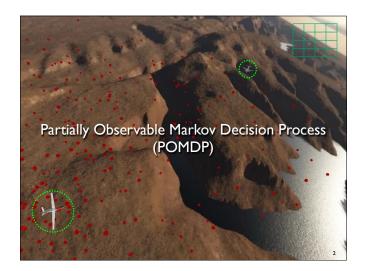
Towards Large-Scale POMDP Planning for Robotic Tasks

David Hsu National University of Singapore



Partially observable Markov decision process (POMDP)

- A discrete POMDP model
 - States (configurations)
 - Actions Unknown
 - Observations
 - Rewards
 - State transition function
 - Observation function
- A belief state is a probability distribution over the states.
- A policy is a mapping from a belief to an action. An optimal policy maximizes the expected total reward.

EDWARD J. SONDIK

Stanford University, Stanford, California
(Received July 1973; accepted May 1977) Drake (1962)
Astrom (1965)
Actic (1965)
Actic (1965)
Smallwoord & Sondik (1971)

THIS PAPER studies the control of Markov processes for which only

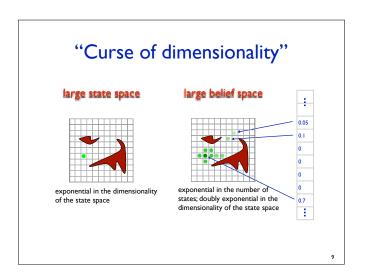
Some history: 1978

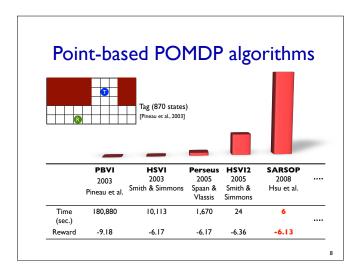
The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs

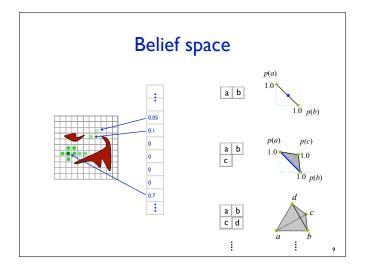
Some history: 1998 Kaelbling, Littman & Cassandra (1998)

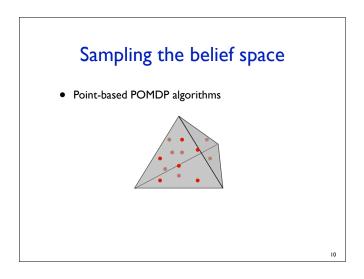
Complexity of solving **POMDPs**

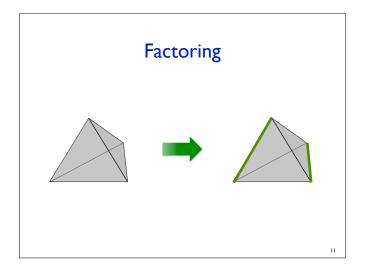
- Solving POMDPs exactly is computationally intractable:
 - Finite-horizon POMDPs are PSPACE-complete [Papadimitriou & Tsisiklis, 87].
 - Infinite-horizon POMDPs are undecidable [Madani et al., 99].

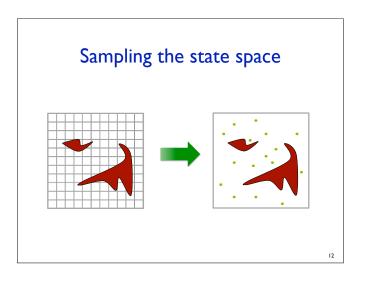


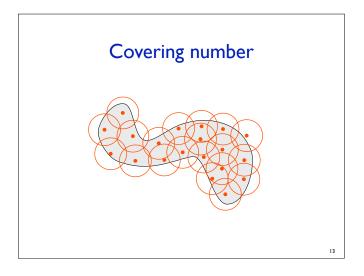








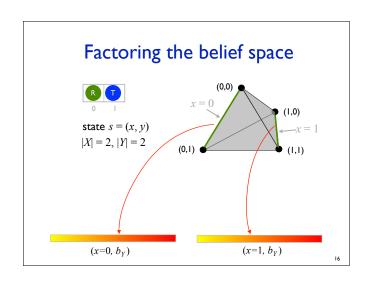


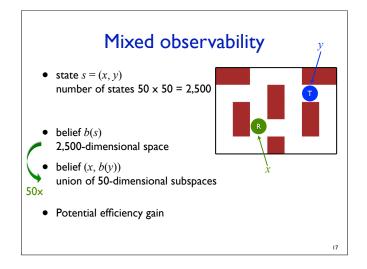


Mixed Observability Markov Decision Process (MOMDP) S.C.W. Ong. S.W. Png. D. Hsu, and W.S. Lee. POMDPs for robotic tasks with mixed observability. Int. J. Robotics Research, 29(8), 2010.

