robot control.

3.2 Data Collection and Training

We collect data from demonstrations in the form of tuples (Xt, It, µt) for t = 1, 2, . . . . For the
simulation experiments, we run the path planner to generate the intention It and use the dynamic
window approach [22] as the expert to generate the robot control µt. For the real-robot experiments,
we collect data in a similar way, but use human experts. We run the path planner to generate the
intention It and visualize it. The human expert controls the robot with a joystick according to the
visualized intention. The collected dataset is split randomly into 4:1 ratio for training and evaluation.

We learn the desired velocity vt and steering angle θt jointly and reweight their values so that
vt, θt ∈ [−1, 1], for all t. We use rmsprop optimizer with initial learning rate 1e − 4 and L2
weight regularization 1e − 4 to training our network. We anneal the learning rate over time by
α = α0/(1 + k), where k is the number of iterations and α0 is the initial learning rate. We observe
that training with smaller batch size dramatically increases the performance of the final regression.
For practical use, we use a batch size of 8 in our experiments. We also find that using large training
samples per epoch reduces the validation loss significantly in training. Specifically, we maintain a
dataset pool that can be resampled at any time. We use 200, 000 uniformly sampled samples from
the dataset pool in each epoch. Maintaining the dataset pool also makes it possible to create a large
number of samples with a relatively small dataset.

3.3 Path Planning

The path planner replans a path from the robot’s current position to the goal at every time step.
It represents a crude map as an occupancy grid and performs adaptive Monte Carlo localization
(AMCL) [23] to localize the robot and determine its current position with respect to the map. The
planner searches the occupancy grid for the path using the hybrid A∗ algorithm [24], which can
accommodate robot kinematic and dynamic constraints.

The crude map may cause inaccuracies in both localization and path planning. Our hierarchical
approach addresses the issue in two ways. First, the planned path is not executed directly. Its primary
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Figure 4: Experimental setup in simulation and real-robot experiments. (a) A simulated environment, the
associated 2D map, and a camera view. (b) The floor plan for a robot experiment environment, the occupancy
grid map computed from the floor plan, and a camera view of the environment.

purpose is to generate the intention. The intention-net motion controller combines the intention with
robot’s local perceptual input to generate the controls for execution. By training on suitable datasets,
intent-net learns to be robust against some of these inaccuracies. Second, replanning at each time
step further improves robustness.

4 Experiments

We evaluated our approach in both simulation and real-robot experiments. For simulation, we used
the Stage simulator [25] as the experimental testbed. We hand-sketched a set of 2-D maps and used
Stage to generate the corresponding 3-D environments for training and testing the intention-net. See
Figure 4a for an example. For the real-robot experiment, we trained the robot on the first floor of our
office building and tested it on both the first floor and the second floor, which differs significantly
from the first floor geometrically and visually (Figure 7). We digitized the visitor floor plans of
our building to create crude occupancy-grid maps (Figure 4b). Both the simulation and real-robot
experiments used a Pioneer 3-DX robot. In real-robot experiments, the robot is equipped with a
webcam that has 70◦ field of view. It is also equipped with a Sick LMS-200 LIDAR, used for
localization only.

For comparison, we consider three alternative methods: Path Tracker, Non-Intention Net, and Dy-
namic Window [22]. The first two are ablated versions of our approach. Path Tracker replaces the
intention-net with a standard motion controller and follows the planned path without visual feed-
back from the camera. In contrast, Non-Intention Net removes the intention as an input to the
neural-network controller and relies on visual feedback only. It removes the path planner as well.
Dynamic Window is a well-established successful method for robot navigation.

4.1 Results from Simulation Experiments

In simulation experiments, our main objective is to compare the two intention-net methods, DLM-
Net and LPE-Net, with the three alternative methods(Table 1), according to four measures: success
in task completion, the number of human interventions, total task completion time, and robot motion
smoothness. Smoothness is defined as the average jerk, i.e., the change in acceleration, of the path
that the robot traverses.

We consider five tasks (Table 1 and Figure 5). Tasks A–C use environments present in the training
dataset and test for generalization to new goals. Tasks D–E test for generalization to new environ-
ments unseen before. The geometric complexity of the environment increases from task A to E,
roughly. Task A has a simple environment with multi-way junctions. The environment for task E is
a maze.

Overall LPE-Net performs better than DLM-Net, especially in task D and E, which involve general-
ization to new environments. Both substantially outperform the alternatives. They complete all tasks
with no human interventions. Path Tracker completes the task faster than others in the simple task,
task A. However, it generally produces robot motions that are jerky and not smooth. This is quite
visible in Figure 5. It also requires a large number of human interventions in the most difficult task,
task E. Non-Intention Net completes task A, but fails in all others. This is unsurprising. By removing
the intention input, Non-Intention Net has no notion of global navigation goals. It blindly mimics
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Table 1: Performance comparison on five navigation tasks in simulation. Each task requires the robot to
navigate through a sequence of goals. See Figure 5.

Task Method Success Intervention Time (sec.) Smoothness
DLM-Net Y 0 113 0.0053
LPE-Net Y 0 114 0.0053

A Path Tracker Y 0 105 0.0040
Non-Intention Net Y 0 112 0.0053
Dynamic Window Y 0 109 0.0039
DLM-Net Y 0 118 0.0074
LPE-Net Y 0 128 0.0068

B Path Tracker Y 3 155 0.0170
Non-Intention Net N – – –
Dynamic Window Y 0 126 0.0100
DLM-Net Y 0 559 0.0074
LPE-Net Y 0 561 0.0072

C Path Tracker Y 16 640 0.0150
Non-Intention Net N – – –
Dynamic Window Y 0 565 0.0094
DLM-Net Y 0 237 0.0085
LPE-Net Y 0 226 0.0066

D Path Tracker Y 5 240 0.0120
Non-Intention Net N – – –
Dynamic Window Y 0 238 0.0095
DLM-Net Y 0 545 0.0080
LPE-Net Y 0 531 0.0075

E Path Tracker Y 21 546 0.0089
Non-Intention Net N – – –
Dynamic Window Y 0 551 0.0084

A.

