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Partially observable Markov decision process
(POMDP)

® A discrete POMDP model

® States (configurations)

® Actions "W Unknown
e Observations

® Rewards

® State transition function

Partially Observable Markov Decision Process

(POMDP)

® Observation function _g Known

® A belief state is a probability
distribution over the states.

® A policy is a mapping from a belief to
an action. An optimal policy
maximizes the expected total reward.
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This paper freats the discounted cost, optimal control problem for
Markov processes with incomplete state information. The optimi-
zation approach for these partially observable Markov processes is a
generalization of the well-known policy iteration technique for finding
optimal stationary policies for completely observable Markov
processes. The state space for the problem is the space of state oc-
cupancy probability distributions (the unit simplex). The development
of the algorithm introduces several new ideas, including the class of
finitely transient policies, which are shown to possess piecewise
linear cost functions. The paper develops easily implemented ap-
proximations fo stationary policies based on these finitely transient
policies and shows that the concave hull of an approximation can
be included in the well-known Howard policy improvement algo-
rithm with subsequent convergence. The paper closes with g I e

g

example illustrating the application of the algorithm to t
partially observable Markov process.
Drake (1962)

Astrom (1965)

Aoki (1965)

Smallwoord & Sondik (1971) Tms PAPER studies the control of Markov processes for which only 4
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Complexity of solving
POMDPs

® Solving POMDPs exactly is computationally
intractable:

® Finite-horizon POMDPs are PSPACE-complete
[Papadimitriou & Tsisiklis, 87].

® |nfinite-horizon POMDPs are undecidable [Madani
etal, 99].




“Curse of dimensionality”

large state space large belief space
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exponential in the dimensionality exponential in the number}\
of the state space states; doubly exponential in the 07

dimensionality of the state space

Point-based POMDP algorithms

Tag (870 states)

I ‘ ‘ @ ‘ ‘ ‘ I [Pineau et al,, 2003]
— — [—] .
PBVI HSVI Perseus HSVI2 SARSOP
2003 2003 2005 2005 2008
Pineau et al Smith & Simmons  Spaan &  Smith & Hsu et al.
: Vlassis ~ Simmons
Time 180,880 10,113 1,670 24 6
(sec.)
Reward -9.18 -6.17 -6.17 -6.36 -6.13

Belief space

Sampling the belief space

® Point-based POMDP algorithms
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Sampling the state space




Covering number

Mixed Observability Markov Decision Process
(MOMDP)

A A

S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. POMDPs for robotic tasks with mixed
observability. Int. J. Robotics Research, 29(8),2010.

Mixed observability Markov
decision process (MOMDP)

® state s =(x,))
® POMDP belief b(s)

e MOMDP belief (x, b())

Factoring the belief space

00 o

state s = (x, y)

IX1=2,|Y=2

(x=0, by) (=1, by)

Mixed observability v

® state s =(x,))
number of states 50 x 50 = 2,500

® belief b(s)
2,500-dimensional space

r
\0 belief (x, b(y))
50x

union of 50-dimensional subspaces

® Potential efficiency gain

Computational efficiency

® POMDP operates in a single |S|-dimensional space.

® MOMDP operates in a union of |X] sets of
|Y]-dimensional spaces, where |S] = |X]|Y].

® Computational efficiency gain from MOMDP representation
® Point-based approximation algorithms o< |X]




Tag

(Pineau, Gordon & Thrun 2003)

Tag (29-position map) Tag (55-position map)
|S| = 870 IS| = 3,080
|X| =30,|Y| =29 |X| =56, |Y| =55
MOMDP 5 sec \ 19 sec \
/ /
SARSOP 17 sec /3.4x 736 sec /38 7x

(Hsu et.al. 08)

Reparameterized full observability

® Reparameterize the state space
® x=o0
® /i(0): the set of states that have
non-zero probability of emitting o

e y = offset from o, indicating the
exact state in /(o)
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AUV navigation in 3D

AUV Navigation (140 hpos x 4 depth x 24 orien)

S| = 13,536
IX| = 96,|Y| = 141
MOMDP 124 sec \
)
SARSOP 409 sec  # 33x
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Noisy Tag

Reparameterized full observability

o
3 x 3 bounded uncertainty

IS| = 3,080
[X| = 56, |Y| = 495

MOMDP 32 sec \

SARSOP 927 sec J29‘0X
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Reparameterized full observability

Theorem

The POMDP and the reparameterized
MOMDP (with x = 0) are equivalent.

