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Summary. The key contribution of this work is the construction of a robot track-
ing system that follows an unpredictable target (e.g people) in cluttered, unknown
and dynamic environments. To do so, mobility constraints, sensor limitations, and
uncertainty have been addressed at both the algorithmic and implementation levels.
The work formulates target tracking as minimizing an objective function that mod-
els the risk of the target’s escape and derives this risk function from basic principles.
Various practical hardware limitations – e.g., sensor’s field of view, safe navigation
– are taken into account either as part of the risk function or as constraints dur-
ing risk minimization. The resulting tracker demonstrates substantially improved
performance, compared with other local online strategies. The tracker was able to
track a person walking around in indoor office environments as well as in a highly
dynamic and public environment like the school cafeteria successfully.

1 Introduction
Target tracking is an important task for autonomous robots. The goal of
this work is to construct motion strategies for a robot equipped with visual
sensors so that it can track a moving target despite obstruction by obstacles.
Target tracking has many applications in security and surveillance systems,
home care settings, computer assisted visualizations, etc. Let us take a specific
scenario of an automated personal shopping assistant following an elderly
person in a shopping mall, or of keeping an eye on young kids while their
parents shop. The shopping mall is complex environment. Moreover, people
walking around add to the visual occlusions and motion obstructions, thereby
creating a highly cluttered and dynamic environment. While the layout of
the environment might be available in some cases, exact maps for localizing
the robot are hardly provided. On top of that, the target can be completely
unpredictable in moving from one shop to another. In such scenarios, an online
tracking strategy that uses only local information becomes necessary.

Tracking strategies differ greatly, depending on the information available.
For known environment and target motion, optimal motion can be precom-
puted [5, 3, 6], though usually at a high computational cost. For unknown
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environment and unpredictable targets, [4, 7] move the robot to minimize a
distance based objective function. The concept of vantage time [2, 1] system-
atically integrates various local factors contributing to the target’s perceived
risk of escape and derives a risk function that is minimized to attain better
tracking performance. While our earlier work [2, 1] introduced the vantage
tracker, it was done in simulation with perfect sensing, localization, omnidi-
rectional visibility and motion, making it difficult to implement directly on a
real hardware. This paper describes the enhanced algorithm to handle such
practical requirements, and the realization of such a tracking system.
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In order to identify and track a person, we use visi-
bility based sensors, based on the standard straight
line-of-sight visibility model. In the free space F , the
visibility set V(x) is given by,

V(x) = {q ∈ F | xq ⊂ F and d(x, q) ≤ Dmax and
θmin ≤ ang(x, q) ≤ θmax}

where d(x, q) denotes the distance between x and
q, while ang(x, q) is the orientation of q w.r.t. x.
Information about the local environment is encoded
into the boundary (∂V), of the visibility polygon (V).

Both the robot and the target’s motion, are modeled with a simple discrete-
time transition equation. As the target behavior is unknown, its velocity (v′)
is modeled by a gaussian around its current heading : v′(t+∆t) = N (v′(t), σ).
The variance σ gives a measure of confidence in estimating the target velocity.
Although we use a Gaussian distribution to model the uncertainty in the
target behavior, the approach remains valid for any other velocity prediction
method, even non-parametric ones.

2.1 Local Greedy Approach

The objective of the robot is to keep the target inside the robot’s visibility, V,
by manipulating the escape edges, {Gi} away from the target. Let us denote
the manipulation ability of a single escape edge, Gi, by the symbol, ∆Gi. ∆Gi

is a function of the robot position, x, and its actions, v: ∆Gi(x,v). The risk of
losing the target, on the other hand, depends on : (a) the target position (x′),
(b) the relative target velocity (v′) w.r.t. to {Gi}, and finally (c) the robot’s
ability to manipulate the edges, ∆Gi. We can then formulate a risk function
(Φ) and choose the robot action, v?, to minimize Φ:

Risk = Φ(x′,v′, {Gi}, {∆Gi(x,v)})
v? = arg min Φ(x′,v′, {Gi}, {∆Gi(x,v)}) (1)
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While Φ is the risk of losing the target through any escape edge in the
entire V, we can assign a risk ϕi, of losing the target to each escape edge, Gi.
We approximate the total risk Φ, by the expected risk for all the gaps.