Task DLM-Net LPE-Net Path Tracker Non-Intention Net Dynamic Window

B.

C.

D.

E.

Figure 5: Example runs of five navigation tasks in simulation. Each task requires the robot to navigate through
a sequence of goals 1, 2, . . . . The first column shows the task and the planned path. The remaining columns
show the execution traces (thin blue lines) of five methods. For Non-Intention Net, we overlay the planned
paths (thick light-blue lines) for the failed tasks. For tasks B, D, and E, it fails when traveling from goal 1 to 2.
For task C, it fails when traveling from goal 3 to 4.
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Figure 6: Examples from real-robot experiments. (a) The robots slow down to let a human blocking its path
pass by. (b) The robot encounters a glass door in the training dataset. (c) The robot encounters a different glass
door not in the training dataset. The robot detects the glass door and slows down to a stop, as indicated by the
speedometer at the lower right corner of each image.

the expert, without recognizing that given the same visual feedback, the expert may have different
goals in the training dataset. It succeeds in task A, because this task has a very simple environment,
with no junction to separate paths for different goals. LPE-Net and DLM-Net also outperform Dy-
namic Window in terms of task completion time and robot motion smoothness, especially in the
more complex environments (tasks C–E).

4.2 Results from Real-Robot Experiments

Next, we evaluate the performance of our approach, when faced with the complexity of the real
world. We highlight several interesting scenarios below:

• Moving people. The crude floor-plan maps obviously do not contain information on dy-
namic obstacles, such as moving people. Nevertheless, our approach can handle people
obstructing the robot path, thanks to the intention-net learned from data. The robot recog-
nizes people, men or women dressed in different types of clothing. If a person moves in the
same direction ahead of the robot, the robot usually slows down and follows the people. If
a person moves in the opposite direction, the robot stops and waits for the people to pass
by. See Figure 6a for an example.

• Glass doors. Transparent obstacles such as glass doors present a well-known difficulty for
navigation systems that rely on LIDAR. Using images from a single monocular webcam,
the intention-net enables our robot to handle glass doors. Figure 6b shows the glass door in
the training dataset. Figure 6c shows the robot behavior when it encounters a different glass
door not present in the dataset. Even more interestingly, the floor-plan map is inaccurate
and does not contain the glass door. So the high-level path planner is not aware of it. The
intention-net nevertheless detects the glass door and responds to it correctly by slowing
down the robot to a full stop.

• New environments. The robot is trained on data from the first door of our office building
only. It navigates very capable on the second floor, which differs significantly from the first
floor in geometric arrangement and visual appearance (Figure 7), though more thorough
evaluation is required to quantify the performance.
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Figure 7: Generalization to a new environment. (a) The first floor of the building in robot experiments. The
robot is trained on data from the first floor only. (b) The second floor, used for testing the robot, has a signifi-
cantly different geometric arrangement and visual appearance.

Figure 8: Visualization of the learned feature in simulation and real-robot experiments. Each block shows the
camera view and the activated features from the 9th, 18th, and 50th layers of ResNet50.

Both DLM-Net and LPE-Net are evaluated in our experiments. Overall they both perform well, but
LPE-Net usually outperforms DLM-Net when difficult maneuvers, such as sharp turns, are required.
DLM-Net restricts the intention to four discrete values based on a manually chosen threshold. While
it is possible to learn the threshold from data, we believe that LPE-Net, which uses a richer intention
representation, is a better and more systematic way to proceed.

The most common failure of our approach occurs when the planned path generates the wrong in-
tention as a result of inaccurate localization, especially with DLM-Net. For example, the robot
approaches the end of a hallway and must turn left. Intuitively, the TURNLEFT intention is required.
Instead, the GOFORWARD is generated because of the localization error. The robot may then crash
against the wall. This happens because the simple A∗ path planner does not account for localization
errors and relies solely on replanning to close the loop. A more sophisticated planner, which hedges
against uncertainty in localization, would alleviate this difficulty.

4.3 Visualization of Learned Features

To gain some understanding of how the intention-net processes the visual feedback, we visualize the
learned features by projecting all activated features of a layer on an image. Figure 8 shows some
examples. The lower-layer features are more concrete and capture the lines where the wall meets
the floor or the ceiling. The is clear, especially in the simulation setting. The higher-layer features
are more abstract and difficult to interpret. Sometimes they capture the free space for navigation,
e.g., the lower-left block of Figure 8.

5 Conclusion

We propose a two-level hierarchical approach that integrates model-free deep learning and model-
based path planning for reliable robot navigation. Learning allows us to train the intention-net, a
neural-network motion controller, to be robust against robot perceptual noise and localization errors.
Planning enables the learned controller to generalize to new environments and goals effectively.
Together they enable our robot to navigate almost immediately in a new indoor environment, with a
very crude map, such as a digitized visitor floor plan.

One main limitation of our current approach is robot localization. It treats localization as a black
box and segregates it from the planner. Integrating localization with planning and learning will be
the next challenge in our work.
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