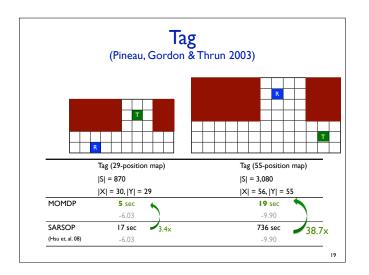
Mixed observability Markov decision process (MOMDP)

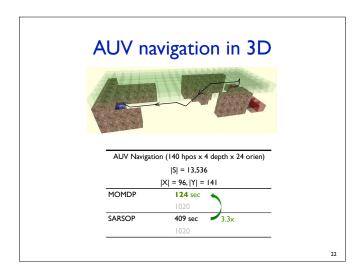
• state s = (x, y)• POMDP belief b(s)• MOMDP belief (x, b(y))





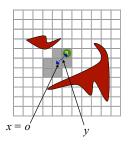
Computational efficiency • POMDP operates in a single |S|-dimensional space. • MOMDP operates in a union of |X| sets of |Y|-dimensional spaces, where |S| = |X||Y|. • Computational efficiency gain from MOMDP representation • Point-based approximation algorithms $\propto |X|$





Reparameterized full observability

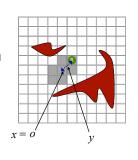
- Reparameterize the state space
- \bullet x = o
- h(o): the set of states that have non-zero probability of emitting o
- y =offset from o, indicating the exact state in h(o)



Reparameterized full observability

Theorem

The POMDP and the reparameterized MOMDP (with x = o) are equivalent.

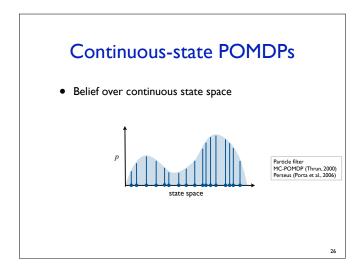


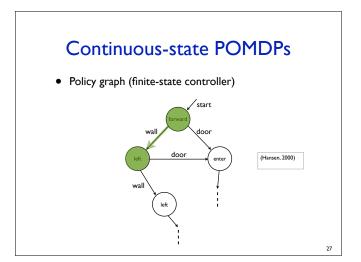
Continuous-state POMDPs

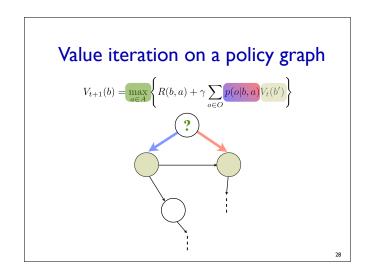
H.Y. Bai, D. Hsu, and W.S. Lee. Monte Carlo Value Iteration for Continuous-State POMDPs. In Proc. Int. Workshop on the Algorithmic Foundations of Robotics, 2010.

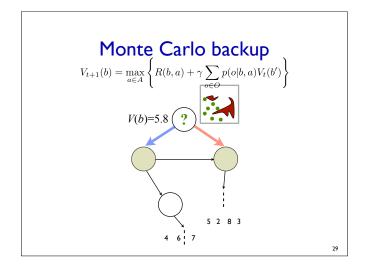
24

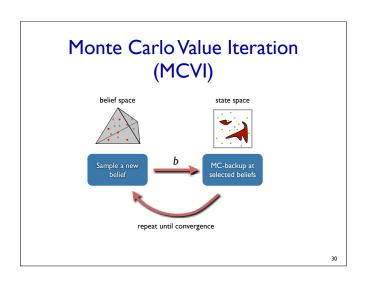












Computational efficiency

Theorem

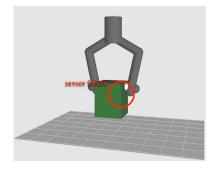
$$|V^*(b) - V_t(b)| \le \sqrt{\frac{|O| + \ln|A| + \ln(1/\tau)}{N}} + \delta_B + \gamma^t$$

with probability at least $1-\tau$.