Φ ≈ E[ϕi] =
∑

i

piϕi(x′,v′,Gi,∆Gi(x,v)), v? ≈
∑

i

piv
?
i (2)

where pi is the probability of the target’s escape through Gi. pi is computed
based on the target’s current velocity, v′. The details can be found in [2].

However, in choosing v?, the robot has to satisfy many constraints on the
desired robot positions, obstacle avoidance, stealth or on the robot’s actions,
kinematic, dynamic constraints. We define a feasible region, L (x), that satis-
fies all the constraints in the position domain, Ci(x) : L(x) =

⋂
i Ci(x). The

local greedy optimization then chooses an action (v?), that minimizes Φ while
satisfying L (x) in the time step ∆t,

v? = arg min Φ(x′,v′, {Gi}, {∆Gi(x,v)}) s.t v?∆t ∈ L(x) (3)

3 Tracking Algorithm
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Fig. 2. Calculating tr.v

for occlusion edges

In the previous work [2], a local greedy algorithm
based on relative vantage was proposed. Relative
vantage refers to the ability of the robot to elimi-
nate Gi before the target can escape through it. We
introduce a region around Gi, called vantage zone,
D = {q : q ∈ V; dist(q,Gi) ≤ dist(x,Gi)}

The objective of the robot is to keep the targets
away from D and accordingly, we can take the mea-
sure of time taken to move the target outside D, tr.v,
as the risk value. From Figure 2,

ϕg =
dist(T ,D)

rel.vel(T ,D)
≈ r − e

veff
, v?

i =
ϕg

veff

(
r′

r
n̂ + r̂

)
where veff = vr+vn(r′/r)−v′

e is the effective velocity in the direction along the
shortest path from the target to Gi. The algorithm showed improved tracking
performance in simulation. The details are addressed in [2]. However, the
simulation assumed omni-directional visibility, perfect sensing, perfect target
identification among other things, (Figure 3a).

In real life (Figure 3b), most visibility sensors available have limitations on
the range of sensing and the field of view which have to addressed explicitly.
Another important issue in implementing the tracking system, is the identi-
fication of the target feature from sensor data. In simulation, this problem is
bypassed as the simulator can be queried for the exact position of the target.
However, uncertain and noisy sensor data in real life scenarios, makes tar-
get identification and localization unreliable. The tracking algorithm has to
handle such cases of false detection and no detection. Also, the robot has a
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(a) Synthetic Environment (b) Real Environment

Fig. 3. Adapting the algorithm from a synthetic environment (a) to real environment
(b) requires addressing the problem of hardware limitations and uncertainty.

finite size and may have kinematic and dynamic constraints that need to be
considered. Safe robot navigation is necessary not only for the robot itself, but
also to prevent damaging the environment. In fact, safety becomes a critical
issue when introducing the robot in human environments.

Handling Visibility Limits

In general, there are two kinds of sensory limitations : limits on the maximum
and minimum sensing range, range edges, and limits on the field of view, FoV
edges. As these edges cannot be eliminated by the robot itself, the best strat-
egy would be to delay the target’s escape. A measure of this delay, the time
taken by the target to escape through a gap (G), is called escape time (tesc).
The robot then chooses actions that maximizes tesc, where we define tesc by,

θmin
θmax

δθωR

ωT

G R

Fig. 4. FoV limits

tesc =
dist(T ,G)

rel.vel(T ,G)
Field of View Limits : The FoV can be modeled as
an annular sector with the robot at the center, with
the visibility spanning from θmin to θmax, Figure 4.
The only way to manipulate G is by rotating the visi-
bility sensor towards the target. In case the visibility
sensor has an additional degree of freedom over the
robot, e.g. a pan mechanism, the angular velocity of the panning, ωR is the
action of the robot. On the other hand, if the sensor is attached rigidly to the
robot base, the turning of the robot itself acts to rotate G. In that case we
treat ωR as the rotation of the robot.
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Fig. 5. Range Limits

As we deal with the angular motion, it is natural
to derive tesc using these rotational parameters. Based
on the target’s motion, we can approximate its angular
velocity, ωT towards G. This gives rel.vel(T ,G) = ωT −
ωR, and dist(T ,G) = δθ. Treating tesc as the risk, ϕf ,
with ωeff = ωT − ωR,

ϕf =
δθ

ωeff
, v?

