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Partially Observable Markov Decision Process
(POMDP)

Partially observable Markov decision process
(POMDP)

• A discrete POMDP model

• States (configurations)

• Actions

• Observations

• Rewards

• State transition function

• Observation function

• A belief state is a probability 
distribution over the states.

• A policy is a mapping from a belief to 
an action.  An optimal policy 
maximizes the expected total reward.
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Some history: 1978
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Drake (1962)
Astrom (1965)
Aoki (1965)
Smallwoord & Sondik (1971)

Some history: 1998
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Kaelbling, Littman & Cassandra (1998)

Complexity of solving 
POMDPs

• Solving POMDPs exactly is computationally 
intractable:

• Finite-horizon POMDPs are PSPACE-complete 
[Papadimitriou & Tsisiklis, 87]. 

• Infinite-horizon POMDPs are undecidable [Madani 

et al., 99].

6



9

“Curse of dimensionality”
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Point-based POMDP algorithms
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Time 
(sec.)

180,880 10,113 1,670 24 6

Reward -9.18 -6.17 -6.17 -6.36 -6.13
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[Pineau et al., 2003]
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Belief space
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Sampling the belief space
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• Point-based POMDP algorithms

Factoring
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Sampling the state space
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Covering number
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Mixed Observability Markov Decision Process 
(MOMDP) 

14

S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. POMDPs for robotic tasks with mixed 
observability. Int. J. Robotics Research, 29(8), 2010.

Mixed observability Markov 
decision process (MOMDP) 

• state s = (x, y)

• POMDP belief b(s)

• MOMDP belief (x, b(y ))
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Factoring the belief space

   state s = (x, y) 
  |X| = 2, |Y| = 2

(0,0)
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Mixed observability

• state s = (x, y)
number of states 50 x 50 = 2,500

• belief b(s)
2,500-dimensional space

• belief (x, b(y))
union of 50-dimensional subspaces

• Potential efficiency gain
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Computational efficiency

• POMDP operates in a single |S|-dimensional space.

• MOMDP operates in a union of |X| sets of 
|Y|-dimensional spaces, where |S| = |X||Y|.

• Computational efficiency gain from MOMDP representation

• Point-based approximation algorithms      |X|                                                                           
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MOMDP 5 sec 19 sec

-6.03 -9.90

SARSOP 17 sec 736 sec
(Hsu et. al. 08) -6.03 -9.90

Tag
(Pineau, Gordon & Thrun 2003)
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Tag (29-position map)

|S| = 870

|X| = 30, |Y| = 29

Tag (55-position map)

|S| = 3,080

|X| = 56, |Y| = 55

Tag (29-position map)

|S| = 870
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Tag (55-position map)
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AUV navigation in 3D

MOMDP 124 sec

1020

SARSOP 409 sec

1020

AUV Navigation (140 hpos x 4 depth x 24 orien)

|S| = 13,536

|X| = 96, |Y| = 141

3.3x

Reparameterized full observability

• Reparameterize the state space 

• x = o

• h(o): the set of states that have 
non-zero probability of emitting o

• y = offset from o, indicating the 
exact state in h(o)
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R

o yx = 

Reparameterized full observability
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R

o yx = 

Theorem

The POMDP and the reparameterized 
MOMDP (with x = o) are equivalent.  

Noisy Tag
Reparameterized full observability

MOMDP 32 sec

-10.6

SARSOP 927 sec

-10.6

                           |S| = 3,080

                       |X| = 56, |Y| = 495
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3 x 3 bounded uncertainty

29.0x
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Continuous-state POMDPs
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H.Y. Bai, D. Hsu, and W.S. Lee. Monte Carlo Value Iteration for Continuous-State 
POMDPs. In Proc. Int. Workshop on the Algorithmic Foundations of Robotics, 2010.



Sampling the state space
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PRM (Kavraki et al. 1996)
EST  (Hsu et al. 1999)
RRT (LaValle & Kuffner 2001)

Continuous-state POMDPs

• Belief over continuous state space
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Particle filter
MC-POMDP (Thrun, 2000)
Perseus (Porta et al., 2006)

state space

p

• Policy graph (finite-state controller)

Continuous-state POMDPs
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forward

enter

left

doorwall

wall

door

start

left (Hansen, 2000)

Value iteration on a policy graph
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?

Monte Carlo backup
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?
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V(b)=5.8

Monte Carlo Value Iteration 
(MCVI)

30

b

repeat until convergence

Sample a new 
belief

belief space

MC-backup at 
selected beliefs 

state space



Theorem

                                                           

with probability at least        .          

Computational efficiency
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• N : number of samples from the state space  
     (Monte Carlo simulations)

• δb : covering of the belief space

•   t : number of iterations

Grasping
(Hsiao, Kaelbling & Lozano-Perez 2007)

• Uncertain initial position

• Noisy touch sensors on fingers

• Manual discretization
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Grasping
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sensor&failure

Aircraft collision avoidance
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Simulation results
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Model Algorithm Risk ratio

3D continuous-state 
POMDP

MCVI 0.00066

2D continuous-state 
POMDP

MCVI 0.017

2D discrete POMDP
(Temizer et al. 2010)

SARSOP 0.035

TCAS TCAS 0.061

Nominal 1.0

53x

• MIT Lincoln Laboratory CASSATT simulator
• 15,000 encounters from 9 months of radar data in US airspace 

What makes some POMDPs 
easier than others?
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D. Hsu, W.S. Lee, and N. Rong. What makes some POMDP problems easy to 
approximate? In Advances in Neural Information Processing Systems (NIPS), 2007.



Common complexity measures

• Number of states = dimensionality of belief space 
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An alternative complexity measure

• The covering number C(δ) of a set S is the number 
of balls of radius δ needed to cover S  completely. 
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Reachable space
• Find an approximately optimal action at b0 (on-line 

action selection)

• The problem is easy if the covering number (“volume”) of 
the reachable space is small.
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Theorem

An approximately optimal value V(b0) with regret no more 
than ε can be found in time 

Theorem

Finding the optimal action is NP-hard, even if the optimally 
reachable space has a polynomial-size cover.

Optimally reachable space
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Theorem

Given a suitable cover C of the optimally reachable space, 
an approximately optimal value V(b0) with regret no more 
than ε  can be found in time

Implications

• Together, the positive and 
negative results indicate that 
finding a suitable cover of the 
optimally reachable space is a 
key difficulty.

• The covering number better 
characterizes the complexity 
of the problem by capturing 
the sparsity of the space.

π*

V* R*
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Bounding the covering number
• Several properties, often encountered in practice, reduce 

the size of covering numbers.

• Fully observable state variables

• Sparse beliefs

• Smooth beliefs

• Circulant state-transition matrices

• ...
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Summary

• Large belief space:
MOMDP

• Large state space:
MCVI

• Covering number
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POMDP software
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Approximate POMDP Planning (APPL) Toolkit

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.HomePage

Future Work
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