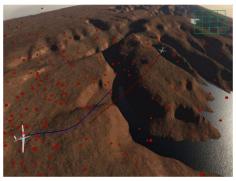
- N: number of samples from the state space (Monte Carlo simulations)
- δ_b : covering of the belief space
- t: number of iterations

Grasping (Hsiao, Kaelbling & Lozano-Perez 2007) • Uncertain initial position Noisy touch sensors on fingers Manual discretization

Grasping



Aircraft collision avoidance



Simulation results

Model	Algorithm	Risk ratio
3D continuous-state POMDP	MCVI	0.00066
2D continuous-state POMDP	MCVI	0.017
2D discrete POMDP (Temizer et al. 2010)	SARSOP	0.035 53×
TCAS	TCAS	0.061
Nominal		1.0

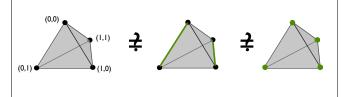
- MIT Lincoln Laboratory CASSATT simulator
 15,000 encounters from 9 months of radar data in US airspace

What makes some POMDPs easier than others?

D. Hsu, W.S. Lee, and N. Rong. What makes some POMDP problems easy to approximate? In Advances in Neural Information Processing Systems (NIPS), 2007.

Common complexity measures

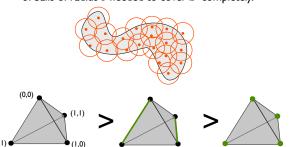
• Number of states = dimensionality of belief space



38

An alternative complexity measure

 The covering number C(δ) of a set S is the number of balls of radius δ needed to cover S completely.



Reachable space

 Find an approximately optimal **action** at b_0 (on-line action selection)

Theorem

An approximately optimal value $\mathit{V}(b_0)$ with regret no more than ϵ can be found in time

$$O\left(\mathcal{C}\left(\frac{(1-\gamma)^2\varepsilon}{4\gamma R_{\max}}\right)^2\log_{\gamma}\frac{\varepsilon(1-\gamma)}{2R_{\max}}\right) \quad \textcircled{\textcircled{\$}}$$

• The problem is easy if the covering number ("volume") of the reachable space is small.

40

Optimally reachable space

Theorem

Finding the optimal action is NP-hard, even if the optimally reachable space has a polynomial-size cover.

Theorem

Given a suitable cover C of the optimally reachable space, an approximately optimal value $V(b_0)$ with regret no more than ϵ can be found in time

$$O\left(|C|^2 + |C|\log_{\gamma}\frac{(1-\gamma)\varepsilon}{2R_{\max}}\right)$$

Implications

- Together, the positive and negative results indicate that finding a suitable cover of the optimally reachable space is a key difficulty.
- $V^* \longleftrightarrow R^*$
- The covering number better characterizes the complexity of the problem by capturing the sparsity of the space.

Bounding the covering number

- Several properties, often encountered in practice, reduce the size of covering numbers.
 - Fully observable state variables

$$(\frac{k^d}{\delta})^{k^d} \qquad \Longrightarrow \qquad k^{d'} (\frac{k^{d-d'}}{\delta})^{k^{d-d'}}$$

- Sparse beliefs
- Smooth beliefs
- Circulant state-transition matrices
- ...

42

Summary

 Large belief space: MOMDP

 Large state space: MCVI

• Covering number

POMDP software

Approximate POMDP Planning (APPL) Toolkit

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.HomePage

"Variable"

Glasefar vamm@rev="cver_0" vamm@crr="cver_1"

Glasefar vamm@rev="cver_0" vamm@crr="rover_1"

Clasefar vamm@rev="cver_0" vamm@crr="rove_1"

Glasefar vamm@rev="rook_0" vamm@crr="rook_1"

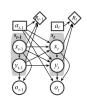
"Valiefinum=pood badd/Valiefinum

"Cobavar vamm@rev="cbasefar="valiefinum="cobavar="cver_0"

"Valiefinum=pood obadd/Valiefinum="cobavar="valiefinum=pood obadd/Valiefinum="cobavar="valiefinum=pood obadd/Valiefinum="cobavar="valiefinum=pood"

"Valiefinum="action_pover">

"Valiefinum="



44

Future Work

45

Acknowledgments

- Wee Sun Lee, NUS
- Mykel Kochenderfer MIT Lincoln Laboratory
- Hanna Kurniawati, SMART
- Sylvie Ong, McGill
- Haoyu Bai, NUS
- Yanzhu Du, Stanford
- Shaowei Png, McGill
- Nan Rong, Cornell

Acknowledgments

- MDA Gambit Game Lab
- Ministry of Education, Singapore
- School of Computing, National University of Singapore

47