FoV =
ϕf

weff
ω̂R (4)
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Max/Min Range Limits : In Figure 5, Dmax and Dmin show the visibility
range limits. In this case, e is the distance towards the nearest point in the
range edges. From Figure 5 we can calculate the ϕd as,

ϕd =
e

veff
, v?

range =
ϕd

veff
v̂r (5)

where v′
e is the velocity component of the target towards the escape edge

Dmax, and vr is the robot’s velocity in pushing the range edge away from the
target, and veff = v′

e−vr. The analysis for Dmin is identical where, the robot
would actually back away from the target to guard Dmin.

An interesting thing to note, is that the behavior generated by the range
edges alone is exactly the visual servo behavior. This shows that visual servo
is a special case of vantage tracking when there are no occlusions.

Obstacle Avoidance
G

B

C
L

R
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Fig. 6. Obstacle Dila-
tion

Although, purely low-level reactive obstacle avoidance
techniques, can handle dynamic and unknown environ-
ment, they may sometimes move the robot contrary
to the required tracking direction. On the other hand,
planning in the configuration space may be too com-
putationally expensive in a cluttered and dynamic envi-
ronment. We propose a local obstacle avoidance method
with a small look-ahead. The robot’s velocity is used
to enlarge the obstacle edges. These extended obstacles
then constrain the planned robot motion.

First, we approximate the robot’s size by the radius (sr) of its bounding
circle. Then, we compute the finite braking distance, sb, using the maximum
decceleration and the robot’s current velocity. This braking distance, sb and
the robot’s dimension, sr, defines a collision region C (x), around the obstacle
edge, B, Figure 6,

C(x) = {q ∈ V : d(q,B) ≤ (sr + sb)} (6)

Fig. 7. Tracking
scene

The robot can actively change the shape of C by chang-
ing its speed and heading. For safe navigation, the
robot must avoid C. If we denote the reachable region
of the robot in ∆t, as R, the feasible region becomes
L = R− C. As an example, assuming omni-directional
motion ability of the robot, Figure 6, R is a disk of
radius, V ∆t, and the darker shaded region shown is L.

4 Hardware Implementation
The tracking algorithm is implemented on a Pioneer
P3-DX differential drive robot. A SICK-lms200 is mounted on the robot.
The laser returns 361 readings on a field of view of 180deg at the resolu-
tion of 0.5deg. The maximum range of the robot is 8m. The control algorithm
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runs on a Pentium M Processor @1.5GHz laptop running Player server v-
2.0.5 on linux. The algorithm runs at 10Hz. The target is a person walking
around the lab corridors in the presence of other people. For illustration pur-
poses, a snapshot of the algorithm running in the stage simulator is shown
in Figure 7. The green circle is the robot and the red object is the target.

Fig. 8. Visibility
Polygon

Visibility Polygon : The output of the sensor is a radial
scan of range values. The data points with max-range
readings form the range edges. We detect the conti-
nuity of the remaining data point to its neighbors by
thresholding the range value changes in adjacent data
points. These changes represent the occlusion edges and
their location can be extracted from the corresponding
data points. This is shown by blue lines in Figure 8.
Two additional edges are added at the orientation of
the min/max angular limits to form the FoV limits.