Continuous-state POMDPs

H.Y. Bai, D. Hsu, and WS. Lee. Monte Carlo Value Iteration for Continuous-State
POMDPs. In Proc. Int. Workshop on the Algorithmic Foundations of Robotics, 2010.




Sampling the state space

PRM (Kavraki et al. 1996)
EST (Hsu etal. 1999
RRT (LaValle & Kuffner 2001)
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Continuous-state POMDPs

® Policy graph (finite-state controller)

(Hansen, 2000)
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Continuous-state POMDPs

® Belief over continuous state space

Particle filter
MC-POMDP (Thrun, 2000)
Perseus (Porta et al., 2006)

state space

Monte Carlo backup

Vig (b) = mas {R(b, &)+ plol, a)%(b’)}
0€O

O 4
V(b)j?@ ’4

29

Value iteration on a policy graph

Vi (b) =[x {R(m a)+ Z-ww}

0€0

Monte Carlo Value Iteration
(MCVI)

belief space state space

Sample a new b l MC-backup at
belief: selected beliefs

N

repeat until convergence




Computational efficiency

Theorem

[V (b) = Vi(b)] < +d +7"

\/\0\ +In|A| +In(1/7)
N

with probability at least 1 — 7.

—> o N:number of samples from the state space
(Monte Carlo simulations)

—> ® J,:covering of the belief space

—>» o {:number of iterations

Grasping

Grasping
(Hsiao, Kaelbling & Lozano-Perez 2007)

® Uncertain initial position
® Noisy touch sensors on fingers

® Manual discretization

Simulation results

Model Algorithm Risk ratio

3D continuous-state MCVI 0.00066

POMDP 1

2D continuous-state MCVI [ Tlbg !

POMDP /

2D discrete POMDP SARSOP 0.035 53x
(Temizer et al. 2010)

TCAS TCAS 0.061

Nominal 1.0

* MIT Lincoln Laboratory CASSATT simulator
* 15,000 encounters from 9 months of radar data in US airspace

Aircraft collision avoidance

What makes some POMDPs
easier than others?

D. Hsu,WS. Lee, and N. Rong.What makes some POMDP problems easy to
approximate? In Advances in Neural Information Processing Systems (NIPS), 2007.




Common complexity measures

® Number of states = dimensionality of belief space

0.0)

©.1) (1,0)

An alternative complexity measure

® The govering number C(0) of a set S'is the number
of balls of radius J needed to cover S completely.

Reachable space A

o Find an approximately optimal action at b, (on-line
action selection)

Theorem

An approximately optimal value V(b)) with regret no more
than € can be found in time

(1=9%\* -7
¢ (C () s S ) &

® The problem is easy if the covering number (“volume”) of
the reachable space is small.

Optimally reachable space ..\\

Theorem

Finding the optimal action is NP-hard, even if the optimally
reachable space has a polynomial-size cover.

)
L=
Theorem

Given a suitable cover C of the optimally reachable space,
an approximately optimal value V(b,) with regret no more

than € can be found in time

(1—9)e e
O <|C|2 + |C|10g,y Tw iy
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Implications

® Together, the positive and @
negative results indicate that
finding a suitable cover of the %

optimally reachable space is a @ — @

key difficulty.

® The covering number better
characterizes the complexity
of the problem by capturing
the sparsity of the space.
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Bounding the covering number

® Several properties, often encountered in practice, reduce
the size of covering numbers.

® Fully observable state variables
fd—d’

k4 a ' d—d’
COME . N C ok

® Sparse beliefs
® Smooth beliefs

e Circulant state-transition matrices
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Summary

® |Large belief space:

- A

® |large state space: i o -
MCVI ’d ’a

® Covering number
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Future Work
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POMDP software

Approximate POMDP Planning (APPL) Toolkit

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.HomePage

<variable>
<statevar vnamePrev="rover 0" vnameCurr="rover 1"
fullyobs="true">
<Numvalues>3</Numvalues>
</statevar>
ameprev="rock_0" vaameCurr="rock_1>"
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