Fig. 9. Target Detec-
tion

Target identification : The thresholding groups the data
points into clusters (Figure 9). These clusters represent
physical objects in the sensing range, e.g. walls, furni-
ture, other people, etc. In fact, one of the clusters is
the target. We start with a known target. Given the
target’s maximum speed, we can estimate a bound on
the target’s future position in time ∆t: V ′ ∆t. We then
perform a nearest neighbor match within this bound.
Clearly, this method will fail if V ′ ∆t is too large. How-
ever, the practical success of this simple technique can be found in : (a) small
∆t, as the algorithm runs at a high frequency of about 10Hz, (b) target speed
being slow enough, average human walking speed 1m/s (giving the toler-
ance level of about 10cm) and (c) low false negative rate for cluster detection.
More sophisticated target detection algorithms using EKF, MHT or JPDAF,
etc can improve the tracking robustness.

Fig. 10. Obstacle di-
lation

Obstacle avoidance : We utilize an implementation of
applying (Equation 6) to the data points directly. This
saves us considerable computation in extracting the ac-
tual shape of the cluster to compute C. To achieve this
we perform a radial transformation in to move each data
point towards the robot by (sr +sb). sb is estimated
based on the relative velocity and the maximum rela-
tive acceleration towards the data point. The result is
shown in Figure 10.

Robot Motion control : The optimal velocity v?, generated from the algorithm
does not take into account the non-holonomicity of the robot base. We apply a
simple low level control on the robot velocity that tries to achieve v? (similar
to [4]). From the structure of the risk function we see that Φ, is locally smooth.
Due to this, v? also changes slowly and the controller is stable.
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Uncertainty in sensing and execution : As the algorithm uses only local geo-
metric information available to the robot’s visual sensors, it does not require
a global map and thus bypasses the difficulty of localization with respect to
a global map. Noisy sensor data and the uncertainty in robot’s control can
affect the performance of the target’s relative localization and especially the
target’s velocity estimate. In the hardware experiments, we found that the
reliability of the target’s velocity estimate was quite poor. Still, the tracker
was able to successfully track the target by focusing more on the worst case
scenarios. Moreover, uncertainty in sensing and motion control does not ac-
cumulate, because the robot’s action is computed using sensor data acquired
in the current step only improving the reliability of tracking.

5 Experimental Results

We run three types of experiments to validate our approach. In the first, we
show the improved performance of the vantage tracker to the visual servo in
a real dynamic environment. Subsequently we run control experiments on the
algorithms to show and analyze the improved performance of vantage tracker.

Dynamic Environment Expt : In Figure 12, a box is pushed between the
target and the robot to occlude the target. Since, the vantage tracker actively
tries to avoid future possible occlusions, it is able to adapt to the changing
environment (Figure 12b-1 ). A point to note is that the vantage tracker does
not model the motion of the environment but just re-plans its motion at a
high frequency, making the tracker independent of the dynamic nature of
the environment. Later, when the box stops and the target starts to move
(Figure 12c), the tracker is able to successfully follow the target (Figure 12d).

Performance Comparison - Qualitative Study : In (Figure 13 & 14),We com-
pare the performance of the different algorithms : the visual servo, combina-
torial tracker (maximizing the shortest distance to escape, SDE) [4] , and our
vantage tracker. In order to have controlled environment for comparison viz,
identical target path and perfect target identification and localization, we run
this experiment on player/stage simulator.

In Figure 14(a), we compare the performance of the trackers using the
metric of the shortest distance to the nearest exit (SDE). A better performance
would be indicated by larger average SDE. The plots stop as soon as the target
is lost by the tracker. We see that visual servo loses the target first around
step #160, (Figure 13a,14a) and then the combinatorial tracker around #300
(Figure 13b,14a) whereas the vantage tracker manages to continue till the
end (Figure 13c,14a). The visual servo tracker ignores the environment due
to which it loses out early. The combinatorial tracker performs better, but it
focuses more on the short term goals of immediate target loss. This is seen in
Figure 13b as a highly curved path due to the swinging actions. The vantage
tracker balances the short term and long term goals better. Around step #300
when the combinatorial tracker loses out, the vantage tracker is much closer
to the occlusion edge, and is better positioned to guard the occlusion edge.
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(a) (b) (c)

Fig. 11. Visual Servo : Since the robot does not take into account the environment
information, it moves straight ahead towards the target (b) and loses the target to
the occluding box (c).

(a) (b-1 ) (b-2 ) (c) (d)

Fig. 12. Vantage tracker : (b-2 ) shows the robot’s local perception of the environ-
ment. The target is marked by T , the blue lines are the occlusion edges, red line
is the most critical occlusion and the green segment starting from R denotes the
robot’s motion decision. The robot sees the target too close to the occlusion and
swings out.

The vantage risk plot Figure 14b, shows peaks in the risk value when the SDE
starts to fall (as the target comes closer to the occlusion edge). Anticipating
this risk early allows the vantage tracker to improve its future position and
keep the target safely in view.

Performance Comparison - Quantitative Study : We run the algorithms for
three other target paths, shown in Figure 15, and compare the them for the
percentage of the number of steps in which target was visible. When lost, the
robot tries to recover the target by moving towards the target’s last seen posi-
tion. The results are shown in Table 1. Column 2 of the table lists the length
of the target trajectory in time steps. For the each strategy, the first column
lists the number of steps that the robot has the target visible as well as the
number as a percentage of the total number of target steps. The next column
lists the number of times that the target is lost and recovered with emergency
actions. In case the target was not recovered even after executing emergency
actions, it is marked as lost. The comparison in these two environments shows
that the vantage tracker is (i) less likely to lose the target, (ii) has the target
visible for much longer total duration, and (iii) always follows the target to
the end. All these indicate better performance.
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(a) Visual Servo (b) Combinatorial Tracker (c) Vantage Tracker

Fig. 13. The green robot is trying to follow the red target. The trails show their
actual path. The light blue shaded region denotes the robot’s visibility. Target is
lost in (a) and (b), whereas in (c) the target is still in robot’s view. In all cases the
robot stops when the target is lost from view, there is no target recovery behavior.
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Fig. 14. (a) Plotting SDE for various algorithms, (b) Plotting SDE and the risk
value for the vantage tracker.

(a) Expt 1 (b) Expt 2 (c) Expt 3

Fig. 15. The simulation experiment paths taken by the target (red) and the path of
the vantage tracker (green).

6 Conclusion

This work deals with the problems, both theoretical and practical, to develop
a human tracking system on real hardware. We model the FoV limitations as
an objective function, while safe obstacle avoidance is modelled as constraints.
We show that for reasonable target behaviors, a simple cluster based detection
and nearest neighbor data association works well in practice. This enhanced
algorithm can now handle real life conditions and we setup a robot that can
track humans in semi-structured, unknown and dynamic environments using
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Table 1. Performance comparison of visual servo, combinatorial and vantage trackers.

Visual Servo Combinatorial Vantage
Expt. Target Visible No. Times Visible No. Times Visible No. Times
No. Steps Steps (%) Lost Steps (%) Lost Steps (%) Lost

1. 1200 268 (22%) 2, lost 230 (19%) 2, lost 1015 (85%) 4
2. 1700 467 (39%) 6, lost 295 (17%) 1, lost 705 (42%) 5
3. 1200 309 (26%) 4, lost 237 (20%) 1, lost 399 (33%) 5

just a simple laser scanner. Experiments also show that it outperforms stan-
dard visual servo and SDE based trackers. The proposed algorithm worked
reasonably in the school cafeteria where people walking by may introduce ad-
ditional motion obstruction and visibility occlusions dynamically. All videos
are available at : http://motion.comp.nus.edu.sg/projects/follow/follow.html

In the current implementation the target identification can be improved
significantly. A lot of research has been done in robust identification of a person
based on facial features etc, in computer vision. We are working towards
integrating computer vision techniques to improve the target identification.
This would be absolutely essential in distinguishing between probable targets
in case the target is lost and the robot has to apply advanced target searching
algorithms to find the target again.
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3. A. Efrat, H. González-Baños, S. Kobourov, and L. Palaniappan. Optimal strate-
gies to track and capture a predictable target. In Proc. IEEE. Int. Conf. on
Robotics & Automation, pages 3789–3796, 2003.
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